JPS63299157A - Capacitor element - Google Patents

Capacitor element

Info

Publication number
JPS63299157A
JPS63299157A JP13465287A JP13465287A JPS63299157A JP S63299157 A JPS63299157 A JP S63299157A JP 13465287 A JP13465287 A JP 13465287A JP 13465287 A JP13465287 A JP 13465287A JP S63299157 A JPS63299157 A JP S63299157A
Authority
JP
Japan
Prior art keywords
oxide film
approx
film
semiconductor substrate
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13465287A
Other languages
Japanese (ja)
Inventor
Reiji Takashina
高階 礼児
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13465287A priority Critical patent/JPS63299157A/en
Publication of JPS63299157A publication Critical patent/JPS63299157A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase a capacity without increasing an area by forming a meshlike uneven surface on a semiconductor substrate to increase the capacity per unit area. CONSTITUTION:After a first oxide film 2 is formed on a semiconductor substrate 1, the first oxide film is partly removed by a photoetching method along thick lateral and longitudinal mesh lines to form a meshlike pattern having oxide film remainders M aligned laterally and longitudinally at an interval of lateral direction W and longitudinal direction H. Then, with the remaining oxide film M as an etching resistant mask it is removed by etching in a depth, such as approx. 1mum by a normal RIE method. Thereafter, the other film 2 is removed by a normal photoetching method except part of the film 2 at the periphery. Subsequently, a high concentration impurity diffused layer 3 having the same conductivity type as that of the substrate 1 is formed by a thermal diffusing method. Then, a second oxide film 4 having approx. 500Angstrom thick, a nitride film 5 having approx. 1000Angstrom and an electrode leading window are formed similarly to a conventional method. Eventually, aluminum is deposited approx. 1.5mum thick to form both end electrodes 6, 7 of a capacity element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集積回路を形成する数種類の回路素子のうち
の、特に大容量壽子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention particularly relates to large capacity circuit elements among several types of circuit elements forming an integrated circuit.

〔従来の技術〕[Conventional technology]

集積回路において、大容量素子を得るための一般的な製
造方法を、第4図の平面図および第5図(a)〜(C)
の断面図によシ説明する。まず第5回し)のように半導
体基板1を熱酸化して第1の酸化膜22を形成した後、
通常の写真蝕刻法によシ第1の酸化膜22の一部を工、
チング除去し半導体基板1の一部を露出させる。それか
ら通常の熱拡散法によシ半導体基板1と同じ導電型を呈
する不純物拡散層23(例えば表面濃度5X1020/
i、深さ1μm)を形成する。つぎに第5図(b)のよ
うに、低温熱酸化を行ない(例えば900℃30分酸化
性雰囲気)約s o o Xs度の第2の酸化膜4を形
成する。
A general manufacturing method for obtaining large capacitance elements in integrated circuits is shown in the plan view of FIG. 4 and in FIGS. 5(a) to (C).
This will be explained with reference to a cross-sectional view. First, after thermally oxidizing the semiconductor substrate 1 to form the first oxide film 22 as in the fifth session),
A part of the first oxide film 22 is etched by ordinary photolithography,
The chipping is removed to expose a part of the semiconductor substrate 1. Then, an impurity diffusion layer 23 exhibiting the same conductivity type as the semiconductor substrate 1 (for example, a surface concentration of 5×10 20 /
i, depth 1 μm). Next, as shown in FIG. 5(b), a second oxide film 4 of about s o o

次に通常の気相成長法によシ約1000X程度の窒化膜
5を形成した後、通常の写真蝕刻法によ)、窒化膜5、
酸化膜4の一部を工、チング除去し、特性引出し用窓を
開孔する。つぎに第5図(c)のように、Atを蒸着し
く厚さL5μm)、容量素子両端電極6,7を形成する
Next, after forming a nitride film 5 of about 1000× by a normal vapor growth method, a nitride film 5 of about 1000× is formed by a normal photolithography method).
A part of the oxide film 4 is etched and removed, and a window for drawing out the characteristics is opened. Next, as shown in FIG. 5(c), At is deposited to a thickness L5 μm to form electrodes 6 and 7 at both ends of the capacitive element.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

通常のアナログ系の集積回路においては、DCカットあ
るいは帰還容量としてl〜zopF’程度の大容量素子
が必要となるが、従来製法を用いた場合、例えば、1o
pF’の容量素子を形成するのに約34.000μ2の
面積が必要となる。しかしながら、このような大面積素
子は、集積回路のチ。
In a typical analog integrated circuit, a large-capacitance element of about 1 to zopF' is required as a DC cut or feedback capacitor, but when conventional manufacturing methods are used, for example,
An area of approximately 34,000 μ2 is required to form a pF' capacitive element. However, such large-area devices are limited to integrated circuit chips.

