JPS63297511A - Production of fine metal powder - Google Patents

Production of fine metal powder

Info

Publication number
JPS63297511A
JPS63297511A JP13294787A JP13294787A JPS63297511A JP S63297511 A JPS63297511 A JP S63297511A JP 13294787 A JP13294787 A JP 13294787A JP 13294787 A JP13294787 A JP 13294787A JP S63297511 A JPS63297511 A JP S63297511A
Authority
JP
Japan
Prior art keywords
metal
colloid
salt
fine
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13294787A
Other languages
Japanese (ja)
Other versions
JPH0348244B2 (en
Inventor
Yukimichi Nakao
幸道 中尾
Kyoji Kaeriyama
帰山 享二
Aizo Yamauchi
山内 愛造
Teruhisa Yotsuya
四谷 輝久
Yamahito Ninomiya
二宮 山人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Polymer Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fuji Polymer Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fuji Polymer Industries Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP13294787A priority Critical patent/JPS63297511A/en
Publication of JPS63297511A publication Critical patent/JPS63297511A/en
Publication of JPH0348244B2 publication Critical patent/JPH0348244B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce fine metal powder having unique electrical and magnetic characteristics by adding metal colloid to a bath contg. an inorg. metal salt or a complex salt and a reducing agent for the salt with stirring and by mixing them. CONSTITUTION:Metal colloid such as Pd colloid is added to a bath contg. an inorg. metal salt such as chloride or sulfate of Ni or Co or a complexing agent forming a complex salt such as ammonia, ethylene-diamine, pyrophosphate or citric acid and further contg. a reducing agent such as sodium hypophosphite, potassium hypophosphite or form-aldehyde and they are mixed. The Pd colloid acts as the nuclei of a catalyst and reduction reaction proceeds rapidly and uniformly around the nuclei, so useful metal powder having superior electrical and magnetic characteristics can stably be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属微粉末の製造に関し、詳しくは無機金属塩
または錯塩とその還元剤を含む浴中に、金属コロイドを
混合し前記金属を還元析出させる本発明に係る金属微粉
末の主な用途は、磁性流体、磁気記録材料、電磁波シー
ルド材、異方または加圧導電ゴム、プラスチック磁気、
導電性塗料および接着剤等である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to the production of fine metal powder, and more specifically to the production of fine metal powder, in particular, the method of reducing the metal by mixing a metal colloid in a bath containing an inorganic metal salt or complex salt and its reducing agent. The main uses of the precipitated metal fine powder according to the present invention are magnetic fluids, magnetic recording materials, electromagnetic shielding materials, anisotropic or pressurized conductive rubber, plastic magnetism,
These include conductive paints and adhesives.

(従来技術) 液相からの金属微粉末の製造方法は、沈澱法と溶媒蒸発
法に大別され、このうち沈澱法にはさらに共沈法、加水
分解法、均一沈澱法、酸化加水分解法、還元法などが知
られている(化学総説N0048.1985超微粒子−
科学と応用 第24頁)。
(Prior art) Methods for producing fine metal powder from a liquid phase are broadly divided into precipitation methods and solvent evaporation methods. Of these, precipitation methods further include coprecipitation methods, hydrolysis methods, homogeneous precipitation methods, and oxidative hydrolysis methods. , reduction method, etc. are known (Chemistry Review N0048.1985 Ultrafine Particles-
Science and Applications, p. 24).

しかし沈澱法には、一般に沈澱がゲル状で水洗。However, in the precipitation method, the precipitate is generally gel-like and washed with water.

濾過が困難であり、沈澱剤が不純物として混入するなど
の欠点を有している。
It has drawbacks such as difficulty in filtration and the presence of precipitants as impurities.

また金属塩溶液から還元反応によって銀、金。Silver and gold can also be produced by reduction reactions from metal salt solutions.

