JPH08203460A - Scanning electron beam diffraction apparatus - Google Patents

Scanning electron beam diffraction apparatus

Info

Publication number
JPH08203460A
JPH08203460A JP7011727A JP1172795A JPH08203460A JP H08203460 A JPH08203460 A JP H08203460A JP 7011727 A JP7011727 A JP 7011727A JP 1172795 A JP1172795 A JP 1172795A JP H08203460 A JPH08203460 A JP H08203460A
Authority
JP
Japan
Prior art keywords
scanning
electron beam
objective lens
sample
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7011727A
Other languages
Japanese (ja)
Inventor
Takao Marui
隆雄 丸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7011727A priority Critical patent/JPH08203460A/en
Publication of JPH08203460A publication Critical patent/JPH08203460A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide scanned images with high resolution from low magnification to high magnification and which display the distribution of crystalline states of a sample. CONSTITUTION: A two-stage scanning coil 5 is installed between two objective lens 4, 6 arranged in the direction of an optical axis. At the time of scanning observation, at low magnification, electron beams are converged only by (on) the objective lens 4 and beams are made to run in parallel by the scanning coil 5 and at the time of scanning observation at high magnification, electron beams are converged only by (on) the objective lens 6 and the beams are scanned in a common way by the scanning coil 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、細く絞った電子線で試
料面を走査し試料から2次的に発生する回折電子線を用
いて試料の観察・分析を行う走査型電子線回折装置に関
し、とくに電子ビームの収束および走査機構の改良に関
する。ここでいう走査型電子線回折装置は走査型電子回
折顕微鏡と呼ばれるときもある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning electron beam diffractometer for observing and analyzing a sample using a diffracted electron beam secondarily generated from the sample by scanning the sample surface with a finely focused electron beam. In particular, it relates to improvement of electron beam focusing and scanning mechanism. The scanning electron diffraction apparatus referred to here is sometimes called a scanning electron diffraction microscope.

【0002】[0002]

【従来の技術】細く絞った電子線を走査しながら試料に
照射する装置では、従来図3に示すような対物レンズと
走査コイルの配置が用いられていた。なかでも試料に電
子ビームを照射する方向が重要な走査型電子線回折装置
では主に図3(a)に示す配置が用いられていた(特開
平2−216746参照)。この配置は対物レンズ51
の下(試料側)に2段の走査コイル52を配設するもの
で、対物レンズ21で電子ビーム53を収束したあとで
走査コイル52でその電子ビームを平行走査するので試
料54に対して電子ビームを同一方向から照射すること
ができる。
2. Description of the Related Art In an apparatus for irradiating a sample while scanning a finely focused electron beam, an arrangement of an objective lens and a scanning coil as shown in FIG. 3 has been conventionally used. Among them, in the scanning electron diffraction apparatus in which the direction of irradiating the sample with the electron beam is important, the arrangement shown in FIG. 3 (a) is mainly used (see JP-A-2-216746). This arrangement is for the objective lens 51.
The two-stage scanning coil 52 is disposed below (on the sample side), and the electron beam 53 is converged by the objective lens 21 and then the scanning coil 52 scans the electron beam in parallel. The beams can be emitted from the same direction.

【0003】図3(b)に示す配置は主に走査型電子顕
微鏡で用いられているもので、電子ビームをより細くす
るために対物レンズと試料との距離を短くして縮小率を
かせぎ、走査コイルは対物レンズの上(電子銃側)に配
設している。このとき電子ビームが対物レンズの中央を
通らないと対物レンズによる収差が大きくなって電子ビ
ームが絞れないので、図に示すように電子ビームは常に
対物レンズの中央を通るように走査される。
The arrangement shown in FIG. 3B is mainly used in a scanning electron microscope. In order to make the electron beam thinner, the distance between the objective lens and the sample is shortened to increase the reduction ratio. The scanning coil is arranged above the objective lens (on the side of the electron gun). At this time, if the electron beam does not pass through the center of the objective lens, aberration due to the objective lens becomes large and the electron beam cannot be focused, so that the electron beam is always scanned so as to pass through the center of the objective lens.