プサイズを大きくさせ、高集積度という点から考えて好
ましくない。そのため、この点を改良するには、容量素
子を構成する絶縁膜をよシ薄くするか、よシ高誘電率を
有する絶縁膜を使用するかして単位面積当シの容量を大
きくすることが試られている。しかし、絶縁膜を薄くす
るというのは容量の絶対精度を悪くさせたシ(バラツキ
が大きくなる)、容量電極間の耐圧を低下させるという
欠点があシ、又一方、高誘電率を有する絶縁膜というの
も窒化膜(−3中7)以上のものは未だ実用化されてい
ない◎ 〔問題点を解決するための手段〕 上記問題点に対し本発明では、半導体基板にメツシュ状
の凸凹曾形成することで、単位面積当シの容量を大きく
して、面積を大きくせずに大容量としている。
This is undesirable from the viewpoint of high integration. Therefore, to improve this point, it is necessary to increase the capacitance per unit area by making the insulating film that constitutes the capacitive element thinner or by using an insulating film with a higher dielectric constant. being tested. However, making the insulating film thinner has the drawbacks of worsening the absolute precision of the capacitance (increasing the variation) and lowering the breakdown voltage between the capacitor electrodes.On the other hand, the insulating film has a high dielectric constant. This is because a nitride film (7 out of 3) has not yet been put to practical use. ◎ [Means for solving the problem] In order to solve the above problem, in the present invention, a mesh-like uneven structure is formed on the semiconductor substrate. By doing so, the capacity per unit area is increased, and a large capacity is achieved without increasing the area.

〔実施例〕〔Example〕

つぎに本発明を実施例によシ説明する。 Next, the present invention will be explained using examples.

第1図は本発明の一実施例の平面図、第2図(a)〜(
d)は本発明の一実施例の大容量素子を製造方法につい
て説明するための、第1図のA−A切断線に該当する工
糧項の断面図である。まず、第2図(a)に示すように
、半導体基板1に第1の酸化膜2を形成した後に、写真
蝕刻法によシ、第1の酸化膜を太い縦横のメヅシェ線に
沿って部分的に除去し、第1図に示すような、横の方向
がW、縦の方向がHの間隔で縦横に並んだ酸化膜残留部
Mを有するメ、シェ状のパターンを形成する。つぎに残
された酸化膜Mを耐工雫チングマスクとして、通常のR
IE法によシ、例えば約1μmの深さに工、チング除去
する。つぎに第2図(b)のように、周辺部の酸化膜2
の一部を残して、その他の酸化膜2を通常の写真蝕刻法
によシ除去する。つぎに、熱拡散法によシ半導体基板1
と同じ導電聾を呈する高濃度不純物拡散層(例えば表面
濃度5X10”/cII!i、深さ1μm ) 3を形
成する。つぎに第2図(c)のように、従来製法と同様
にして約500人の第2の酸化膜4と約1000Xの窒
化膜5訃よび電極引出し用窓を形成する。最後に、第2
図(d)のように、Atを厚さ約し5μm蒸着し容量素
子の両端電極6,7を形成する。
FIG. 1 is a plan view of an embodiment of the present invention, and FIG. 2 (a) to (
d) is a cross-sectional view of the material section corresponding to the section line AA in FIG. 1 for explaining a method of manufacturing a large-capacity element according to an embodiment of the present invention. First, as shown in FIG. 2(a), after forming a first oxide film 2 on a semiconductor substrate 1, the first oxide film is partially etched along thick vertical and horizontal mesh lines by photolithography. Then, as shown in FIG. 1, a shell-shaped pattern is formed having residual oxide film portions M arranged vertically and horizontally at intervals of W in the horizontal direction and H in the vertical direction. Next, using the remaining oxide film M as a corrosion-resistant mask, apply normal R.
The IE method is used to remove the chippings, for example, to a depth of about 1 μm. Next, as shown in FIG. 2(b), the oxide film 2 in the peripheral area is
The remaining oxide film 2 is removed by normal photolithography, leaving a part of the oxide film 2. Next, the semiconductor substrate 1 is removed by a thermal diffusion method.
A highly concentrated impurity diffusion layer (for example, surface concentration 5×10"/cII!i, depth 1 μm) 3 exhibiting the same conductive tone as shown in FIG. 2(c) is formed. Next, as shown in FIG. A second oxide film 4 with a thickness of 500×, a nitride film 5 with a thickness of approximately 1000×, and a window for drawing out the electrodes are formed.
As shown in Figure (d), At is deposited to a thickness of approximately 5 μm to form electrodes 6 and 7 at both ends of the capacitive element.

