JPH0348244B2 - - Google Patents

Info

Publication number
JPH0348244B2
JPH0348244B2 JP62132947A JP13294787A JPH0348244B2 JP H0348244 B2 JPH0348244 B2 JP H0348244B2 JP 62132947 A JP62132947 A JP 62132947A JP 13294787 A JP13294787 A JP 13294787A JP H0348244 B2 JPH0348244 B2 JP H0348244B2
Authority
JP
Japan
Prior art keywords
metal
fine
powder
fine powder
colloid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62132947A
Other languages
Japanese (ja)
Other versions
JPS63297511A (en
Inventor
Yukimichi Nakao
Kyoji Kaeryama
Aizo Yamauchi
Teruhisa Yotsuya
Yamahito Ninomya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Polymer Industries Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Fuji Polymer Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Fuji Polymer Industries Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP13294787A priority Critical patent/JPS63297511A/en
Publication of JPS63297511A publication Critical patent/JPS63297511A/en
Publication of JPH0348244B2 publication Critical patent/JPH0348244B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は金属微粉末の製造に関し、詳しくは金
属錯塩とその還元剤を含む浴中に、金属コロイド
を混合し前記金属を還元析出させる新規かつ有用
な金属微粉末の製造に関する。 本発明に係る金属微粉末の主な用途は、磁性流
体、磁気記録材料、電磁波シールド材、異方また
は加圧導電ゴム、プラスチツク磁石、導電性塗料
および接着剤等である。 (従来技術) 液相からの金属微粉末の製造方法は、沈澱法と
溶媒蒸発法に大別され、このうち沈澱法にはさら
に共沈法、加水分解法、均一沈澱法、酸化加水分
解法、還元法などが知られている(化学総説No.
48、1985超微粒子−科学と応用第24頁)。 しかし沈澱法には、一般に沈澱がゲル状で水
洗、濾過が困難であり、沈澱剤が不純物として混
入するなどの欠点を有している。 また金属塩溶液から還元反応によつて銀、金、
白金、パラジウムなとの貴金属コロイドが還元法
によつて製造されているが、この場合にも水との
分離が困難で、乾燥時に固結し、かつ不純物の除
去が困難である。折出金属と同じ金属を有する金
属コロイドを核とし使用する方法は金の場合にお
いて(特公昭57−61088号公報)知られている。
しかしニツケル、コバルト等のイオン化傾向の比
較的大きな金属イオンの折出においては、同一金
属のコロイドは水系において安定に存在しがた
い。 さらに還元折出反応における触媒としてパラジ
ウム陽イオン(特開昭51−133796号公報)及び塩
化パラジウム溶液(特公昭53−29239号公報)を
用いる方法も知られているが、これらの方法にお
いては還元可能なパラジウム陽イオンまたは、そ
れから折出したパラジウム金属は核として作用す
るものではなく、合金の一成分を構成するもので
ある。 また特公昭41−4567号公報では、実施例におい
て核として金属ニツケル粉末を用いているが、こ
の金属粉末は原理的には必ずしも必要とせず、ま
た金属ニツケル微粉末を折出させるためには、核
となる金属ニツケル粉末として、さらに微細なも
のが要求されるが、かかる金属ニツケル微細粉末
を得ることは困難である。なお従来の沈澱法で
は、電気および磁気特性にすぐれる金属粉末の製
造についてはまだ報告されていない。 (発明が解決しようとする問題点) 還元法により液相から金属微粉末を製造する方
法において、製造が容易であり、新規かつ有用な
金属微粉末の製造について鋭意研究した結果、金
属錯塩とその還元剤を含む浴中に、金属コロイド
を撹拌下に混合することにより、上記の欠点が改
良され金属コロイドを核とする新規かつ電気およ
び磁気特性にすぐれる有用な金属微粉末が得られ
ることを見出して、本発明に至つたものである。 (問題点を解決するための手段) 本発明は金属微粉末の製造において、金属錯塩
とその還元剤を含む浴中に、金属コロイドを撹拌
下に混合することを特徴とする。 以下に本発明による金属微粉末の製造方法につ
いて、詳細に説明する。 本発明では金属錯塩とその還元剤を含む浴(以
下還元浴という)中に、前記金属と異なる金属で
かつ前記金属よりもイオン化傾向が同じかまたは
小さい金属を有する金属コロイドを撹拌下に混合
し、前記金属を還元析出させて金属微粉末を得る
ものである。 上記金属錯塩としては特に限定されるものでは
なく、使用目的に応じて適宜選択されるが、一般
に鉄、コバルト、ニツケルなどの塩化物、硫酸塩
などの無機金属塩と錯化剤を用いて形成される、
錯塩を形成する錯化剤としては、アンモニア、エ
チレンジアミン、ピロりん酸塩、クエン酸、酢
酸、各種有機酸塩、EDTAなどが使用される。 上記還元剤としては、次亜りん酸ナトリウム、
次亜りん酸カリウム、水酸化ほう素ナトリウム、
水素化ほう素カリウム、ビドラジン、ホルマリ
ン、ジメチルアミンボランなどを挙げることがで
きる。 上記還元浴中には、必要に応じてPH調節剤、PH
緩衡剤、安定剤、改良剤など、無電解メツキ浴の
構成成分として一般的に使用されているものを適
宜使用してもよい。 上記金属コロイドにおける金属としては、還元
析出を行なうためにはそのイオン化傾向が前記金
属錯塩を構成する金属よりも同じかまたは小さく
なければならない。 また該金属コロイドを長期にわたり安定に保持
するためには、界面活性剤または水溶性高分子を
存在させることが望ましい。一例としてパラジウ
ムコロイドの製造については、例えば特開昭61−
207666号公報に記載されている。 本発明において、電気および磁気特性にすぐれ
る金属微粉末を製造するためには、前記金属コロ
イドを撹拌下に混合する必要があり、さらに磁場
の存在下で撹拌すればより一層電気および磁気特
性を向上させることができる。 また本発明明では、金属錯塩における金属原子
の選択、または2種以上の併用、さらには製造条
件を変更することにより、電気的、磁気的性質の
異なる金属微粉末を容易に製造することができ
る。 (作用) 金属コロイドは触媒の核として作用し、コロイ
ド核を中心として還元反応が迅速、安定かつ均一
に進行するため、析出してくる金属は均一かつ微
粉末状で得られる。 なお金属コロイドを混合しない場合には、還元
反応が進行しないか、または金属が反応器壁にく
つつくため金属微粉末は得られない。 以下に実施例を挙げて本発明を説明するが、本
発明はこれらの実施例により何ら限定されるもの
ではない。 実施例 1 コバルト−りん還元浴(水酸化ナトリウムアル
カリ)の製造 塩化コバルト0.05mol、次亜りん酸ナトリウム
0.2mol、酒石酸ナトリウム0.5mol、およびほう
酸0.5molを含み、水酸化ナトリウムによりPHを
9.0に調整して、全容1の水溶液を得た。 パラジウムコロイドの製造 塩化パラジウム0.5mmolを塩化ナトリウム2.5
mmolを含む水溶液25mlに溶解し、次いで蒸溜水
で940mlに希釈した。この水溶液を激しく撹拌し
ながらステアリルトリメチルアンモニウムクロラ
イド0.1gを含む水溶液10mlを加え、次いで水素
化ほう素ナトリウム2.0mmolを含む水溶液50ml
を滴下して黒褐色透明なパラジウムコロイドを得
た。 上記コバルト−りん還元浴200ml(コバルト原
子として0.01molに、次亜りん酸ナトリウム2g
を溶かした上記パラジウムコロイド液20ml(パラ
ジウム原子として0.01mmol)を20分間激しく撹
拌しながら混合すると、濁りのある金属微粉末混
合液が得られた。しばらく放置し器壁の外より強
力な磁石で金属微粉末を凝集沈澱(磁化処理)さ
せた後、上澄液をデカンテーシヨンにより捨て、
蒸溜水による洗浄操作、アセトンによる置換操作
をくり返した。次いで脱水し、100℃の温風乾燥
機により乾燥して金属微粉末を得た。得られた金
属微粉末の性質を第1表に示す。 実施例 2 マグネツトスタラーによる撹拌を採用する以外
は、実施例1と同様の操作を行なつた。得られた
金属微粉末の性質を第1表に示す。 実施例 3 パラジウムコロイドの製造において、ステアリ
