JPH0261093B2 - - Google Patents

Info

Publication number
JPH0261093B2
JPH0261093B2 JP23418682A JP23418682A JPH0261093B2 JP H0261093 B2 JPH0261093 B2 JP H0261093B2 JP 23418682 A JP23418682 A JP 23418682A JP 23418682 A JP23418682 A JP 23418682A JP H0261093 B2 JPH0261093 B2 JP H0261093B2
Authority
JP
Japan
Prior art keywords
magnetic
lens
pole piece
magnetic pole
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23418682A
Other languages
Japanese (ja)
Other versions
JPS59123146A (en
Inventor
Katsushige Tsuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP23418682A priority Critical patent/JPS59123146A/en
Publication of JPS59123146A publication Critical patent/JPS59123146A/en
Publication of JPH0261093B2 publication Critical patent/JPH0261093B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses

Description

【発明の詳細な説明】 本発明は、強磁性体試料を観察するための走査
透過電子顕微鏡用対物レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an objective lens for a scanning transmission electron microscope for observing a ferromagnetic sample.

強磁性体の試料像を観察するため、今まで、い
くつかの対物レンズが考案されている。これらの
レンズはいずれも強磁性体試料をレンズ磁場から
シールドするため、磁極片に試料を挿入する孔を
有しているが、従来の対物レンズの内、第1の型
のものは、試料より下方にレンズ磁界を発生して
試料を透過した電子線を結像するためのもので、
このレンズは結像レンズとしての機能は有する
が、レンズ磁界を試料の上方に形成することはで
きないため試料に照射される電子線を細く絞る機
能(対照レンズ機能)は有していない。又、第2
の型のレンズは試料の上方に磁界を発生させて、
試料に照射される電子線を細く絞る機能は有して
いたが、試料を透過した電子線を結像することは
できなかつた。従つて、従来においては、強磁性
体試料の観察モードを透過像と走査像との間で切
換えるには対物レンズ又は磁極片の交換を要し
た。更に、従来のレンズにおいては、試料を透過
した電子線を螢光板上又はその近傍に配置された
透過電子線検出器上に結像した状態で即ち、蛍光
板の近傍に配置された電子線検出器上に特定の次
数の回折電子線が入射できるような状態で、試料
上に照射される電子線を細く絞ることはできず、
強磁性体試料の位相コントラスト像あるいは暗視
野像を走査透過像モードで観察することはできな
かつた。
Several objective lenses have been devised so far to observe images of ferromagnetic samples. All of these lenses have a hole for inserting the sample into the magnetic pole piece in order to shield the ferromagnetic sample from the lens magnetic field, but the first type of conventional objective lenses It generates a downward lens magnetic field to form an image of the electron beam that has passed through the sample.
Although this lens has the function of an imaging lens, it cannot form a lens magnetic field above the sample, so it does not have the function of narrowing down the electron beam irradiated onto the sample (control lens function). Also, the second
A lens of the type generates a magnetic field above the sample,
Although it had the function of narrowing the electron beam irradiated onto the sample, it was not possible to form an image of the electron beam that passed through the sample. Therefore, in the past, switching the observation mode of a ferromagnetic sample between a transmission image and a scanning image required replacing the objective lens or the magnetic pole piece. Furthermore, in conventional lenses, the electron beam transmitted through the sample is imaged on a transmission electron beam detector placed on or near the fluorescent plate. It is not possible to focus the electron beam irradiated onto the sample in a state where a diffracted electron beam of a specific order can be incident on the sample.
It was not possible to observe phase contrast images or dark field images of ferromagnetic samples in scanning transmission image mode.

