JPH0133898B2 - - Google Patents

Info

Publication number
JPH0133898B2
JPH0133898B2 JP18765780A JP18765780A JPH0133898B2 JP H0133898 B2 JPH0133898 B2 JP H0133898B2 JP 18765780 A JP18765780 A JP 18765780A JP 18765780 A JP18765780 A JP 18765780A JP H0133898 B2 JPH0133898 B2 JP H0133898B2
Authority
JP
Japan
Prior art keywords
selected area
image
electron beam
objective lens
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18765780A
Other languages
Japanese (ja)
Other versions
JPS57111938A (en
Inventor
Teruyasu Honma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Nihon Denshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Denshi KK filed Critical Nihon Denshi KK
Priority to JP18765780A priority Critical patent/JPS57111938A/en
Publication of JPS57111938A publication Critical patent/JPS57111938A/en
Publication of JPH0133898B2 publication Critical patent/JPH0133898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus

Description

【発明の詳細な説明】 本発明は透過電子顕微鏡、特に蛍光板上に制限
視野絞りの穴の像を投影させる際のフオーカス合
せを容易に行なう装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transmission electron microscope, and more particularly to an apparatus for easily adjusting focus when projecting an image of a hole in a selected area diaphragm onto a fluorescent screen.

透過電子顕微鏡において金属性試料の解析を行
なう場合には制限視野回折が用いられる。斯かる
制限視野回折とは対物レンズの像面位置に制限視
野絞りを設置した状態において、対物レンズの後
焦平面に結像される回折像を中間レンズ及び投影
レンズによつて蛍光板上に拡大結像させるもので
ある。このようにすることにより試料の任意点の
電子顕微鏡像に対応する回折像を得ることができ
る。
Selected area diffraction is used when analyzing metallic samples using a transmission electron microscope. Such selected area diffraction is when a selected area diaphragm is installed at the image plane of the objective lens, and the diffraction image formed on the back focal plane of the objective lens is magnified and focused onto a fluorescent screen using an intermediate lens and a projection lens. It is something that makes you imagine. By doing so, a diffraction image corresponding to an electron microscope image at an arbitrary point on the sample can be obtained.

しかして斯かる制限視野回折においては対物レ
ンズの像面と制限視野絞りとの位置がずれている
と、得られた回折像と制限された視野(電子顕微
鏡像)との対応が不正確となる。そこで斯かる不
都合を防止するために、先ず中間レンズ及び投影
レンズによつて制限視野絞りの穴の像(以下単に
制限視野絞り像と称す)を蛍光板上に結像し、そ
の状態において対物レンズによつて試料像を制限
視野絞り像が投影されている蛍光板上に同時に結
像させることにより対物レンズの像面と制限視野
絞りとの位置を合致させる方法が一般に使用され
ている。
However, in such selected area diffraction, if the image plane of the objective lens and the selected area aperture are misaligned, the correspondence between the obtained diffraction image and the limited field of view (electron microscope image) will be inaccurate. . Therefore, in order to prevent such inconvenience, first, an image of the hole of the selected area diaphragm (hereinafter simply referred to as the selected area diaphragm image) is formed on the fluorescent screen using an intermediate lens and a projection lens, and in this state, the objective lens is Therefore, a method is generally used in which the position of the image plane of the objective lens and the selected area diaphragm are aligned by simultaneously forming the sample image on a fluorescent screen on which the selected area diaphragm image is projected.

しかし乍ら制限視野絞り像の結像に際しては電
子ビームの開き角が小さいことから蛍光板上の制
限視野絞り像をジヤストフオーカスに調整するこ
とは非常に難かしい。そこで従来においては散乱
しやすい試料を用いて制限視野絞り像を形成する
電子ビームの開き角を大きくすることによりフオ
ーカス合せを行なつているが、斯かる操作は初心
者には非常に難かしく、熟練を要する。
However, when forming a selected area aperture image, it is very difficult to adjust the selected area aperture image on the fluorescent screen to just focus because the aperture angle of the electron beam is small. Conventionally, focus alignment has been carried out by using a sample that scatters easily and increasing the aperture angle of the electron beam that forms a selected area aperture image, but such operations are extremely difficult for beginners and require skilled workers. It takes.