第3図(a)〜(d)は本発明の他の実施例の大容量素
子を、製造方法について説明するための工糧順の断面図
である。まず第3図(a)のように、半導体基板1を熱
酸化して第1の酸化膜12(例えば厚さ約L2μm)を
形成した後、写真蝕刻法によシ酸化膜12の一部をエツ
チング除去し、(例えばRIE法によりtoμm除去し
%0.2μm残す)メリシ2状の凸凹面とする。つぎに
通常の気相成長法によシ、ポリシリコン層13(例えば
約0.3μm)を形成し、それから、ポリシリコン層1
3の一部分を工、チング除去する。つぎに第3図の(b
)のように、上面よシ高ドーズイオン注入(例えばP”
 、80Kev 、lXl015/i)を行った後、ア
ニール(例えば1000℃20分)を行ない、ポリシリ
コン層13の結晶性を回復させる。つぎに低温熱酸化(
例えば900℃、30分、酸化性雰囲気)を行い、第3
図(C)のように、約500X程度の第2の酸化膜14
を形成した後、気層成長法によシ約1000Xの窒化膜
15を形成する。つぎに第3図(d)のように、写真蝕
刻法によシ窒化膜15および酸化膜14の一部を工、チ
ング除去し、電極取出し用窓をあけ、最後にA/、を約
し5μm厚に蒸着し、電極6,7を形成する。
FIGS. 3(a) to 3(d) are cross-sectional views of a large-capacity element according to another embodiment of the present invention in order to explain a manufacturing method thereof. First, as shown in FIG. 3(a), after thermally oxidizing the semiconductor substrate 1 to form a first oxide film 12 (for example, about L2 μm thick), a part of the oxide film 12 is removed by photolithography. Etching is performed to form a convex and concave surface with a 2-millimeter pattern (for example, by removing to μm using the RIE method and leaving 0.2 μm). Next, a polysilicon layer 13 (for example, about 0.3 μm thick) is formed by a normal vapor phase growth method, and then a polysilicon layer 13 is formed.
Part 3 is machined and removed. Next, in Figure 3 (b
), high-dose ion implantation on the top surface (for example, P”
. Next, low temperature thermal oxidation (
For example, 900℃, 30 minutes, oxidizing atmosphere), and then
As shown in Figure (C), the second oxide film 14 has a thickness of about 500X.
After forming, a nitride film 15 having a thickness of about 1000× is formed by vapor layer growth. Next, as shown in FIG. 3(d), a part of the nitride film 15 and oxide film 14 is etched and removed by photolithography, a window for taking out the electrode is opened, and finally, A/ is removed. The electrodes 6 and 7 are formed by vapor deposition to a thickness of 5 μm.

〔発明の効果〕〔Effect of the invention〕

以上の実施例かられかるように、本発明を適用した容量
素子においては、例えば第1図に示す第1酸化膜のメツ
シュ状パターンマスクのW、H。
As can be seen from the above embodiments, in the capacitive element to which the present invention is applied, for example, the W and H of the mesh pattern mask of the first oxide film shown in FIG.

Kをそれぞれ2μm、l、5μm、2μm、溝深さdを
1μmとした場合、容量素子の単位面積当シの容量は、
従来の平坦な構造に比較して約L4倍となる。これは半
導体基板の凸凹によシ、実質の容量面積が増加したこと
によるものである。よシ大きな効果を得るためには%第
1酸化膜のメッシェパターンビ、チW、H,Kを小さく
する(特にH〉W)か、あるいは溝深さdを深くする等
を行なえばよい。又、本発明によれば、第2図に示す半
導体基板lの凸凹の断面角度はRIEによシ半導体基板
1を工、チングするときの圧力条件等によシ精度良くコ
ントロールすることが可能であり、本実施例では約60
〜70@となるように形成されているため%At電極の
段切れ等の懸念は全く問題ないといえる。
When K is 2 μm, l, 5 μm, and 2 μm, and the groove depth d is 1 μm, the capacitance per unit area of the capacitive element is:
This is approximately L4 times that of the conventional flat structure. This is because the actual capacitance area increases due to the unevenness of the semiconductor substrate. In order to obtain a greater effect, the mesh pattern pattern of the first oxide film should be made smaller (especially H>W), or the groove depth d should be made deeper. . Further, according to the present invention, the cross-sectional angle of the unevenness of the semiconductor substrate 1 shown in FIG. In this example, approximately 60
70@, so there is no concern about breakage of the At electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の平面図、第2図(a)ない
しくd)は本発明の一実施例の大容量素子を製造方法に
ついて説明するための、第1図のA−A切断線に該当す
る工程順の断面図、第3図は本発明の他の実施例の大容
量素子の製造工程について説明するための工程順の断面
図、第4図は従来の大容量素子の平面図、第5図(a)
ないしくc)は従来の大容量素子の製造工程についての
断面図である。 1・・・・・・半導体基板、2,12・・・・・・第1
酸化膜、3.23・・・・・・不純物拡散層、4,24
・・・・・・第2酸化膜、5・・・・・・窒化膜、6,
7・・・・・・電極。 lミ・ 2I 躬 t 図 拾 Z図
FIG. 1 is a plan view of an embodiment of the present invention, and FIGS. 3 is a cross-sectional view of the process order corresponding to cutting line A, FIG. 3 is a cross-sectional view of the process order for explaining the manufacturing process of a large-capacity element according to another embodiment of the present invention, and FIG. 4 is a cross-sectional view of a conventional large-capacity element. Plan view of Figure 5(a)
1 to c) are cross-sectional views illustrating the manufacturing process of a conventional large-capacity element. 1... Semiconductor substrate, 2, 12... First
Oxide film, 3.23... Impurity diffusion layer, 4,24
...Second oxide film, 5...Nitride film, 6,
7... Electrode. lmi・2I 謬t Figure 1 Z diagram