本発明はこのような従来の欠点を解決し、強磁
性体試料を観察する際に、対物レンズあるいは磁
極片の交換なしに透過像と走査像との間で観察モ
ードを切換え得ると共に、試料の位相コントラス
ト像あるいは暗視野像を走査透過モードで観察す
ることのできる走査透過電子顕微鏡用磁界シール
ド対物レンズを提供することを目的とするもの
で、主コイルと、該主コイルより発生する第1の
磁束の磁路中に第1のギヤツプを介して配置され
た第1及び第2の磁極片と、該磁路中に第2のギ
ヤツプを介して第2の磁極片と対向して配置され
た第3の磁極片と、第1の磁極片との距離が第2
の磁極片との距離より小さくなるように備えられ
た第4の磁極片と、該第4の磁極片と第1の磁極
片間に第2の磁束を通すための補助コイルと、前
記主コイルの励磁電流と補助コイルの励磁電流を
独立に調節するための手段とを具備し、第1のギ
ヤツプに第1の磁束と第2の磁束を重畳したレン
ズ磁界が形成されるように構成したことを特徴と
している。
The present invention solves these conventional drawbacks, and when observing a ferromagnetic sample, it is possible to switch the observation mode between a transmitted image and a scanned image without changing the objective lens or magnetic pole piece, and it is also possible to The purpose of this objective is to provide a magnetic field shielding objective lens for a scanning transmission electron microscope that allows phase contrast images or dark field images to be observed in a scanning transmission mode. first and second magnetic pole pieces disposed in the magnetic path of the magnetic flux via a first gap; and opposed to the second magnetic pole piece disposed in the magnetic path via a second gap. The distance between the third magnetic pole piece and the first magnetic pole piece is the second
a fourth magnetic pole piece provided so as to be smaller than the distance from the first magnetic pole piece; an auxiliary coil for passing a second magnetic flux between the fourth magnetic pole piece and the first magnetic pole piece; and the main coil. and a means for independently adjusting the excitation current of the auxiliary coil and the excitation current of the auxiliary coil, and configured so that a lens magnetic field in which the first magnetic flux and the second magnetic flux are superimposed is formed in the first gap. It is characterized by

以下図面に基づき本発明の実施例を詳述する。 Embodiments of the present invention will be described in detail below based on the drawings.

第1図は本発明の一実施例の断面の半分(光軸
を境界とする)と、この実施例のレンズギヤツプ
G1,G2における光軸に沿つた磁界強度とを示
すためのもので、図中1は主コイルである、この
主コイルには第1のレンズ電源2よりレンズ電流
が供給される。3は主コイル1より発生した磁束
を磁極片に導くためのヨークである。ヨーク3の
上部(上ヨーク部)には第1の磁極片4が取り付
けられている。第1の磁極片4との間に第1のギ
ヤツプG1を挾んで第2の磁極片5が配置されて
いる。この磁極片5は非磁性体より成るスペーサ
ー6によつて支持されている。この第2の磁極片
5には、強磁性体試料7を挿入するための孔8が
穿たれている。ヨーク3の中ヨーク部には、第2
のギヤツプG2を挾んで第2の磁極片5に対向し
て第3の磁極片9が取り付けられている。更に前
記上ヨーク部には補助コイル10が取り付けられ
ており、この補助コイル10には第2のレンズ電
源11より励磁電流が供給できるようになつてい
る。この補助コイルとしては主コイルの1/5乃至
1/10程度の起磁力を有するものが選ばれている。
補助コイル10を囲んで第4の磁極片12が上ヨ
ーク部に接触して取り付けられている。補助コイ
ル10の発生する磁束の殆んどが第1、第4の磁
極4,12間を通るように、この第4の磁極12
は第1の磁極4との距離が第2の磁極5との距離
より充分小さくなるような位置に取り付けられて
いる。
FIG. 1 is intended to show half of the cross section (with the optical axis as the boundary) of an embodiment of the present invention and the magnetic field strength along the optical axis in the lens gaps G1 and G2 of this embodiment. 1 is a main coil, and a lens current is supplied from a first lens power source 2 to this main coil. 3 is a yoke for guiding the magnetic flux generated from the main coil 1 to the magnetic pole piece. A first magnetic pole piece 4 is attached to the upper part of the yoke 3 (upper yoke part). A second magnetic pole piece 5 is arranged between the first magnetic pole piece 4 and a first gap G1. This magnetic pole piece 5 is supported by a spacer 6 made of a non-magnetic material. This second pole piece 5 is provided with a hole 8 into which a ferromagnetic sample 7 is inserted. The middle yoke part of yoke 3 has a second
A third magnetic pole piece 9 is attached opposite to the second magnetic pole piece 5 across the gap G2. Further, an auxiliary coil 10 is attached to the upper yoke portion, and an excitation current can be supplied to this auxiliary coil 10 from a second lens power source 11. The auxiliary coil is selected to have a magnetomotive force approximately 1/5 to 1/10 that of the main coil.
A fourth magnetic pole piece 12 is attached surrounding the auxiliary coil 10 and in contact with the upper yoke portion. The fourth magnetic pole 12 is arranged so that most of the magnetic flux generated by the auxiliary coil 10 passes between the first and fourth magnetic poles 4 and 12.
is attached at a position such that the distance from the first magnetic pole 4 is sufficiently smaller than the distance from the second magnetic pole 5.