白金、パラジウムなどの貴金属コロイドが還元法によっ
て製造されているが、この場合にも水との分離が困難で
、乾燥時に固結し、かつ不純物の除去が困難である。な
お従来の沈澱法では、電気および磁気特性にすぐれる金
属微粉末の製造についてはまだ報告されていない。
Colloids of precious metals such as platinum and palladium are produced by reduction methods, but in this case as well, they are difficult to separate from water, solidify during drying, and difficult to remove impurities. It should be noted that the production of fine metal powders with excellent electrical and magnetic properties using conventional precipitation methods has not yet been reported.

(発明が解決しようとする問題点) 還元法により液相から金属微粉末を製造する方法におい
て、製造が容易であり、新規かつ有用な金属微粉末の製
造について鋭意研究した結果、無機金属塩または錯塩と
その還元剤を含む浴中に、金属コロイドを攪拌下に混合
することにより、上記の欠点が改良され新規かつ電気お
よび磁気特性にすぐれる有用な金属微粉末が得られるこ
とを見出して、本発明に至ったものである。
(Problems to be Solved by the Invention) As a result of intensive research into the production of new and useful metal fine powders that are easy to manufacture in a method of producing metal fine powders from a liquid phase by a reduction method, inorganic metal salts or We have discovered that by mixing a metal colloid with stirring into a bath containing a complex salt and its reducing agent, the above-mentioned drawbacks can be improved and a new and useful metal fine powder with excellent electrical and magnetic properties can be obtained. This led to the present invention.

(問題点を解決するための手段) 本発明は金属微粉末の製造において、無機金属塩または
錯塩とその還元剤を含む浴中に、金属コロイドを攪拌下
に混合することを特徴とする。
(Means for Solving the Problems) The present invention is characterized in that, in the production of fine metal powder, a metal colloid is mixed into a bath containing an inorganic metal salt or complex salt and its reducing agent under stirring.

以下に本発明による金属微粉末の製造方法について、詳
細に説明する。
The method for producing fine metal powder according to the present invention will be explained in detail below.

本発明では、無機金属塩または錯塩とその還元剤を含む
浴(以下還元浴という)中に、前記金属よりもイオン化
イφ向が同じかまたは小さい金属を有する金属コロイド
を攪拌下に混合し、前記金属を還元析出させて金属微粉
末を得るものである。
In the present invention, in a bath containing an inorganic metal salt or a complex salt and its reducing agent (hereinafter referred to as a reducing bath), a metal colloid having a metal whose ionization direction is the same or smaller than that of the metal is mixed with stirring, Fine metal powder is obtained by reducing and precipitating the metal.

上記無機金属塩としては特に限定されるものではなく、
使用目的に応じて適宜選択されうるが、一般に塩化物、
硫酸塩などが使用される。また錯塩を形成する錯化剤と
しては、アンモニア、エチレンジアミン、ピロりん酸塩
、クエン酸、酢酸。
The above-mentioned inorganic metal salt is not particularly limited,
Although it can be selected as appropriate depending on the purpose of use, generally chloride,
Sulfates etc. are used. Complexing agents that form complex salts include ammonia, ethylenediamine, pyrophosphate, citric acid, and acetic acid.

各種有機酸塩、EDTAなどが使用される。Various organic acid salts, EDTA, etc. are used.

上記還元剤としては、次亜りん酸ナトリウム。The reducing agent mentioned above is sodium hypophosphite.

次亜りん酸カリウム、水素化はう素ナトリウム。Potassium hypophosphite, sodium hydride.

水素化はう素カリウム、ビドラジン、ホルマリン。Hydrogenated potassium boron, hydrazine, formalin.

ジメチルアミンボランなどを挙げることができる。Examples include dimethylamine borane.

上記還元浴中には、必要に応じてPHa節珊。In the above reduction bath, PHa Sessan is added as necessary.

PH緩衡剤、安定剤、改良剤など、無電解メッキ浴の構
成成分として一般的に使用されているものを適宜使用し
てもよい。
Those commonly used as components of electroless plating baths, such as PH buffers, stabilizers, and improvers, may be used as appropriate.

上記金属コロイドにおける金属としては、還元析出を行
なうためにはそのイオン化傾向が前記金属塩または錯塩
を構成する金属よりも同じかまたは小さくなければなら
ない。
The metal in the metal colloid must have an ionization tendency that is the same or smaller than that of the metal constituting the metal salt or complex salt in order to perform reduction precipitation.