【0004】[0004]

【発明が解決しようとする課題】図3(a)に示す配置
は電子ビームを平行に保ったまま走査でき、試料に対し
て同一方向から電子ビームを照射できるので走査型電子
線回折装置に適しているが、対物レンズと試料との距離
が比較的大きいので電子ビームの直径をおよそ100n
m以下にすることがむずかしい。したがって分解能が不
足するので高倍率の走査像を得ることができなかった。
The arrangement shown in FIG. 3 (a) is suitable for a scanning electron beam diffractometer because the electron beam can be scanned while being kept parallel and the sample can be irradiated with the electron beam from the same direction. However, since the distance between the objective lens and the sample is relatively large, the diameter of the electron beam is about 100n.
It is difficult to make it less than m. Therefore, since the resolution is insufficient, a high-magnification scan image cannot be obtained.

【0005】一方、図3(b)に示す配置では電子ビー
ムの直径をおよそ10nmさらにそれ以下にすることが
できるので高倍率の走査像を得ることができるが、この
配置は試料に電子ビームが当たる方向が走査につれて変
化するので、この配置を走査型電子線回折装置に適用す
るのは一般的には好ましくない。しかし高倍率の観察に
限れば、電子ビームが試料に当たる方向の変化はごく僅
かなので、この配置を走査型電子線回折装置に適用する
ことができる。
On the other hand, in the arrangement shown in FIG. 3 (b), the diameter of the electron beam can be reduced to about 10 nm or less, so that a high-magnification scanning image can be obtained. It is generally not preferable to apply this arrangement to a scanning electron diffractometer because the direction of impact changes with scanning. However, since the change in the direction in which the electron beam impinges on the sample is very small only when observing at high magnification, this arrangement can be applied to the scanning electron diffraction apparatus.

【0006】本発明の目的は低倍率から高倍率まで観察
できる走査型電子線回折装置を提供することである。
It is an object of the present invention to provide a scanning electron diffraction apparatus capable of observing from low magnification to high magnification.

【0007】[0007]

【課題を解決するための手段】本発明では、上記課題を
解決するために、電子ビームを発生する電子銃とその電
子ビームを細く絞る対物レンズとその電子ビームを走査
する走査コイルを有する走査型電子線回折装置におい
て、電子ビームを試料面に収束させるための対物レンズ
を光軸方向に互いに離隔して2個設け、この2つの対物
レンズ間に2段の走査コイルを配設した。
According to the present invention, in order to solve the above problems, a scanning type having an electron gun for generating an electron beam, an objective lens for narrowing down the electron beam, and a scanning coil for scanning the electron beam. In the electron beam diffractometer, two objective lenses for focusing the electron beam on the sample surface are provided separately from each other in the optical axis direction, and a two-stage scanning coil is provided between the two objective lenses.

【0008】[0008]

【作用】2段の走査コイルの上(電子銃側)と下(試料
側)にそれぞれ対物レンズを設けたので、低倍率のとき
と高倍率のときに対物レンズおよび走査コイルの動作を
それぞれ設定することによって両方の条件に適した動作
を得ることができる。すなわち図2(a)に示すよう
に、低倍率のときには下の対物レンズを働かさないで図
3(a)と同様に動作させ、高倍率のときには図2
(b)に示すように、上の対物レンズは働かさないで図
3(b)と同様に動作させるものである。そうすること
によって低倍率から高倍率まで適当な分解能と試料への
照射方向をもった走査型電子線回折装置を実現できる。
Since the objective lenses are provided above (on the side of the electron gun) and below (on the side of the sample) the two-stage scanning coils, the operations of the objective lens and the scanning coil are set at low magnification and high magnification, respectively. By doing so, an operation suitable for both conditions can be obtained. That is, as shown in FIG. 2A, when the magnification is low, the lower objective lens is not operated and is operated in the same manner as in FIG.
As shown in (b), the upper objective lens does not work and is operated in the same manner as in FIG. 3 (b). By doing so, it is possible to realize a scanning electron beam diffractometer having appropriate resolution from low magnification to high magnification and an irradiation direction to the sample.