次にこのような対物レンズを備えた走査透過電
子顕微鏡の光学系を示す第2図を参照して、動作
を説明する。
Next, the operation will be explained with reference to FIG. 2, which shows the optical system of a scanning transmission electron microscope equipped with such an objective lens.

まず、通常の透過像を観察しようとする際に
は、レンズ電源2より励磁電流を主コイル1に供
給する。その結果、第1ギヤツプG1には第1図
において実線イで示す如き磁界が発生し、第2ギ
ヤツプG2には第1図において実線ロで示す如き
磁界が発生し、試料7を完全にシールドした状態
でレンズ磁界が形成される。その結果、第2図a
に示すようにギヤツプG1における磁界によつて
形成される前方磁界レンズ13aによつて、電子
線EBは殆んど絞られることなく試料7に入射す
る。そこで、試料7を透過した電子線はギヤツプ
G2の磁界によつて形成される対物レンズの後方
磁界レンズ13bによつて、中間レンズ14の物
面に透過像T1として結線され、そのため蛍光板
16上には試料7の透過像T3が結像される。
尚、15は投影レンズであり、D1は試料7を透
過した電子線の回折像である。
First, when attempting to observe a normal transmitted image, an excitation current is supplied from the lens power supply 2 to the main coil 1. As a result, a magnetic field as shown by the solid line A in FIG. 1 is generated in the first gap G1, and a magnetic field as shown by the solid line B in FIG. 1 is generated in the second gap G2, completely shielding the sample 7. A lens magnetic field is formed in this state. As a result, Figure 2a
As shown in FIG. 2, the electron beam EB enters the sample 7 without being narrowed down by the front magnetic field lens 13a formed by the magnetic field in the gap G1. Therefore, the electron beam transmitted through the sample 7 is connected to the object surface of the intermediate lens 14 as a transmitted image T1 by the rear magnetic field lens 13b of the objective lens formed by the magnetic field of the gap G2, and therefore is projected onto the fluorescent screen 16. A transmission image T3 of the sample 7 is formed.
Note that 15 is a projection lens, and D1 is a diffraction image of the electron beam transmitted through the sample 7.

又、試料7の回折像を得ようとする際には、各
レンズを第2図aの励磁状態に保つたまま、中間
レンズ14の物面を回折像D1の位置に合わせれ
ば、第2図bに示す如く、蛍光板16上には回折
像が映し出される。
Furthermore, when trying to obtain a diffraction image of the sample 7, by aligning the object plane of the intermediate lens 14 with the position of the diffraction image D1 while keeping each lens in the excited state shown in FIG. 2a, the image shown in FIG. As shown in b, a diffraction image is projected on the fluorescent screen 16.