ルトリメチルアンモニウムクロライド(界面活性
剤)を使用せず、金属パラジウムが凝集しないう
ちに実施例1と同様の操作を行なつた。得られた
金属微粉末の性質を第1表に示す。 実施例 4 パラジウムコロイドの製造において、ステアリ
ルトリメチルアンモニウムクロライドの代わりに
ポリビニルアルコール(分子量1800)0.1gを使
用する以外は、実施例1と同様の操作を行なつ
た。得られた金属微粉末の性質を第1表に示す。 実施例 5 ニツケル−りん還元浴(水酸化アンモニウムア
ルカリ)の製造 無水塩化ニツケル0.05molを0.5molのアンモニ
ア水溶液に溶解し、0.05molの次亜りん酸ナトリ
ウムを800ml加えた後、濃塩酸により溶液のPHを
8.9に調整し、蒸溜水を加ええて全容1とした。 このニツケル−りん還元浴200ml(ニツケル原
子として0.01mol)をコバルト−りん還元浴の代
わりに使用する以外は、実施例1と同様の操作を
行なつた。得られた金属微粉末の性質を第1表に
示す。 実施例 6 実施例5において、パラジウムコロイド液を10
ml(パラジウム原子として0.005mmol)とし、
マグネツトスタラーによる撹拌を採用する以外
は、実施例5と同様の操作を行なつた。得られた
金属微粉末の性質を第1表に示す。 実施例 7 ニツケル−りん還元浴(水酸化ナトリウムアル
カリ)の製造 塩化ニツケル0.05mol、次亜りん酸ナトリウム
0.2mol、酒石酸ナトリウム0.5molおよびほう酸
0.5molを含み、水酸化ナトリウムによりPHを9.0
に調整して、全容1の水溶液を得た。 上記ニツケル−りん還元浴50ml(ニツケル原子
として0.0025mol)と実施例1のコバルト−りん
還元浴150ml(コバルト原子として0.0075mol)
の2種の還元浴を用い、以下実施例と同様の操作
を行なつた。得られた金属微粉末の性質を第1表
に示す。 実施例 8 銀コロイドの製造 硝酸銀()0.5mmolを蒸留水940mlに溶解し
た溶液を激しく撹拌しながらステアリルトリメチ
ルアンモニウムクロライド0.1gを含む水溶液10
ml及び水素化ホウ素ナトリウム2.0mmolを含む
水溶液50mlを順次添加すると、溶液の色が黄褐色
に急変し、PH9.6の均一透明な銀コロイドが得ら
れた。 実施例1において、パラジウムコロイド液20ml
の代わりに、前記銀コロイド液20mlを使用する以
外は同様の操作を行つた。 得られた金属微粉末の性質を第1表に示す。
(Industrial Application Field) The present invention relates to the production of fine metal powder, and more specifically, the present invention relates to the production of a novel and useful fine metal powder, in which a metal colloid is mixed in a bath containing a metal complex salt and its reducing agent, and the metal is reduced and precipitated. Regarding manufacturing. The main uses of the metal fine powder according to the present invention are magnetic fluids, magnetic recording materials, electromagnetic shielding materials, anisotropic or pressurized conductive rubbers, plastic magnets, conductive paints, adhesives, and the like. (Prior art) Methods for producing fine metal powder from a liquid phase are broadly divided into precipitation methods and solvent evaporation methods. Of these, precipitation methods further include coprecipitation methods, hydrolysis methods, homogeneous precipitation methods, and oxidative hydrolysis methods. , reduction method, etc. are known (Chemistry Review No.
48, 1985 Ultrafine Particles - Science and Applications p. 24). However, the precipitation method has drawbacks such as the precipitate is generally gel-like and difficult to wash with water and filter, and the precipitant is mixed in as an impurity. In addition, silver, gold, and
Colloids of precious metals such as platinum and palladium are produced by reduction methods, but in this case as well, it is difficult to separate them from water, they solidify during drying, and it is difficult to remove impurities. A method in which a metal colloid containing the same metal as the precipitated metal is used as a core is known in the case of gold (Japanese Patent Publication No. 57-61088).
However, in the case of precipitation of metal ions such as nickel and cobalt, which have a relatively strong ionization tendency, it is difficult for colloids of the same metal to exist stably in an aqueous system. Furthermore, methods using palladium cations (Japanese Unexamined Patent Publication No. 133796/1982) and palladium chloride solution (Japanese Patent Publication No. 29239/1983) as catalysts in the reduction-deposition reaction are also known; The possible palladium cations, or the palladium metal precipitated therefrom, do not act as nuclei, but rather constitute a component of the alloy. Furthermore, in Japanese Patent Publication No. 41-4567, metallic nickel powder is used as a core in the examples, but this metallic powder is not necessarily required in principle, and in order to precipitate metallic nickel fine powder, Even finer nickel metal powder is required as the core, but it is difficult to obtain such fine nickel metal powder. It should be noted that the production of metal powder with excellent electrical and magnetic properties using conventional precipitation methods has not yet been reported. (Problems to be Solved by the Invention) As a result of intensive research into the production of new and