【0009】[0009]

【実施例】図1は走査型電子線回折装置の概略図であ
り、本発明の一実施例である。電子ビーム10は電子銃
1で発生させ、コンデンサレンズ2と絞り3によってビ
ーム電流が調節される。対物レンズ(上)4または対物
レンズ(下)6によって細く収束された電子ビームが試
料7に照射されると、試料7の結晶状態に応じて回折電
子線11が反射され、蛍光板8のうえに回折パターンを
描き、そのうちの一つの回折スポットの輝度が検出器9
によって検出される。走査電源13からの信号が走査コ
イル5に供給されて電子ビームが試料面上を走査される
が、それに同期してCRT12に検出器9からの輝度信
号が与えられることによってCRT12の画面に試料の
結晶状態の分布を表す走査像が得られる。
1 is a schematic diagram of a scanning electron diffraction apparatus, which is an embodiment of the present invention. The electron beam 10 is generated by the electron gun 1, and the beam current is adjusted by the condenser lens 2 and the diaphragm 3. When the sample 7 is irradiated with an electron beam that is narrowly converged by the objective lens (upper) 4 or the objective lens (lower) 6, the diffracted electron beam 11 is reflected according to the crystal state of the sample 7, and the diffracted electron beam 11 is reflected on the fluorescent plate 8. A diffraction pattern is drawn, and the brightness of one of the diffraction spots is detected by the detector 9
Is detected by The signal from the scanning power supply 13 is supplied to the scanning coil 5 to scan the electron beam on the sample surface. In synchronization with this, the luminance signal from the detector 9 is given to the CRT 12 to display the sample on the screen of the CRT 12. A scan image representing the distribution of crystalline states is obtained.

【0010】対物レンズ電源14からの電流は切替器1
5によって電流が流れる対物レンズ4または6が選ばれ
るようになっている。ただしこれは対物レンズ(上)4
用と対物レンズ(下)6用の対物レンズ電源をそれぞれ
別に設けておいて、2つの対物レンズに流れる電流を個
別に制御してもよい。図ではコンデンサレンズは1段で
描いているが、これは2段またはそれ以上であってもよ
い。また走査コイル5は2段のそれぞれにX軸用とY軸
用のコイルを備えており、電子ビームを2次元的に走査
できるものである。
The current from the objective lens power supply 14 is switched by the switch 1.
The objective lens 4 or 6 through which the current flows is selected by 5. However, this is the objective lens (top) 4
And the objective lens (bottom) 6 may be provided with separate objective lens power supplies, and the currents flowing through the two objective lenses may be controlled individually. Although the condenser lens is drawn in one stage in the figure, this may be two stages or more. Further, the scanning coil 5 is provided with an X-axis coil and a Y-axis coil in each of two stages, and can scan the electron beam two-dimensionally.

【0011】本発明の主要部であるビーム収束用対物レ
ンズとビーム偏向用走査コイルの配置を図2に示す。光
軸方向に並べて配置した2つの対物レンズ(上)4と対
物レンズ(下)6の間に2段の走査コイル5が配設され
ている。低倍率の走査像を得る場合には図2(a)に示
すように電子ビームを走査する(これを低倍率モードと
呼ぶ)。このモードでは切替器15の設定によって、対
物レンズ(下)6には電流を流さず働かさない状態にし
ておき、対物レンズ(上)4のみを使って電子ビーム1
0を試料7の面上にフォーカスさせる。電子ビームは、
ビームが平行状態を保ったまま試料面に対して一定の方
向から電子が照射されるように2段の走査コイルによっ
て走査される。このためには2段の走査コイルのうち上
側のコイル5aに電流Iを流したとすると下側のコイル
5bには向きが反対で大きさの等しい電流−Iを流せば
良い。低倍率のときは試料面上の比較的広い範囲を走査
するが、上述したように電子ビームは常に試料面に対し
て一定の方向から照射されるので回折の条件を乱すこと
がない。また低倍率の像であるから電子ビームの直径が
少々大きくても観察像の分解能には問題がない。
FIG. 2 shows the arrangement of the beam focusing objective lens and the beam deflecting scanning coil, which is the main part of the present invention. A two-stage scanning coil 5 is arranged between two objective lenses (upper) 4 and objective lenses (lower) 6 arranged side by side in the optical axis direction. To obtain a low-magnification scan image, the electron beam is scanned as shown in FIG. 2A (this is called a low-magnification mode). In this mode, the switching device 15 is set so that no current is passed through the objective lens (lower) 6 so that it does not work, and only the objective lens (upper) 4 is used.
0 is focused on the surface of the sample 7. Electron beam
The beam is scanned by the two-stage scanning coil so that the sample surface is irradiated with electrons from a certain direction while keeping the parallel state. For this purpose, if a current I is applied to the upper coil 5a of the two-stage scanning coil, a current -I having the same direction but the opposite direction may be applied to the lower coil 5b. When the magnification is low, a relatively wide range is scanned on the sample surface, but as described above, the electron beam is always irradiated from a fixed direction on the sample surface, so that the diffraction condition is not disturbed. Further, since it is a low-magnification image, there is no problem in the resolution of the observed image even if the diameter of the electron beam is slightly larger.