また該金属コロイドを長期にわたり安定に保持するため
には、界面活性剤または水溶性高分子を存在させること
が望ましい。−例としてパラジウムコロイドの製造につ
いては、例えば特開昭61−207666号公報に記載
されている。
Furthermore, in order to maintain the metal colloid stably for a long period of time, it is desirable to include a surfactant or a water-soluble polymer. - For example, the production of palladium colloid is described in, for example, Japanese Patent Application Laid-Open No. 61-207666.

本発明において、電気および磁気特性にすぐれる金属微
粉末を製造するためには、前記金属コロイドを攪拌下に
混合する必要があり、さらに磁場の存在下で攪拌すれば
より一層電気および磁気特性を向上させることができる
In the present invention, in order to produce metal fine powder with excellent electrical and magnetic properties, it is necessary to mix the metal colloids with stirring, and furthermore, stirring in the presence of a magnetic field further improves the electrical and magnetic properties. can be improved.

また本発明では、無機金属塩または錯塩における金属原
子の選択、または2種以上の併用、さらには製造条件を
変更することにより、電気的、磁気的性質の異なる金属
微粉末を容易に製造することができる。
Furthermore, in the present invention, fine metal powders with different electrical and magnetic properties can be easily produced by selecting metal atoms in inorganic metal salts or complex salts, or by using two or more types in combination, and by changing production conditions. Can be done.

(作用) 金属コロイドは触媒の核として作用し、コロイド核を中
心として還元反応が迅速、安定かつ均一に進行するため
、析出してくる金属は均一かつ微粉末状で得られる。
(Function) The metal colloid acts as a catalyst nucleus, and the reduction reaction proceeds quickly, stably and uniformly around the colloid nucleus, so that the precipitated metal can be obtained in the form of a uniform fine powder.

なお金属コロイドを混合しない場合には、還元反応が進
行しないか、または金属が反応器壁にくっつくため金属
微粉末は得られない。
Note that if a metal colloid is not mixed, the reduction reaction will not proceed or the metal will stick to the reactor wall, so that no fine metal powder will be obtained.

以下に実施例を挙げて本発明を説明するが、本発明はこ
れらの実施例により何ら限定されるものではない。
The present invention will be described below with reference to Examples, but the present invention is in no way limited by these Examples.

実施例1 塩化コバル) 0. 05mol、次亜りん酸ナトリウ
ム0. 2mol、酒石酸ナトリウム0 、 5 mo
l、およびほう酸0.5molを含み、水酸化ナトリウ
ムによりPHを9.0に調整して、全容11の水容液を
得た。
Example 1 Cobal chloride) 0. 05 mol, sodium hypophosphite 0. 2 mol, sodium tartrate 0, 5 mo
1, and 0.5 mol of boric acid, and the pH was adjusted to 9.0 with sodium hydroxide to obtain an aqueous solution with a total volume of 11.

パラジウムコロイドの ゛ 塩化パラジウム0 、 5 mmolを塩化ナトリウム
2、 5mmolを含む水容液25m1に溶解し、次い
で蒸溜水で940m1に希釈した。この水容液を激しく
攪拌しながらステアリルトリメチルアンモニウムクロラ
イド0.1gを含む水容液10m1を加え、次いで水素
化はう素ナトリウム’l 、  Q mmolを含む水
容液50m1を滴下して黒褐色透明なパラジウムコロイ
ドを得た。
Palladium colloid: 0.5 mmol of palladium chloride was dissolved in 25 ml of an aqueous solution containing 2.5 mmol of sodium chloride, and then diluted to 940 ml with distilled water. While vigorously stirring this aqueous solution, 10 ml of an aqueous solution containing 0.1 g of stearyltrimethylammonium chloride was added, and then 50 ml of an aqueous solution containing 'l, Q mmol of sodium borohydride was added dropwise to form a blackish-brown transparent solution. Palladium colloid was obtained.