本発明は斯様な点に鑑み、熟練を要することな
く制限視野絞り像のフオーカス合せを容易に行な
うことのできる装置を提供するもので、以下図面
に基づき詳説する。
In view of these points, the present invention provides an apparatus that can easily perform focus adjustment of a selected area aperture image without requiring any skill, and will be described in detail below with reference to the drawings.

第1図は本発明の一実施例を示す構成略図であ
り、1は電子銃である。該電子銃1で発生した電
子線2は二段の集束レンズ3,4で集束されて試
料5上に照射される。該試料5を透過した電子線
は対物レンズ6、中間レンズ7及び投影レンズ8
により拡大結像され、蛍光板9上に終像を結ぶ。
10は対物レンズ電源で、該電源と対物レンズ6
との間にはスイツチ11が設けてある。12は中
間レンズ電源である。13は前記対物レンズ6と
中間レンズ7との間におかれた制限視野絞りであ
る。14及び15は前記集束レンズ4と試料5と
の間におかれた二段の偏向コイルで、第1段の偏
向コイル14には電源16からの掃引電流が切換
スイツチ17を介して供給され、又第2段の偏向
コイル15には切換スイツチ18により電源16
からの掃引電流が直接或は抵抗19を介して供給
される。前記切換スイツチ17と18とは連動し
ており、更に該切換スイツチ17,18は前記ス
イツチ11と連動している。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and numeral 1 indicates an electron gun. The electron beam 2 generated by the electron gun 1 is focused by two stages of focusing lenses 3 and 4 and irradiated onto a sample 5. The electron beam transmitted through the sample 5 passes through an objective lens 6, an intermediate lens 7, and a projection lens 8.
The image is enlarged and the final image is formed on the fluorescent screen 9.
10 is an objective lens power supply, and the power supply and the objective lens 6
A switch 11 is provided between the two. 12 is an intermediate lens power supply. 13 is a selected area diaphragm placed between the objective lens 6 and the intermediate lens 7. 14 and 15 are two-stage deflection coils placed between the focusing lens 4 and the sample 5; the first-stage deflection coil 14 is supplied with a sweep current from a power source 16 via a changeover switch 17; Also, the second stage deflection coil 15 is connected to a power source 16 by a changeover switch 18.
A sweep current is supplied directly or through a resistor 19. The changeover switches 17 and 18 are interlocked, and the changeover switches 17 and 18 are interlocked with the switch 11.

斯かる構成においては偏向コイル15が偏向コ
イル14よりも例えばコイルの巻数を多くするこ
とにより偏向角が大きくなるようになし、しかも
両偏向コイルによる偏向方向が逆になる様に構成
してある。又切換スイツチ17,18を端子c側
に切換えた場合、電子線2は第2図bで示すよう
に試料5上の一点に固定された状態でその入射方
向が周期的に交互に変化し、更に切換スイツチ1
7,18を端子b側に切換えた場合、電子線2は
第2図aで示すように制限視野絞り13の穴の一
点に固定された状態でその入射方向が周期的に交
互に変化するように構成してある。
In such a configuration, the deflection angle of the deflection coil 15 is made larger than that of the deflection coil 14 by, for example, increasing the number of coil turns, and the deflection directions of the two deflection coils are opposite to each other. Further, when the changeover switches 17 and 18 are switched to the terminal c side, the electron beam 2 is fixed at one point on the sample 5 as shown in FIG. 2b, and its direction of incidence changes periodically and alternately. Furthermore, selector switch 1
7 and 18 are switched to the terminal b side, the electron beam 2 is fixed at one point in the hole of the selected area diaphragm 13, and its direction of incidence changes periodically and alternately, as shown in Figure 2a. It is structured as follows.