useful metal fine powders that are easy to manufacture in a method of manufacturing metal fine powders from a liquid phase by a reduction method, metal complex salts and their By mixing a metal colloid with stirring in a bath containing a reducing agent, the above-mentioned drawbacks can be improved and a new useful metal fine powder with metal colloid as a core and having excellent electrical and magnetic properties can be obtained. This discovery led to the present invention. (Means for Solving the Problems) The present invention is characterized in that, in the production of fine metal powder, a metal colloid is mixed into a bath containing a metal complex salt and its reducing agent under stirring. The method for producing fine metal powder according to the present invention will be described in detail below. In the present invention, a metal colloid having a metal different from the metal and having the same or smaller ionization tendency than the metal is mixed in a bath containing a metal complex salt and its reducing agent (hereinafter referred to as a reduction bath) with stirring. , the metal is reduced and precipitated to obtain a fine metal powder. The above-mentioned metal complex salts are not particularly limited and are appropriately selected depending on the purpose of use, but are generally formed using inorganic metal salts such as chlorides and sulfates of iron, cobalt, and nickel, and complexing agents. be done,
As the complexing agent for forming a complex salt, ammonia, ethylenediamine, pyrophosphate, citric acid, acetic acid, various organic acid salts, EDTA, etc. are used. The above reducing agent includes sodium hypophosphite,
Potassium hypophosphite, sodium boron hydroxide,
Examples include potassium borohydride, hydrazine, formalin, and dimethylamine borane. In the above reduction bath, a PH regulator, PH
Buffers, stabilizers, modifiers, and other commonly used components of electroless plating baths may be used as appropriate. The metal in the metal colloid must have an ionization tendency that is the same or smaller than that of the metal constituting the metal complex in order to perform reduction precipitation. Furthermore, in order to maintain the metal colloid stably for a long period of time, it is desirable to include a surfactant or a water-soluble polymer. As an example, regarding the production of palladium colloid, for example,
It is described in Publication No. 207666. In the present invention, in order to produce metal fine powder with excellent electrical and magnetic properties, it is necessary to mix the metal colloids with stirring, and furthermore, stirring in the presence of a magnetic field further improves the electrical and magnetic properties. can be improved. Furthermore, according to the present invention, metal fine powders with different electrical and magnetic properties can be easily produced by selecting metal atoms in the metal complex salt, or by using two or more types in combination, and by changing the production conditions. . (Function) The metal colloid acts as a catalyst nucleus, and the reduction reaction proceeds quickly, stably and uniformly around the colloid nucleus, so that the precipitated metal can be obtained in the form of a uniform fine powder. Note that if a metal colloid is not mixed, the reduction reaction will not proceed or the metal will stick to the reactor wall, making it impossible to obtain metal fine powder. The present invention will be described below with reference to Examples, but the present invention is in no way limited by these Examples. Example 1 Production of cobalt-phosphorus reduction bath (alkali sodium hydroxide) 0.05 mol of cobalt chloride, sodium hypophosphite
Contains 0.2 mol, sodium tartrate 0.5 mol, and boric acid 0.5 mol, pH adjusted with sodium hydroxide.
9.0 to obtain an aqueous solution with a total volume of 1. Manufacture of palladium colloid 0.5 mmol of palladium chloride and 2.5 mmol of sodium chloride