上記コバルト−りん還元浴200m1(コバルト原子と
して0.01molに、次亜りん酸ナトリウム2gを溶
かした上記パラジウムコロイド液20m1 (パラジウ
ム原子としてO,O1mmol)を20分間激しく攪拌
しながら混合すると、濁りのある金属微粉末混合液が得
られた。しばらく放置し器壁の外より強力な磁石で金属
微粉末を凝集性R(磁化処理)させた後、上澄液をデカ
ンテーションにより捨て、蕪溜水による洗浄操作、アセ
トンによる置換操作をくり返した。次いで脱水し、10
0°Cの温風乾燥機により乾燥して金属微粉末を得た。
When 200 ml of the above cobalt-phosphorus reduction bath (0.01 mol as cobalt atom and 20 ml of the above palladium colloid solution (1 mmol of O, O as palladium atom) dissolved in 2 g of sodium hypophosphite are mixed with vigorous stirring for 20 minutes, the turbidity is reduced. A certain metal fine powder mixture was obtained. After leaving it for a while and making the metal fine powder coagulate R (magnetization treatment) with a strong magnet from outside the vessel wall, the supernatant liquid was discarded by decantation, and the turnip water was poured. The washing operation with acetone and the replacement operation with acetone were repeated.Then, it was dehydrated and
It was dried using a hot air dryer at 0°C to obtain a fine metal powder.

得られた金属微粉末の性質を第1表に示す。Table 1 shows the properties of the obtained metal fine powder.

実施例2 マグネットスタラーによる攪拌を採用する以外は、実施
例1と同様の操作を行なった。得られた金属微粉末の性
質を第1表に示す。
Example 2 The same operation as in Example 1 was performed except that stirring using a magnetic stirrer was employed. Table 1 shows the properties of the obtained metal fine powder.

実施例3 パラジウムコロイドの製造において、ステアリルトリメ
チルアンモニウムクロライド(界面活性剤)を使用せず
、金属パラジウムが凝集しないうちに実施例1と同様の
操作を行なった。得られた金属微粉末の性質を第1表に
示す。
Example 3 In the production of palladium colloid, the same operation as in Example 1 was carried out without using stearyltrimethylammonium chloride (surfactant) and before metal palladium aggregated. Table 1 shows the properties of the obtained metal fine powder.

実施例4 パラジウムコロイドの製造において、ステアリルトリメ
チルアンモニウムクロライドの代わりにポリビニルアル
コール(分子1L1800)0.1gを使用する以外は
、実施例1と同様の操作を行なった。得られた金属微粉
末の性質を第1表に示す。
Example 4 In producing palladium colloid, the same operation as in Example 1 was performed except that 0.1 g of polyvinyl alcohol (molecule 1L 1800) was used instead of stearyltrimethylammonium chloride. Table 1 shows the properties of the obtained metal fine powder.

実施例5 無水塩化ニッケル0.05molを0.5molのアン
モニア水溶液に溶解し、0.05molの次亜りん酸ナ
トリウムを800m1加えた後、濃塩酸により溶液のP
Hを8.9に調整し、蒸溜水を加ええて全容17!とじ
た。
Example 5 0.05 mol of anhydrous nickel chloride was dissolved in 0.5 mol of ammonia aqueous solution, 800 ml of 0.05 mol of sodium hypophosphite was added, and then P of the solution was removed with concentrated hydrochloric acid.
Adjust the H to 8.9, add distilled water and the total is 17! Closed.

このニッケルーりん還元浴200m1にツケル原子とし
てO,O1mol )をコバルト−りん還元浴の代わり
に使用する以外は、実施例1と同様の操作を行なった。
The same operation as in Example 1 was carried out, except that in 200 ml of this nickel-phosphorus reducing bath, 1 mol of O, O (as a nickel atom) was used instead of the cobalt-phosphorus reducing bath.

得られた金属微粉末の性質を第1表に示す。Table 1 shows the properties of the obtained metal fine powder.

