JP2013147713A - Method for producing metal nanoparticle, and conductive material - Google Patents

Method for producing metal nanoparticle, and conductive material Download PDF

Info

Publication number
JP2013147713A
JP2013147713A JP2012009982A JP2012009982A JP2013147713A JP 2013147713 A JP2013147713 A JP 2013147713A JP 2012009982 A JP2012009982 A JP 2012009982A JP 2012009982 A JP2012009982 A JP 2012009982A JP 2013147713 A JP2013147713 A JP 2013147713A
Authority
JP
Japan
Prior art keywords
metal
ion
silicon
metal nanoparticles
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012009982A
Other languages
Japanese (ja)
Other versions
JP5874086B2 (en
Inventor
Shinji Kanamaru
真士 金丸
Arihiro Iwata
在博 岩田
Toru Kineri
透 木練
Naoki Toshima
直樹 戸嶋
Yukie Shiraishi
幸英 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON ATOMIZED METAL POWERS CORP
YAMAGUCHI PREFECTURAL IND TECHNOLOGY INST
Tokyo University of Science
Yamaguchi Prefectural Industrial Technology Institute
Original Assignee
NIPPON ATOMIZED METAL POWERS CORP
YAMAGUCHI PREFECTURAL IND TECHNOLOGY INST
Tokyo University of Science
Yamaguchi Prefectural Industrial Technology Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON ATOMIZED METAL POWERS CORP, YAMAGUCHI PREFECTURAL IND TECHNOLOGY INST, Tokyo University of Science, Yamaguchi Prefectural Industrial Technology Institute filed Critical NIPPON ATOMIZED METAL POWERS CORP
Priority to JP2012009982A priority Critical patent/JP5874086B2/en
Publication of JP2013147713A publication Critical patent/JP2013147713A/en
Application granted granted Critical
Publication of JP5874086B2 publication Critical patent/JP5874086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing high purity metal nanoparticles by safely producing the suspension of metal nanoparticles at low cost and efficiently removing impurities from the suspension.SOLUTION: In a method for producing metal nanoparticles, metal ions whose oxidation-reduction potential is >-1.6 V is made to react with a reducing agent in the presence of a catalyst to produce metal nanoparticles. The reducing agent is a silicon compound having a silicon-hydrogen single bond (Si-H), and the catalyst is a palladium compound or a platinum compound.

Description

本発明は、溶液中で金属塩を還元して金属ナノ粒子の懸濁液を製造する方法に係り、特に、懸濁液から余剰還元剤等の夾雑物を効率よく除去して金属ナノ粒子の純度を容易に高めることが可能な金属ナノ粒子の製造方法に関する。   The present invention relates to a method for producing a suspension of metal nanoparticles by reducing a metal salt in a solution, and in particular, by removing impurities such as excess reducing agent from the suspension efficiently. The present invention relates to a method for producing metal nanoparticles capable of easily increasing the purity.

粒径がおよそ数nm〜数100nm程度の金属の微粒子のことを金属ナノ粒子という。金属ナノ粒子は、粒径が小さいことに起因する種々の特性を有しており、従来、様々な分野で利用されている。例えば、マトリクス表示液晶ディスプレイ等においては、液晶セルに充填された液晶に金属ナノ粒子を添加することにより、液晶素子の応答が高速化することが知られている。また、金属ナノ粒子は、通常のサブミクロン以上の塊状の金属に比べて焼結温度が低いことから、配線材料としてプリント配線板と電子部品の接続等に用いられている。   Metal fine particles having a particle size of about several nanometers to several hundred nanometers are referred to as metal nanoparticles. Metal nanoparticles have various properties resulting from their small particle size and have been used in various fields. For example, in a matrix display liquid crystal display or the like, it is known that the response of the liquid crystal element is increased by adding metal nanoparticles to the liquid crystal filled in the liquid crystal cell. In addition, metal nanoparticles are used as a wiring material for connecting a printed wiring board and an electronic component because the sintering temperature is lower than that of a normal metal of submicron or more.