今、電子線通路上におかれた制限視野絞り13
と対物レンズ6の像面とを一致させるためには、
先ず対物レンズ6の中心に挿入された対物絞り
(図示せず)を電子線通路上からはずす。次にス
イツチ11を開放するとその操作に連動して切換
スイツチ17,18が端子b側に切換えられる。
これにより対物レンズ6はオフ状態(無励磁状
態)となり、電子線2は偏向コイル14,15に
より第2図aでその状態を示すように制限視野絞
り13の穴の中心に固定された状態でその入射方
向が周期的に交互に変化される。このとき制限視
野絞り13を照射する電子線2のビーム径はこの
制限視野絞りの穴径よりも大きくなしてある。し
かして該電子線2の照射方向の変動に伴つて制限
視野絞り13を通過した電子線2は2a及び2b
で示すように異なつた経路をとつて中間レンズ7
及び投影レンズ8により拡大され、蛍光板9上に
制限視野絞り像が投影される。このときフオーカ
スが合つていない状態では電子線2aと2bの蛍
光板9上での位置は異なり、像は二重に見える。
又フオーカスが完全に合つた状態では同図でその
状態を示すように電子線2aと2bは蛍光板9の
同一個所に結像するようになり、像は完全に一重
となる。従つて蛍光板9上に結像される制限視野
絞り像が一重となるように中間レンズ7の励磁電
流を可変することにより容易にジヤストフオーカ
スされた制限視野絞り像を得ることができる。
Selected area aperture 13 is now placed on the electron beam path.
In order to match the image plane of the objective lens 6,
First, the objective aperture (not shown) inserted into the center of the objective lens 6 is removed from above the electron beam path. Next, when the switch 11 is opened, the changeover switches 17 and 18 are switched to the terminal b side in conjunction with the operation.
As a result, the objective lens 6 is turned off (non-excited), and the electron beam 2 is fixed at the center of the hole in the selected area diaphragm 13 by the deflection coils 14 and 15, as shown in FIG. 2a. The direction of incidence is periodically and alternately changed. At this time, the beam diameter of the electron beam 2 that irradiates the selected area aperture 13 is made larger than the hole diameter of this selected area aperture. However, as the irradiation direction of the electron beam 2 changes, the electron beams 2 that have passed through the selected area aperture 13 are 2a and 2b.
The intermediate lens 7 is
The image is magnified by the projection lens 8 and a selected area aperture image is projected onto the fluorescent screen 9 . At this time, when the electron beams 2a and 2b are out of focus, the positions on the fluorescent screen 9 are different, and a double image appears.
In addition, when the focus is completely aligned, the electron beams 2a and 2b are focused on the same location on the fluorescent screen 9, and the images become completely single, as shown in the figure. Therefore, by varying the excitation current of the intermediate lens 7 so that the selected area aperture images formed on the phosphor screen 9 are unified, a just-focused selected area aperture image can be easily obtained.

しかしてジヤストフオーカスの制限視野絞り像
が得られると、スイツチ11を閉じて対物レンズ
6に励磁電流を供給してオン状態となした後、切
換スイツチ17,18を端子c側に切換え、第2
図bでその状態を示すように電子線2を試料5上
の一点に固定した状態でその入射方向を周期的に
交互に変化させる。これにより蛍光板9上に投影
されている制限視野絞り像の中に同時に試料像が
投影され、フオーカスが合つていないときには試
料像は二重に見えるため、この二重像が一重にな
るように対物レンズ6の励磁電流を調整する。斯
様な動作を行なうことにより対物レンズ6の像面
と制限視野絞り13とを正確に一致させることが
できる。従つて中間レンズ7の励磁電流を変えて
対物レンズ6の後焦平面に結像されている回折像
を蛍光板9上に拡大結像させれば、制限視野絞り
13により制限された視野に正確に対応する制限
視野回折像を得ることができる。
When the selected area aperture image of the just focus is obtained, the switch 11 is closed and the excitation current is supplied to the objective lens 6 to turn it on, and the changeover switches 17 and 18 are switched to the terminal c side. 2
As shown in Figure b, the electron beam 2 is fixed at one point on the sample 5, and its direction of incidence is periodically and alternately changed. As a result, the sample image is simultaneously projected into the selected area aperture image projected on the fluorescent screen 9, and since the sample image appears double when the focus is not adjusted, the double images are made to become one. The excitation current of the objective lens 6 is adjusted. By performing such an operation, the image plane of the objective lens 6 and the selected area diaphragm 13 can be accurately aligned. Therefore, if the excitation current of the intermediate lens 7 is changed and the diffraction image formed on the back focal plane of the objective lens 6 is enlarged and imaged on the fluorescent screen 9, the field of view limited by the selected area diaphragm 13 can be accurately focused. A corresponding selected area diffraction image can be obtained.