実施例6 実施例5において、パラジウムコロイド液ヲIQml(
パラジウム原子としてO、OO5mmol) とし、マ
グネソトスタラーによる攪拌を採用する以外は、実施例
5と同様の操作を行なった。得られた金属微粉末の性質
を第1表に示す。
Example 6 In Example 5, palladium colloid liquid IQml (
The same operation as in Example 5 was performed except that the palladium atoms were O, OO5 mmol) and stirring with a magneto stirrer was used. Table 1 shows the properties of the obtained metal fine powder.

実施例7 塩化ニッケル0. 05mol 、次亜りん酸ナトリウ
ム0. 2mol 、酒石酸ナトリウム0.5molお
よびほう酸0.5molを含み、水酸化ナトリウムによ
りPHを9.0に11して、全容1!の水溶液を得た。
Example 7 Nickel chloride 0. 05 mol, sodium hypophosphite 0. 2 mol, sodium tartrate 0.5 mol and boric acid 0.5 mol, the pH was adjusted to 9.0 with sodium hydroxide, and the total volume was 1! An aqueous solution of was obtained.

上記ニッケルー、リート還元浴50m1にッケル原子と
して0.0025mol)と実施例1のコバルト−りん
還元浴150m1(コバルト原子として0.0075m
ol)の2種の還元浴を用い、以下実施例と同様の操作
を行なった。得られた金属微粉末の性質を第1表に示す
0.0025 mol as nickel atoms in 50 ml of the above nickel-Liet reducing bath) and 150 ml of the cobalt-phosphorus reducing bath of Example 1 (0.0075 mol as cobalt atoms)
The following operations were carried out in the same manner as in the Examples using two types of reducing baths (1). Table 1 shows the properties of the obtained metal fine powder.

但しテスターによる抵抗値は、テスター針を7n間隔、
接触部長さ5鶴で測定した。使用した磁石は、青山特殊
鋼株式会社(東京都中央区新川2丁目9−11)より提
供を受けた特殊強力磁石である。
However, the resistance value measured by the tester is determined by placing the tester needles at 7n intervals.
Measurement was made using a contact portion with a length of 5. The magnet used was a special strong magnet provided by Aoyama Special Steel Co., Ltd. (2-9-11 Shinkawa, Chuo-ku, Tokyo).

第1表より明ら゛か−な如く、本発明方法で得られる金
属微粉末は磁場の存在下で配向し、いずれも特異な電気
および磁気特性を示している。実施例2より、磁場の存
在下で攪拌することにより電気および磁気特性が顕著に
向上することがわかる。
As is clear from Table 1, the metal fine powders obtained by the method of the present invention are oriented in the presence of a magnetic field and exhibit unique electrical and magnetic properties. From Example 2, it can be seen that the electric and magnetic properties are significantly improved by stirring in the presence of a magnetic field.

実施例5と6より、無機金属塩の金属をコバルトからニ
ッケルに変更することにより電気特性がさらに向上し、
また製造条件を変更することにより磁気特性の異なる金
属微粉末が容易に得られることがわかる。
From Examples 5 and 6, the electrical properties were further improved by changing the metal of the inorganic metal salt from cobalt to nickel.
It is also seen that fine metal powders with different magnetic properties can be easily obtained by changing the manufacturing conditions.

実施例7より、2種の金属塩を併用した場合にもまた、
特異な電気および磁気特性を有する金属微粉末が得られ
た。データーには示さないが、実施例1〜7の微粉末を
圧縮すると、無磁場でもテスターの針はいずれも振れる
ようになる。
From Example 7, when two types of metal salts are used together,
A fine metal powder with unique electrical and magnetic properties was obtained. Although not shown in the data, when the fine powders of Examples 1 to 7 were compressed, the tester needles were able to swing even in the absence of a magnetic field.