【0012】走査像の倍率を高くしていくと、図2
(a)の動作では対物レンズ(上)4と試料7との距離
が比較的離れているので、電子ビームの直径を小さくで
きないために分解能が不足し像がぼやけてくる。その様
な高倍率で走査像を得るときには図2(b)に示した動
作に切り替える(これを高倍率モードと呼ぶ)。このと
き切替器15を切り替えることによって、対物レンズ
(上)4には電流を流さず働かさない状態にしておき、
対物レンズ(下)6のみを使って電子ビーム10を試料
7の面上にフォーカスさせる。対物レンズ(下)6と試
料7の距離は短いから縮小率をかせぐことができ、電子
ビームの直径を小さくできる。したがって高倍率にして
も走査像がぼやけることがなく鮮明な像が得られる。こ
のときの走査の方法は電子ビームが対物レンズ(下)6
の中央を通るように2段の走査コイルで偏向される。こ
れは対物レンズの中央を電子ビームが通らないと収差が
大きくなって高倍率の像が得られないからである。この
ためには、コイル5aとコイル5b間の距離とコイル5
bと対物レンズ(下)6間の距離が等しいと仮定する
と、2段の走査コイルのうち上側のコイル5aに電流I
を流したとすると下側のコイル5bには向きが反対で大
きさが2倍の電流−2Iを流せば良い。このように走査
すると試料面に対する電子ビームの照射方向が走査につ
れて僅かに変化することになるが、高倍率の像を得る場
合には試料面上の走査範囲はきわめて小さいので、その
照射方向の変化も極めて小さく問題にならない。
As the magnification of the scanning image is increased, FIG.
In the operation of (a), since the distance between the objective lens (upper) 4 and the sample 7 is relatively large, the diameter of the electron beam cannot be reduced, so that the resolution is insufficient and the image becomes blurred. When a scan image is obtained at such a high magnification, the operation is switched to that shown in FIG. 2B (this is called a high magnification mode). At this time, by switching the switching device 15, no current is passed through the objective lens (upper) 4 so that it does not work.
The electron beam 10 is focused on the surface of the sample 7 using only the objective lens (lower) 6. Since the distance between the objective lens (lower) 6 and the sample 7 is short, the reduction rate can be increased and the diameter of the electron beam can be reduced. Therefore, even at high magnification, a clear image can be obtained without blurring the scanned image. The scanning method at this time is that the electron beam is the objective lens (lower) 6
It is deflected by a two-stage scanning coil so as to pass through the center of. This is because unless the electron beam passes through the center of the objective lens, the aberration becomes large and a high-magnification image cannot be obtained. To this end, the distance between the coil 5a and the coil 5b and the coil 5
Assuming that the distance between b and the objective lens (bottom) 6 is equal, the current I flows through the upper coil 5a of the two-stage scanning coil.
If the current is passed through, the lower coil 5b may be supplied with a current −2I having a direction opposite to that of the coil 5b. When scanning is performed in this way, the irradiation direction of the electron beam on the sample surface slightly changes as the scanning is performed. However, when a high-magnification image is obtained, the scanning range on the sample surface is extremely small. Is extremely small and does not matter.