尚前述の説明において制限視野絞りへの電子線
の入射方向を周期的に変化せしめる際、試料は電
子線通路上においてままであつたが、通路外に移
動させてもよいことは言うまでもない。
In the above description, when the direction of incidence of the electron beam on the selected area diaphragm is periodically changed, the sample remains on the electron beam path, but it goes without saying that it may be moved out of the path.

以上の如き構成とすることにより本発明は制限
視野絞り像のフオーカス合せを行なうとき、従来
のように試料による散乱電子線を利用する必要が
なくなるため、熟練を要することなく初心者でも
容易にジヤストフオーカスの像を得ることができ
る。又試料を用いなくてもよいことから投影レン
ズの励磁強度を大きくすることにより制限視野絞
り像を高い倍率でもつて投影させても十分な明る
さでフオーカス合せを行なうことができる。更
に、対物レンズの励磁電流を停止した状態で制限
視野絞りへの電子線の入射方向を周期的に変化さ
せることにより二段の偏向コイルに供給する掃引
電流の比を一定の値に固定することができるた
め、操作が非常に容易になる。更に又、二段の偏
向コイルを試料の上方に設置することにより制限
視野絞り像と試料像とのフオーカス合せを一組と
二段偏向コイルで行なうことができるため、構成
の簡略化をはかることができる。
With the above configuration, the present invention eliminates the need to use the electron beam scattered by the sample when performing focus adjustment of the selected area aperture image, as in the past, and even beginners can easily adjust the focus without requiring any skill. You can get the statue of Orcus. Furthermore, since there is no need to use a sample, by increasing the excitation intensity of the projection lens, focus alignment can be performed with sufficient brightness even if the selected area aperture image is projected at a high magnification. Furthermore, the ratio of the sweep currents supplied to the two-stage deflection coil can be fixed at a constant value by periodically changing the direction of incidence of the electron beam to the selected area diaphragm while the excitation current of the objective lens is stopped. This makes operation very easy. Furthermore, by installing two stages of deflection coils above the sample, focus alignment between the selected area aperture image and the sample image can be performed using one set and two stages of deflection coils, thereby simplifying the configuration. Can be done.

尚前述の実施例では試料の上方に二段の偏向コ
イルを設置したが、試料の上方及び試料と制限視
野絞りとの間に夫々二段の偏向コイルを設置して
もよい。
In the above embodiment, two stages of deflection coils are installed above the sample, but two stages of deflection coils may be installed above the sample and between the sample and the selected area aperture.

又、蛍光板上での制限視野絞り像のフオーカス
合せの際、対物レンズの励磁電流の供給を停止さ
せたが、必ずしも停止させる必要はない。
Further, although the excitation current supply to the objective lens was stopped when focusing the selected area aperture image on the fluorescent screen, it is not necessarily necessary to stop the supply.