It was dissolved in 25 ml of an aqueous solution containing mmol and then diluted to 940 ml with distilled water. While vigorously stirring this aqueous solution, 10 ml of an aqueous solution containing 0.1 g of stearyltrimethylammonium chloride was added, followed by 50 ml of an aqueous solution containing 2.0 mmol of sodium borohydride.
was added dropwise to obtain a blackish brown transparent palladium colloid. 200ml of the above cobalt-phosphorus reduction bath (0.01mol as cobalt atom, 2g of sodium hypophosphite)
When 20 ml of the above palladium colloid solution (0.01 mmol as palladium atoms) was mixed with vigorous stirring for 20 minutes, a cloudy metal fine powder mixture was obtained. After leaving it for a while and coagulating and precipitating the fine metal powder (magnetization treatment) using a strong magnet from outside the vessel wall, discard the supernatant liquid by decantation.
The washing operation with distilled water and the replacement operation with acetone were repeated. The mixture was then dehydrated and dried in a hot air dryer at 100°C to obtain fine metal powder. Table 1 shows the properties of the obtained metal fine powder. Example 2 The same operation as in Example 1 was performed except that stirring using a magnetic stirrer was employed. Table 1 shows the properties of the obtained metal fine powder. Example 3 In the production of palladium colloid, the same operation as in Example 1 was carried out without using stearyltrimethylammonium chloride (surfactant) and before metal palladium aggregated. Table 1 shows the properties of the obtained metal fine powder. Example 4 In producing palladium colloid, the same operation as in Example 1 was carried out except that 0.1 g of polyvinyl alcohol (molecular weight 1800) was used instead of stearyltrimethylammonium chloride. Table 1 shows the properties of the obtained metal fine powder. Example 5 Production of nickel-phosphorus reduction bath (alkali ammonium hydroxide) 0.05 mol of anhydrous nickel chloride was dissolved in 0.5 mol of ammonia aqueous solution, 800 ml of 0.05 mol of sodium hypophosphite was added, and the solution was diluted with concentrated hydrochloric acid. PH
Adjust to 8.9 and add distilled water to bring the total volume to 1. The same operation as in Example 1 was carried out, except that 200 ml of this nickel-phosphorus reducing bath (0.01 mol in terms of nickel atoms) was used instead of the cobalt-phosphorous reducing bath. Table 1 shows the properties of the obtained metal fine powder. Example 6 In Example 5, the palladium colloid liquid was
ml (0.005 mmol as palladium atom),
The same operation as in Example 5 was performed except that stirring using a magnetic stirrer was employed. Table 1 shows the properties of the obtained metal fine powder. Example 7 Production of nickel-phosphorus reduction bath (sodium hydroxide alkali) Nickel chloride 0.05 mol, sodium hypophosphite
0.2mol, sodium tartrate 0.5mol and boric acid
Contains 0.5mol, pH 9.0 with sodium hydroxide
An aqueous solution having a total volume of 1 was obtained. 50 ml of the above nickel-phosphorus reducing bath (0.0025 mol as a nickel atom) and 150 ml of the cobalt-phosphorus reducing bath of Example 1 (0.0075 mol as a cobalt atom)
The following operations were carried out in the same manner as in the Examples using two types of reducing baths. Table 1 shows the properties of the obtained metal fine powder. Example 8 Production of silver colloid While vigorously stirring a solution of 0.5 mmol of silver nitrate () dissolved in 940 ml of distilled water, an aqueous solution 10 containing 0.1 g of stearyltrimethylammonium chloride was added.
ml and 50 ml of an aqueous solution containing 2.0 mmol of sodium borohydride were sequentially added, the color of the solution suddenly changed to yellowish brown, and a homogeneous transparent silver colloid with a pH of 9.6 was obtained. In Example 1, 20 ml of palladium colloid solution
The same operation was carried out except that 20 ml of the above silver colloid solution was used instead. Table 1 shows the properties of the obtained metal fine powder.