なお、磁化処理しない(無磁化)微粉末の電気特性は非
常に不安定であることがわかった。この理由としては、
地磁気の影響を受けて微粉末が数時間で磁化されるため
と思われる。またテスターで無磁化微粉末の電気抵抗を
測定すると、瞬間的に針はふれるが、その後ふれなくな
る。この原因は微粉末に電流が流れて磁化されたためと
思われる。
In addition, it was found that the electrical properties of the fine powder that was not subjected to magnetization treatment (non-magnetized) were extremely unstable. The reason for this is
This is thought to be because the fine powder becomes magnetized within a few hours under the influence of the earth's magnetic field. Also, when measuring the electrical resistance of non-magnetized fine powder with a tester, the needle moves momentarily, but then stops moving. The reason for this is thought to be that a current flows through the fine powder and it becomes magnetized.

得られた微粉末の性質や上に述べた考察から考えて、磁
性微粉末は磁化されると微粉末同志の反撥が生じ、隙間
があくものと思われる。この反撥は微粉末内の原子のス
ピンの熱的ゆらぎによって生じるものと思われる(二宮
、中尾、四谷仮説)。
Considering the properties of the obtained fine powder and the above-mentioned considerations, it is thought that when magnetic fine powder is magnetized, repulsion occurs between the fine powders and gaps are created. This repulsion is thought to be caused by thermal fluctuations in the spin of atoms within the fine powder (Ninomiya, Nakao, and Yotsuya hypotheses).

この仮説によれば、磁性微粉末から磁性流体ができるこ
と、および実施例における電気磁気特性の異常性を説明
できる。
According to this hypothesis, it is possible to explain the production of magnetic fluid from magnetic fine powder and the abnormality of the electromagnetic properties in the examples.

なおコバルト−りん微粉末を水中に長く放置すると、色
は黒色となり、磁石で配向してもあるいは微粉末を圧縮
してもテスターの針はふれなくなる。このことは微粉末
の表面が酸化されるものと思われる。
If the cobalt-phosphorus fine powder is left in water for a long time, the color will turn black and the tester needle will not touch it even if it is oriented with a magnet or the fine powder is compressed. This seems to be because the surface of the fine powder is oxidized.

(発明の効果) 本発明による金属微粉末は、従来知られていない特異な
電気および磁気特性を有しており、そのすぐれた特性を
利用することにより数多くの用途への通用が期待さ疾沸
、1 また製造がきわめて容易であり、さらに製造条件を種々
変更することにより、それに応じて電気的および磁気的
性質の異なる金属微粉末を容易に得ることができるため
、種々のすぐれた特性を有する新規かつきわめて有用な
金属微粉末を提供することが可能である。
(Effects of the Invention) The metal fine powder according to the present invention has unique electrical and magnetic properties that were previously unknown, and by utilizing these excellent properties, it is expected that it will be used in many applications. , 1 In addition, it is extremely easy to manufacture, and by changing the manufacturing conditions, it is easy to obtain fine metal powders with different electrical and magnetic properties, so it has various excellent properties. It is possible to provide a new and extremely useful fine metal powder.

Claims (3)

【特許請求の範囲】[Claims] (1)無機金属塩または錯塩とその還元剤を含む浴中に
、前記金属よりもイオン化傾向が同じかまたは小さい金
属を有する金属コロイドを攪拌下に混合し、前記金属を
還元析出させて微粉末を得ることを特徴とする金属微粉
末の製造方法。
(1) In a bath containing an inorganic metal salt or complex salt and its reducing agent, a metal colloid having a metal with the same or smaller ionization tendency than the metal is mixed with stirring, and the metal is reduced and precipitated into a fine powder. A method for producing fine metal powder, characterized in that it obtains a fine metal powder.
(2)攪拌を磁場の存在下で行なうことを特徴とする特
許請求の範囲第1項記載の金属微粉末の製造方法。
(2) The method for producing fine metal powder according to claim 1, characterized in that stirring is performed in the presence of a magnetic field.
(3)2種以上の無機金属塩または錯塩を用いることを
特徴とする特許請求の範囲第1項記載の金属微粉末の製
造方法。
(3) The method for producing fine metal powder according to claim 1, characterized in that two or more types of inorganic metal salts or complex salts are used.
JP13294787A 1987-05-28 1987-05-28 Production of fine metal powder Granted JPS63297511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13294787A JPS63297511A (en) 1987-05-28 1987-05-28 Production of fine metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13294787A JPS63297511A (en) 1987-05-28 1987-05-28 Production of fine metal powder