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に形成された第1の電極として働らく一導
電型を呈する不純物を多量に含んだ拡散層と、この拡散
層上に形成された少なくとも1種類以上の誘電材料と、
第2の電極として働く少なくとも1種類以上の導電材料
とから構成された容量素子において、前記半導体基板表
面がメッシユ状の凸凹面であることを特徴とする容量素
子。
a diffusion layer containing a large amount of impurities exhibiting one conductivity type and functioning as a first electrode formed on a semiconductor substrate; at least one type of dielectric material formed on the diffusion layer;
1. A capacitive element comprising at least one type of conductive material serving as a second electrode, wherein the semiconductor substrate surface has a mesh-like uneven surface.
JP13465287A 1987-05-28 1987-05-28 Capacitor element Pending JPS63299157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13465287A JPS63299157A (en) 1987-05-28 1987-05-28 Capacitor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13465287A JPS63299157A (en) 1987-05-28 1987-05-28 Capacitor element

Publications (1)

Publication Number Publication Date
JPS63299157A true JPS63299157A (en) 1988-12-06

Family

ID=15133379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13465287A Pending JPS63299157A (en) 1987-05-28 1987-05-28 Capacitor element

Country Status (1)

Country Link
JP (1) JPS63299157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100240588B1 (en) * 1996-12-24 2000-01-15 김영환 Manufacturing method of capacitor of semiconductor device
US9607943B2 (en) 2015-06-11 2017-03-28 International Business Machines Corporation Capacitors

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100240588B1 (en) * 1996-12-24 2000-01-15 김영환 Manufacturing method of capacitor of semiconductor device
US9607943B2 (en) 2015-06-11 2017-03-28 International Business Machines Corporation Capacitors
US10170540B2 (en) 2015-06-11 2019-01-01 International Business Machines Corporation Capacitors
US10283586B2 (en) 2015-06-11 2019-05-07 International Business Machines Corporation Capacitors
US10833149B2 (en) 2015-06-11 2020-11-10 International Business Machines Corporation Capacitors

Similar Documents

Publication Publication Date Title
JPS63299157A (en) Capacitor element
KR20040009753A (en) Method for forming mim capacitor
JP2001504270A (en) Method of manufacturing an improved LSCO laminated electrode
JPS6347981A (en) Thin film transistor and manufacture thereof
JP3131850B2 (en) Method for manufacturing thin film transistor
KR100445059B1 (en) Method of fabricating capacitor of semiconductor device for improving physical property of capacitor bottom electrode
JPH07115171A (en) Mim capacitor
JPH05190767A (en) Semiconductor device
JPH06338489A (en) Method of manufacturing metal film
JPH0142147B2 (en)
JP2522014B2 (en) Method of forming transparent electrode
JPH01192157A (en) Semiconductor device
KR19980058438A (en) Silicide Formation Method of Semiconductor Device
JPH05267663A (en) Manufacture of semiconductor device
JPH0883891A (en) Fabrication of semiconductor device
JPH03233938A (en) Manufacture of thin-film transistor
JPH05121652A (en) Manufacture of capacitor
JPS58212166A (en) Manufacture of semiconductor device
JPS6118350B2 (en)
JPS63204742A (en) Manufacture of semiconductor device
JPS63119579A (en) Thin film transistor
JPH01144671A (en) Manufacture of semiconductor memory device
JPH01189950A (en) Semiconductor capacitance element and its manufacture
JPS61133668A (en) Manufacture of thin film transistor
JPH06151707A (en) Manufacture of semiconductor device