【表】 第1表より明らかな如く、本発明方法で得られ
る金属微粉末は磁場の存在下で配向し、いずれも
特異な電気および磁気特性を示している。実施例
2より、磁場の存在下で撹拌することにより電気
および磁気特性が顕著に向上することがわかる。 実施例5と6より、金属錯塩の金属をコバルト
からニツケルに変更することにより電気特性がさ
らに向上し、また製造条件を変更することにより
磁気特性の異なる金属微粉末が容易に得られるこ
とがわかる。 実施例7より、2種の金属錯塩を併用した場合
にもまた、特異な電気および磁気特性を有する金
属微粉末が得られた。データーには示さないが、
実施例1〜7の微粉末を圧縮すると、無磁場でも
テスターの針はいずれも振れるようになる。 なお、磁化処理しない(無磁化)微粉末の電気
特性は非常に不安定であることがわかつた。この
理由としては、地磁気の影響を受けて微粉末が数
時間で磁化されるためと思われる。またテスター
で無磁化微粉末の電気抵抗を測定すると、瞬間的
に針はふれるが、その後ふれなくなる。この原因
は微粉末に電流が流れて磁化されたためと思われ
る。 得られた微粉末の性質や上に述べた考察から考
えて、磁性微粉末は磁化されると微粉末同志の反
撥が生じ、隙間があくものと思われる。この反撥
は微粉末内の原子のスピンの熱的ゆらぎによつて
生じるものと思われる(二官、中尾、四谷仮説)。 この仮説によれば、磁性微粉末から磁性流体が
できること、および実施例における電気磁気特性
の異常性を説明できる。 なおコバルト−りん微粉末を水中に長く放置す
ると、色は黒色となり、磁石で配向してもあるい
は微粉末を圧縮してもテスターの針はふれなくな
る。このことは微粉末の表面が酸化されるものと
思われる。 (発明の効果) 本発明による金属微粉末は、従来知られていな
い特異な電気および磁気特性を有しており、その
すぐれた特性を利用することにより数多くの用途
への適用が期待される。 また製造がきわめて容易であり、さらに製造条
件を種々変更することにより、それに応じて電気
的および磁気的性質の異なる金属微粉末を容易に
得ることができるため、種々のすぐれた特性を有
する新規かつきわめて有用な金属微粉末を提供す
ることが可能である。
[Table] As is clear from Table 1, the metal fine powders obtained by the method of the present invention are oriented in the presence of a magnetic field, and all exhibit unique electric and magnetic properties. From Example 2, it can be seen that the electric and magnetic properties are significantly improved by stirring in the presence of a magnetic field. Examples 5 and 6 show that by changing the metal of the metal complex salt from cobalt to nickel, the electrical properties are further improved, and by changing the manufacturing conditions, fine metal powders with different magnetic properties can be easily obtained. . From Example 7, fine metal powder having unique electrical and magnetic properties was also obtained when two types of metal complex salts were used together. Although not shown in the data,
When the fine powders of Examples 1 to 7 were compressed, the needles of the tester were able to swing even in the absence of a magnetic field. In addition, it was found that the electrical properties of the fine powder that was not subjected to magnetization treatment (non-magnetized) were extremely unstable. The reason for this is thought to be that the fine powder becomes magnetized within a few hours under the influence of earth's magnetism. Also, when measuring the electrical resistance of non-magnetized fine powder with a tester, the needle moves momentarily, but then stops moving. The reason for this is thought to be that a current flows through the fine powder and it becomes magnetized. Considering the properties of the obtained fine powder and the above-mentioned considerations, it is thought that when magnetic fine powder is magnetized, repulsion occurs between the fine powders and gaps are created. This repulsion is thought to be caused by thermal fluctuations in the spin of atoms within the fine powder (Nikan, Nakao, and Yotsuya hypotheses). According to this hypothesis, it is possible to explain the production of magnetic fluid from magnetic fine powder and the abnormality of the electromagnetic properties in the examples. If the cobalt-phosphorus fine powder is left in water for a long time, the color will turn black and the tester needle will not touch it even if it is oriented with a magnet or the fine powder is compressed. This seems to be because the surface of the fine powder is oxidized. (Effects of the Invention) The metal fine powder according to the present invention has unique electrical and magnetic properties that were not known in the past, and by utilizing these excellent properties, it is expected to be applied to many uses. In addition, it is extremely easy to manufacture, and by changing the manufacturing conditions, it is easy to obtain fine metal powders with different electrical and magnetic properties. It is possible to provide extremely useful fine metal powders.