【0013】図2の実施例では対物レンズ(下)6には
絞りは入れていないので、その中央部は数mmの開口が
ある。実際の大きさはそのレンズヨークの設計によって
決まる値である。対物レンズの球面収差などを小さくす
るための絞りは対物レンズ(上)4の中央部に入れても
良いし、走査コイル5より上流(電子銃側)でコンデン
サレンズに付属する絞り3より下流(試料側)ならば電
子ビーム軸上のどこにいれても良い。
In the embodiment of FIG. 2, the objective lens (lower) 6 is not provided with a diaphragm, so that the central portion thereof has an opening of several mm. The actual size is a value determined by the design of the lens yoke. A diaphragm for reducing spherical aberration of the objective lens may be placed in the central portion of the objective lens (upper) 4, or may be located upstream of the scanning coil 5 (on the electron gun side) and downstream of the diaphragm 3 attached to the condenser lens. If it is the sample side), it may be placed anywhere on the electron beam axis.

【0014】上記の説明で高倍率モードのときは対物レ
ンズ(上)4を動作させないと述べたが、前述したよう
に2つの対物レンズ用の対物レンズ電源を別々に設けて
おいた場合に、上下の対物レンズを両方とも動作させて
試料面上にフォーカスさせるようにしても良いことはも
ちろんである。
Although it has been stated in the above description that the objective lens (upper) 4 is not operated in the high magnification mode, when the objective lens power sources for the two objective lenses are separately provided as described above, Of course, both the upper and lower objective lenses may be operated to focus on the sample surface.

【0015】本発明は次のような構成を含むものであ
る。電子ビームを発生する電子銃とその電子ビームを細
く絞る対物レンズとその電子ビームを走査しながら試料
に照射する走査手段を有する走査型電子回折顕微鏡にお
いて、2段のXY2軸走査手段と、その走査手段の電子
銃側に第1の対物レンズと、前記走査手段の試料側に第
2の対物レンズを備え、低倍率モードのときには前記第
1の対物レンズを作動させ、高倍率モードのときには前
記第2の対物レンズを作動させる両レンズの作動切替手
段を設けたことを特徴とする走査型電子回折顕微鏡。
The present invention includes the following configurations. In a scanning electron diffraction microscope having an electron gun for generating an electron beam, an objective lens for narrowing the electron beam and a scanning means for irradiating a sample while scanning the electron beam, two stages of XY biaxial scanning means and scanning thereof A first objective lens is provided on the electron gun side of the means, and a second objective lens is provided on the sample side of the scanning means. The first objective lens is operated in the low magnification mode, and the first objective lens is operated in the high magnification mode. 2. A scanning electron diffraction microscope, characterized in that an operation switching means for actuating both objective lenses of 2 is provided.

【0016】[0016]

【発明の効果】本発明では2つの対物レンズを用意し、
その間に2段の走査コイルを設けたので低倍率モードと
高倍率モードの両方の動作を選ぶことができる。低倍率
モードでは電子ビームの直径によって決まる分解能を上
げることよりも電子ビームが試料に同一方向から照射す
ることを重視して正しい結晶状態の分布像が得られるよ
うにしている。また高倍率モードでは分解能を上げるこ
とを重視して電子ビームの照射方向は犠牲にしている
が、高倍率の場合のみに限定して使用するのでその影響
は少ない。したがって本発明の装置では、試料への電子
ビームの照射方向がそろい、低倍率から高倍率まで分解
能よく観察できる走査型電子線回折装置が実現できる。
According to the present invention, two objective lenses are prepared,
Since the two-stage scanning coil is provided between them, it is possible to select the operation in both the low magnification mode and the high magnification mode. In the low-magnification mode, the distribution image of the correct crystalline state is obtained by focusing on irradiating the sample with the electron beam from the same direction rather than increasing the resolution determined by the diameter of the electron beam. Further, in the high magnification mode, the electron beam irradiation direction is sacrificed with an emphasis on increasing the resolution, but since it is used only in the high magnification mode, the influence is small. Therefore, the apparatus of the present invention can realize a scanning electron beam diffraction apparatus in which the irradiation directions of electron beams on a sample are aligned and observation can be performed with good resolution from low magnification to high magnification.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の走査型電子線回折装置の一実施例であ
る。
FIG. 1 is an embodiment of a scanning electron diffraction apparatus of the present invention.

【図2】本発明の主要部である対物レンズと走査コイル
の配置を示す。
FIG. 2 shows an arrangement of an objective lens and a scanning coil, which is a main part of the present invention.