そこで、試料7の位相コントラスト像を走査透
過像で観察しようとする際には、中間レンズ14
の励磁を第2図bの状態に保持したまま、第1図
に示した第2のレンズ電源11に励磁電流を供給
する。その結果、補助コイル10より第2の磁束
が発生するが、この磁束は主に第1、第4の磁極
片4,12間を通る。従つて、第2のギヤツプG
2における磁界強度は第1図において実線ロで示
す強度のままであるが、第1ギヤツプG1には実
線イで示した磁界に重畳して、この第2の磁束に
よる磁界が生じるため、このギヤツプG1の磁界
強度は第1図において点線ハで示すものに変化す
る。その結果、第2図cに示すように前方磁界レ
ンズ13aによつて電子線EBは試料7の表面に
細く絞られることになる。この場合、後方磁界レ
ンズ13bをはじめとする他のレンズのレンズ磁
界は変化しないため、蛍光板16上には、試料7
を透過した電子線の回折像が引き続いて得られ
る。そこで蛍光板16を取り除き、この回折像の
1次回折電子線を通常蛍光板16のやや下方に配
置されている電子線検出器17a,17bに入射
させる。そこで更に、試料7に入射する電子線
EBを図示外の偏向器により走査し、その際の検
出器17a及び若しくは17bの出力信号をこの
走査に同期して走査されているCRTに供給すれ
ば、このCRTに走査透過モードにおける暗視野
像を得ることができる。又、検出器17aと17
bの差信号をCRTに供給すれば、走査透過モー
ドにおける位相コントラスト像が得られる。
Therefore, when attempting to observe the phase contrast image of the sample 7 using a scanning transmission image, the intermediate lens 14
An excitation current is supplied to the second lens power supply 11 shown in FIG. 1 while maintaining the excitation in the state shown in FIG. 2b. As a result, a second magnetic flux is generated from the auxiliary coil 10, but this magnetic flux mainly passes between the first and fourth magnetic pole pieces 4 and 12. Therefore, the second gap G
The magnetic field strength at 2 remains the same as shown by the solid line B in FIG. The magnetic field strength of G1 changes to that shown by the dotted line C in FIG. As a result, the electron beam EB is narrowly focused onto the surface of the sample 7 by the front magnetic field lens 13a, as shown in FIG. 2c. In this case, since the lens magnetic fields of other lenses including the rear magnetic field lens 13b do not change, the sample 7 on the fluorescent screen 16 does not change.
A diffraction image of the transmitted electron beam is subsequently obtained. Therefore, the fluorescent screen 16 is removed, and the first-order diffracted electron beam of this diffraction image is made incident on electron beam detectors 17a and 17b, which are normally arranged slightly below the fluorescent screen 16. Therefore, the electron beam incident on sample 7 is
If the EB is scanned by a deflector not shown, and the output signals of the detectors 17a and/or 17b at that time are supplied to the CRT being scanned in synchronization with this scanning, a dark-field image in the scanning transmission mode is displayed on the CRT. can be obtained. Moreover, the detectors 17a and 17
By supplying the difference signal of b to the CRT, a phase contrast image in scanning transmission mode can be obtained.

上述した説明から明らかなように、本発明に基
づく磁界シールド対物レンズにおいては、対物レ
ンズの後方磁界レンズの強度をほとんど変化させ
ることなく、対物レンズの前方磁界レンズの強度
のみを変化させることができるため、後方磁界レ
ンズによつて試料を透過した電子線に基づく透過
像が結像される励磁状態を保持したまま、前方磁
界レンズの強度を変化させて試料に照射される電
子線の集束の程度を自由に調節することができ、
従つて、対物レンズや対物レンズの磁極片の交換
なしに、試料の観察モードを透過像と透過走査像
モードにおける位相コントラスト像(又は暗視野
像)との間で切換えることができる。
As is clear from the above description, in the magnetically shielded objective lens according to the present invention, only the strength of the front magnetic field lens of the objective lens can be changed without substantially changing the strength of the rear magnetic field lens of the objective lens. Therefore, the degree of focusing of the electron beam irradiated onto the sample can be adjusted by changing the intensity of the front magnetic field lens while maintaining the excitation state in which a transmission image is formed based on the electron beam transmitted through the sample by the rear magnetic field lens. can be adjusted freely,
Therefore, the observation mode of the sample can be switched between a transmission image and a phase contrast image (or dark field image) in the transmission scanning image mode without replacing the objective lens or the magnetic pole pieces of the objective lens.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づく磁界シールド対物レン
ズの一実施例の断面とこのレンズギヤツプG1,
G2に生じる磁界強度を示すための図、第2図は
本発明に基づく磁界シールド対物レンズを用いた
走査透過電子顕微鏡における各種の像観察時の光
学系を説明するための図である。 1,10:励磁コイル、2,11:レンズ電
源、3:ヨーク、4,5,9,12:磁極片、
6:スペーサー、7:試料、8:孔、G1,G
2:ギヤツプ、13a:前方磁界レンズ、13
b:後方磁界レンズ、14:中間レンズ、15:
対物レンズ、16:蛍光板、17a,17b:電
子線検出器、T1,T2,T2:透過像、D1,
D2:回折像。
FIG. 1 shows a cross section of an embodiment of a magnetically shielded objective lens according to the present invention, and this lens gap G1,
FIG. 2 is a diagram illustrating the strength of the magnetic field generated in G2, and is a diagram illustrating the optical system during various image observations in a scanning transmission electron microscope using a magnetic field shield objective lens based on the present invention. 1, 10: Excitation coil, 2, 11: Lens power supply, 3: Yoke, 4, 5, 9, 12: Magnetic pole piece,
6: Spacer, 7: Sample, 8: Hole, G1, G
2: Gap, 13a: Front magnetic field lens, 13
b: Back magnetic field lens, 14: Intermediate lens, 15:
Objective lens, 16: Fluorescent screen, 17a, 17b: Electron beam detector, T1, T2, T2: Transmission image, D1,
D2: Diffraction image.