Claims (1)

【特許請求の範囲】 1 金属錯塩とその還元剤を含む浴中に前記金属
と異なる金属でかつ前記金属よりもイオン化傾向
が同じかまたは小さい金属を有する金属コロイド
を撹拌下に混合し、前記金属を還元折出させて微
粉末を得ることを特徴とする金属微粉末の製造方
法。 2 撹拌を磁場の存在下で行うことを特徴とする
特許請求の範囲第1項記載の金属微粉末の製造方
法。 3 2種以上の金属錯塩を用いることを特徴とす
る特許請求の範囲第1項記載の金属微粉末の製造
方法。
[Scope of Claims] 1. A metal colloid having a metal different from the metal and having the same or smaller ionization tendency than the metal is mixed in a bath containing a metal complex salt and its reducing agent with stirring, A method for producing fine metal powder, the method comprising obtaining a fine powder by reducing and precipitating the metal. 2. The method for producing fine metal powder according to claim 1, wherein the stirring is performed in the presence of a magnetic field. 3. The method for producing fine metal powder according to claim 1, characterized in that two or more types of metal complex salts are used.
JP13294787A 1987-05-28 1987-05-28 Production of fine metal powder Granted JPS63297511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13294787A JPS63297511A (en) 1987-05-28 1987-05-28 Production of fine metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13294787A JPS63297511A (en) 1987-05-28 1987-05-28 Production of fine metal powder