【図3】従来の対物レンズと走査コイルの配置を示す。FIG. 3 shows a conventional arrangement of an objective lens and a scanning coil.

【符号の説明】[Explanation of symbols]

1…電子銃 2…コンデンサレンズ 3
…絞り 4…対物レンズ(上) 5…走査コイル 6
…対物レンズ(下) 7…試料 8…蛍光板 9
…検出器 10…電子ビーム 11…回折線 1
2…CRT 13…走査電源 14…対物レンズ電源 1
5…切替器 51…対物レンズ 52…走査コイル 5
3…電子ビーム 54…試料
1 ... Electron gun 2 ... Condenser lens 3
... Aperture 4 ... Objective lens (upper) 5 ... Scanning coil 6
… Objective lens (bottom) 7… Sample 8… Fluorescent plate 9
… Detector 10… Electron beam 11… Diffraction line 1
2 ... CRT 13 ... Scanning power supply 14 ... Objective lens power supply 1
5 ... Switching device 51 ... Objective lens 52 ... Scanning coil 5
3 ... Electron beam 54 ... Sample

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電子ビームを発生する電子銃とその電子
ビームを細く絞る対物レンズとその電子ビームを走査す
る走査コイルを有する走査型電子線回折装置において、
電子ビームを試料面に収束させるための対物レンズを光
軸方向に互いに離隔して2個設け、この2つの対物レン
ズ間に2段の走査コイルを配設したことを特徴とする走
査型電子線回折装置。
1. A scanning electron diffraction apparatus comprising an electron gun for generating an electron beam, an objective lens for narrowing the electron beam, and a scanning coil for scanning the electron beam.
A scanning electron beam, characterized in that two objective lenses for converging an electron beam on a sample surface are provided apart from each other in the optical axis direction, and two-stage scanning coils are arranged between the two objective lenses. Diffraction device.
JP7011727A 1995-01-27 1995-01-27 Scanning electron beam diffraction apparatus Pending JPH08203460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7011727A JPH08203460A (en) 1995-01-27 1995-01-27 Scanning electron beam diffraction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7011727A JPH08203460A (en) 1995-01-27 1995-01-27 Scanning electron beam diffraction apparatus

Publications (1)

Publication Number Publication Date
JPH08203460A true JPH08203460A (en) 1996-08-09

Family

ID=11786073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7011727A Pending JPH08203460A (en) 1995-01-27 1995-01-27 Scanning electron beam diffraction apparatus

Country Status (1)

Country Link
JP (1) JPH08203460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294443A (en) * 2005-04-12 2006-10-26 Jeol Ltd Transmission electron microscope with scanning image observation function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006294443A (en) * 2005-04-12 2006-10-26 Jeol Ltd Transmission electron microscope with scanning image observation function

Similar Documents

Publication Publication Date Title
US5013913A (en) Method of illuminating an object in a transmission electron microscope
JPH0233843A (en) Scanning electronic microscope
JP2015069831A (en) Electron microscope
JP5117652B2 (en) Electron beam lithography method and electron optical lithography system
JP2002117800A (en) Electron microscope equipped with electron beam biprism device
US4633085A (en) Transmission-type electron microscope
US5747814A (en) Method for centering a lens in a charged-particle system
JPH0235419B2 (en)
JPH10162769A (en) Ion beam work device
CN111971774B (en) charged particle beam device
JP2002184336A (en) Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
JPH08203460A (en) Scanning electron beam diffraction apparatus
JP3429988B2 (en) Scanning electron microscope
US4945237A (en) Transmission electron microscope
JP2008052935A (en) Scanning electron microscope
Joy et al. Simultaneous display of micrograph and selected-area channelling pattern using the scanning electron microscope
JPS6340019B2 (en)
JP2964873B2 (en) Electron beam alignment system
JP2886168B2 (en) Electron beam equipment
JP2000077018A (en) Focusing device of scanning electron microscope
JPH04188554A (en) Irradiation lens system of electron microscope
JPH05258700A (en) Scanning image observing method and scanning electron microscope
JP2000048749A (en) Scanning electron microscope, and electron beam axis aligning method
JP4223734B2 (en) electronic microscope
JPH06318443A (en) Ion beam device