更に、対物レンズ6をオン、オフ状態にするた
めのスイツチ11を開放したとき、切換スイツチ
17,18が端子aからbに切換わるように述べ
たが、これに限定されることなく切換スイツチ1
7,18を端子b側に切換えたときだけ11が開
放するように構成してもよい。
Further, although it has been described that when the switch 11 for turning the objective lens 6 on and off is opened, the changeover switches 17 and 18 are changed from terminal a to terminal b, the changeover switch 1 is not limited to this.
It may be configured such that 11 is opened only when 7 and 18 are switched to the terminal b side.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成略図、第
2図a及び第2図bは夫々動作を説明するための
図である。 1:電子銃、2:電子線、3及び4:集束レン
ズ、5:試料、6:対物レンズ、7:中間レン
ズ、8:投影レンズ、9:蛍光板、10:対物レ
ンズ電源、11:スイツチ、12:中間レンズ電
源、13:制限視野絞り、14及び15:偏向コ
イル、16:電源、17及び18:切換スイツ
チ、19:抵抗。
FIG. 1 is a schematic configuration diagram showing one embodiment of the present invention, and FIGS. 2a and 2b are diagrams for explaining the operation, respectively. 1: Electron gun, 2: Electron beam, 3 and 4: Focusing lens, 5: Sample, 6: Objective lens, 7: Intermediate lens, 8: Projection lens, 9: Fluorescent screen, 10: Objective lens power supply, 11: Switch, 12: Intermediate lens power supply, 13: Selected field diaphragm, 14 and 15: Deflection coil, 16: Power supply, 17 and 18: Selector switch, 19: Resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 結像レンズ系に制限視野絞りを挿入し、この
制限視野絞りの後方の結像レンズ系の励磁電流を
調整することにより制限視野回折像を得るように
なした装置において、前記制限視野絞りの穴に電
子線を固定した状態でその入射方向を周期的に変
化させるための偏向系を設けてなる透過電子顕微
鏡。
1. In an apparatus in which a selected area diaphragm is inserted into an imaging lens system and a selected area diffraction image is obtained by adjusting the excitation current of the imaging lens system behind the selected area diaphragm, the selected area diaphragm is A transmission electron microscope is equipped with a deflection system to periodically change the direction of incidence of an electron beam with the electron beam fixed in a hole.
JP18765780A 1980-12-27 1980-12-27 Transmission electron microscope Granted JPS57111938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18765780A JPS57111938A (en) 1980-12-27 1980-12-27 Transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18765780A JPS57111938A (en) 1980-12-27 1980-12-27 Transmission electron microscope

Publications (2)

Publication Number Publication Date
JPS57111938A JPS57111938A (en) 1982-07-12
JPH0133898B2 true JPH0133898B2 (en) 1989-07-17

Family

ID=16209911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18765780A Granted JPS57111938A (en) 1980-12-27 1980-12-27 Transmission electron microscope

Country Status (1)

Country Link
JP (1) JPS57111938A (en)

Also Published As

Publication number Publication date
JPS57111938A (en) 1982-07-12

Similar Documents

Publication Publication Date Title
JP2868536B2 (en) Method of irradiating object in transmission electron microscope and electron microscope therefor
US6040576A (en) Energy filter, particularly for an electron microscope
JP2002117800A (en) Electron microscope equipped with electron beam biprism device
JPS614142A (en) Illumination lens system in electron microscope or the like
JPS614144A (en) Diffraction pattern display method by electron microscope
US6140645A (en) Transmission electron microscope having energy filter
JP2007504606A (en) Particle optics device
EP0241060B1 (en) Apparatus for energy-selective visualisation
JPH03134944A (en) Electron beam device
JPH0133898B2 (en)
US11133151B2 (en) Transmission electron microscope and method of controlling same
JPS6133254B2 (en)
JPH05135727A (en) Electron microscope
JPS6340019B2 (en)
JPS5919408B2 (en) electronic microscope
JPS6363109B2 (en)
JPH0227492Y2 (en)
JPH03138841A (en) Scanning type electron microscope
JPS59181448A (en) Electron microscope
JPS589545B2 (en) How to get the most out of your day
JPH0228601Y2 (en)
JPH08203460A (en) Scanning electron beam diffraction apparatus
JPS6231473B2 (en)
JPH06318443A (en) Ion beam device
JP2000048749A (en) Scanning electron microscope, and electron beam axis aligning method