Publications (2)

Publication Number Publication Date
JPS63297511A true JPS63297511A (en) 1988-12-05
JPH0348244B2 JPH0348244B2 (en) 1991-07-23

Family

ID=15093214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13294787A Granted JPS63297511A (en) 1987-05-28 1987-05-28 Production of fine metal powder

Country Status (1)

Country Link
JP (1) JPS63297511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585796B2 (en) 2000-05-30 2003-07-01 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste using the same, and monolithic ceramic electronic component
JP2013147713A (en) * 2012-01-20 2013-08-01 Nippon Atomized Metal Powers Corp Method for producing metal nanoparticle, and conductive material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133796A (en) * 1975-04-30 1976-11-19 Ibm Method of manufacturing magnetic powder
JPS5329239A (en) * 1976-08-31 1978-03-18 Mitsubishi Heavy Ind Ltd Method of welding together tubes and flanges
JPS5761088A (en) * 1980-09-30 1982-04-13 Kobe Steel Ltd Dehydration of brown coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133796A (en) * 1975-04-30 1976-11-19 Ibm Method of manufacturing magnetic powder
JPS5329239A (en) * 1976-08-31 1978-03-18 Mitsubishi Heavy Ind Ltd Method of welding together tubes and flanges
JPS5761088A (en) * 1980-09-30 1982-04-13 Kobe Steel Ltd Dehydration of brown coal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585796B2 (en) 2000-05-30 2003-07-01 Murata Manufacturing Co., Ltd. Metal powder, method for producing the same, conductive paste using the same, and monolithic ceramic electronic component
JP2013147713A (en) * 2012-01-20 2013-08-01 Nippon Atomized Metal Powers Corp Method for producing metal nanoparticle, and conductive material

Also Published As

Publication number Publication date
JPH0348244B2 (en) 1991-07-23

Similar Documents

Publication Publication Date Title
Ayad et al. Synthesis of silver-anchored polyaniline–chitosan magnetic nanocomposite: a smart system for catalysis
CN103128308B (en) Method for preparing compact silver-coated copper powder by using one pot method
US3370979A (en) Magnetic films
CN104999076A (en) One-pot prepared silver covered copper nanometer powder with controllable shell thickness and preparation method of silver covered copper nanometer powder
CN103433501B (en) Preparation method of uniform-grain-size spherical nano cobalt
CN103352132A (en) Copper-nickel nanowire and preparation method thereof
CN103889619B (en) Use electroless deposition processes or electrodeposition process to prepare the method for nano composite material magnet
US3726664A (en) Magnetic alloy particle compositions and method of manufacture
Logutenko et al. Characterization and growth mechanism of nickel nanowires resulting from reduction of nickel formate in polyol medium
JPS63297511A (en) Production of fine metal powder
KR101061600B1 (en) Manufacturing method of cobalt powder
CN101373652A (en) Novel method for preparing Fe3O4/Ag magnetic compound nanometer particle
JPH0613753B2 (en) Method for producing solution containing fine metal body used for electroless plating
Pasichnyk et al. Synthesis of magnetite nanoparticles stabilized by polyvinylpyrrolidone and analysis of their absorption bands
JP2531588B2 (en) Method for producing metal-supported particles having ferromagnetism
JP5838431B1 (en) Production method and zinc dissolution method
CN109192435A (en) A method of magnetic liquid is prepared with the magnetic-particle for wrapping up silver-colored shell
JPS62207875A (en) Production of metal plated inorganic particles
KR20150014752A (en) Method for manufacturing silver nanoparticles
JPWO2018062090A1 (en) Metal nanowires
CN103302304B (en) Preparation method of nickel or nickel alloy nanotube
JPS6237301A (en) Production of metal holding particle
EP0369545B1 (en) Process for the preparation of elemental sols
JP3858971B2 (en) Electroless plating method for fine particles
JP2559874B2 (en) Method for producing composite particles