Publications (2)

Publication Number Publication Date
JPS63297511A JPS63297511A (en) 1988-12-05
JPH0348244B2 true JPH0348244B2 (en) 1991-07-23

Family

ID=15093214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13294787A Granted JPS63297511A (en) 1987-05-28 1987-05-28 Production of fine metal powder

Country Status (1)

Country Link
JP (1) JPS63297511A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4081987B2 (en) 2000-05-30 2008-04-30 株式会社村田製作所 Metal powder manufacturing method, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
JP5874086B2 (en) * 2012-01-20 2016-03-01 日本アトマイズ加工株式会社 Method for producing metal nanoparticles and conductive material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133796A (en) * 1975-04-30 1976-11-19 Ibm Method of manufacturing magnetic powder
JPS5329239A (en) * 1976-08-31 1978-03-18 Mitsubishi Heavy Ind Ltd Method of welding together tubes and flanges
JPS5761088A (en) * 1980-09-30 1982-04-13 Kobe Steel Ltd Dehydration of brown coal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133796A (en) * 1975-04-30 1976-11-19 Ibm Method of manufacturing magnetic powder
JPS5329239A (en) * 1976-08-31 1978-03-18 Mitsubishi Heavy Ind Ltd Method of welding together tubes and flanges
JPS5761088A (en) * 1980-09-30 1982-04-13 Kobe Steel Ltd Dehydration of brown coal

Also Published As

Publication number Publication date
JPS63297511A (en) 1988-12-05

Similar Documents

Publication Publication Date Title
CN104999076A (en) One-pot prepared silver covered copper nanometer powder with controllable shell thickness and preparation method of silver covered copper nanometer powder
KR20110059946A (en) Preparation of copper powder coated with silver by electroless coating method and copper powder coated with silver thereof
CN104096850B (en) The method that silver ammonia complex prepares superfine spherical silver powder is reduced with para-aminophenol
JP2006225730A (en) Material with plating film containing nano-diamond particle deposited thereon, and its manufacturing method
CN103170636A (en) Method for preparing nano metal simple substance through solid-state chemical reaction
CN103433501B (en) Preparation method of uniform-grain-size spherical nano cobalt
CN103352132A (en) Copper-nickel nanowire and preparation method thereof
CN102530934A (en) Method for preparing graphene
US3669643A (en) Method for the preparation of small cobalt particles
US3885955A (en) Process for the production of gold powder
Logutenko et al. Characterization and growth mechanism of nickel nanowires resulting from reduction of nickel formate in polyol medium
US3726664A (en) Magnetic alloy particle compositions and method of manufacture
KR101061600B1 (en) Manufacturing method of cobalt powder
JPH0348244B2 (en)
Jing et al. Thermodynamic analysis on synthesis of fibrous Ni-Co alloys precursor and Ni/Co ratio control
JPS63213606A (en) Production of fine silver powder
KR100890631B1 (en) Preparation of silver powder by using the insoluble silver salts
CN103071788A (en) Method of preparing nickel-silver nuclear shell structure nano-particles
JPH05221637A (en) Production of cuprous oxide powder and copper powder
KR20150014752A (en) Method for manufacturing silver nanoparticles
Pasichnyk et al. Synthesis of magnetite nanoparticles stabilized by polyvinylpyrrolidone and analysis of their absorption bands
CN110385444B (en) Nano copper wire and method for preparing nano copper wire by wet chemical method
KR100368055B1 (en) Synthesis of Spherical Fine Silver Powders at Room Temperature
JP2003147416A (en) Method for manufacturing fine metal powder, and conductive paste using the powder
Yao et al. Thermodynamics analysis of Ni2+− C2H8N2− C2O42−− H2O system and preparation of Ni microfiber