Claims (1)

【特許請求の範囲】[Claims] 1 主コイルと、該主コイルより発生する第1の
磁束の磁路中に第1のギヤツプを介して配置され
た第1及び第2の磁極片と、該磁路中に第2のギ
ヤツプを介して第2の磁極片と対向して配置され
た第3の磁極片と、第1の磁極片との距離が第2
の磁極片との距離より小さくなるように備えられ
た第4の磁極片と、該第4の磁極片と第1の磁極
片間に第2の磁束を通すための補助コイルと、前
記主コイルの励磁電流と補助コイルの励磁電流を
独立に調節するための手段とを具備し、第1のギ
ヤツプに第1の磁束と第2の磁束を重畳したレン
ズ磁界が形成されるように構成したことを特徴と
する磁界シールド対物レンズ。
1 A main coil, first and second magnetic pole pieces disposed through a first gap in a magnetic path of a first magnetic flux generated from the main coil, and a second gap in the magnetic path. The distance between the first magnetic pole piece and the third magnetic pole piece, which is disposed opposite to the second magnetic pole piece through the
a fourth magnetic pole piece provided so as to be smaller than the distance from the first magnetic pole piece; an auxiliary coil for passing a second magnetic flux between the fourth magnetic pole piece and the first magnetic pole piece; and the main coil. and a means for independently adjusting the excitation current of the auxiliary coil and the excitation current of the auxiliary coil, and configured so that a lens magnetic field in which the first magnetic flux and the second magnetic flux are superimposed is formed in the first gap. A magnetically shielded objective lens featuring
JP23418682A 1982-12-28 1982-12-28 Magnetic-field shielding objective Granted JPS59123146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23418682A JPS59123146A (en) 1982-12-28 1982-12-28 Magnetic-field shielding objective

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23418682A JPS59123146A (en) 1982-12-28 1982-12-28 Magnetic-field shielding objective

Publications (2)

Publication Number Publication Date
JPS59123146A JPS59123146A (en) 1984-07-16
JPH0261093B2 true JPH0261093B2 (en) 1990-12-19

Family

ID=16967020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23418682A Granted JPS59123146A (en) 1982-12-28 1982-12-28 Magnetic-field shielding objective

Country Status (1)

Country Link
JP (1) JPS59123146A (en)

Also Published As

Publication number Publication date
JPS59123146A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
CA1110781A (en) Electron microscope (comprising an auxiliary lens)
US4633085A (en) Transmission-type electron microscope
US8772714B2 (en) Transmission electron microscope and method of observing TEM images
JPS614144A (en) Diffraction pattern display method by electron microscope
JPH0261093B2 (en)
JP2001126652A (en) Particle-optical illumination/imaging system having single sight condenser-objective lens
JP3351647B2 (en) Scanning electron microscope
JP2005032588A (en) Magnetic field objective lens for electron microscope
JP2839683B2 (en) Foucault electron microscope
JP2011003533A (en) Magnetic domain imaging system
GB1422398A (en) Scanning electron microscope
JP2957610B2 (en) Scanning electron microscope
JPS6340019B2 (en)
JPS6328518Y2 (en)
US3401261A (en) Apparatus for investigating magnetic regions in thin material layers
JPS6329928B2 (en)
US6624426B2 (en) Split magnetic lens for controlling a charged particle beam
JPH0234750Y2 (en)
JPH0845465A (en) Scanning interference electron microscope
JP2000048749A (en) Scanning electron microscope, and electron beam axis aligning method
JPS586267B2 (en) scanning electron microscope
JPS61193349A (en) Method of irradiating electron ray in electron microscope
JPH02262227A (en) Electron microscope
JPS59181448A (en) Electron microscope
JPH0133898B2 (en)