金属ナノ粒子の製造方法としては、例えば、坩堝に入れて加熱した原料固体から発生した蒸気に対して不活性ガスの分子等を衝突させて急冷することにより微粒子化するガス中蒸発法が知られている。この方法によれば、高濃度かつ高純度の金属ナノ粒子を得ることができる。しかしながら、原料固体から蒸気を発生させるための設備が必要であるため、金属ナノ粒子を安価に製造することができないという課題があった。そこで、このような特別な設備を必要としないものとして、溶液中で金属塩を還元して金属ナノ粒子を製造する方法が注目されている。   As a method for producing metal nanoparticles, for example, an in-gas evaporation method is known in which particles of an inert gas collide with vapor generated from a raw material solid heated in a crucible and rapidly cooled to make particles fine. ing. According to this method, high concentration and high purity metal nanoparticles can be obtained. However, since equipment for generating steam from the raw material solid is required, there is a problem that metal nanoparticles cannot be produced at low cost. Thus, as a method that does not require such special equipment, a method of producing metal nanoparticles by reducing a metal salt in a solution has attracted attention.

例えば、特開2004−232012号公報(特許文献1)には、「高濃度金属微粒子分散液の製造方法」という名称で、有機酸の存在下で有機金属塩を還元することにより、金属微粒子分散液を製造する方法に関する発明が開示されている。この文献に開示された金属微粒子分散液の製造方法は、有機金属塩を炭素数10以下の有機酸が有機金属塩と等モル以上含有された溶媒に溶解させて、金属換算濃度が少なくとも1質量%となるように調製された有機金属塩溶液をジオール又はヒドラジン又はヒドロキシルアミンで還元することを特徴としている。   For example, Japanese Patent Application Laid-Open No. 2004-232012 (Patent Document 1) describes a method of producing a high-concentration metal fine particle dispersion by reducing an organic metal salt in the presence of an organic acid. An invention relating to a method for producing a liquid is disclosed. In the method for producing a metal fine particle dispersion disclosed in this document, an organic metal salt is dissolved in a solvent containing an organic acid having 10 or less carbon atoms in an equimolar amount or more and the metal equivalent concentration is at least 1 mass. It is characterized by reducing the organometallic salt solution prepared to be 1% with diol, hydrazine or hydroxylamine.

上記の特許文献1に記載の製造方法によれば、高濃度の有機金属塩溶液が生成されるとともに、還元剤により、この有機金属塩溶液に対し強い還元作用が発揮される。また、還元後に金属イオンが残留し難いという作用を有する。したがって、高濃度の金属微粒子分散液を容易に製造することができる。   According to the manufacturing method described in Patent Document 1, a highly concentrated organometallic salt solution is generated, and a strong reducing action is exerted on the organometallic salt solution by the reducing agent. Moreover, it has the effect | action that a metal ion does not remain easily after reduction | restoration. Therefore, a high concentration fine metal particle dispersion can be easily produced.

特開2005−220435号公報(特許文献2)には、「金属ナノ粒子及び金属ナノ粒子分散液の製造方法」という名称で、高価な設備を必要とせずに高濃度の金属ナノ粒子分散液を簡便且つ安価に連続して得ることのできる金属ナノ粒子及び金属ナノ粒子分散液の製造方法に関する発明が開示されている。この文献に開示された金属ナノ粒子および金属ナノ粒子分散液の製造方法は、少なくとも1種の金属イオンと有機分子からなる保護剤が混合された溶液を溶媒下で還元するとともに、有機分子で保護された金属ナノ粒子集合体を沈降させて回収するものである。   Japanese Patent Application Laid-Open No. 2005-220435 (Patent Document 2) describes a high-concentration metal nanoparticle dispersion without the need for expensive equipment under the name “metal nanoparticles and a method for producing a metal nanoparticle dispersion”. An invention relating to a method for producing metal nanoparticles and a metal nanoparticle dispersion that can be obtained continuously easily and inexpensively is disclosed. In the method for producing metal nanoparticles and metal nanoparticle dispersions disclosed in this document, a solution in which a protective agent composed of at least one metal ion and an organic molecule is mixed is reduced in a solvent and protected with an organic molecule. The collected metal nanoparticle aggregate is settled and recovered.

上記の特許文献2に記載の製造方法によれば、生成された金属ナノ粒子は有機分子で保護されているため、溶媒に対する親和性が低下して集合体となって沈降するという作用を有する。これにより、金属ナノ粒子集合体を連続して回収することができる。   According to the production method described in Patent Document 2, since the generated metal nanoparticles are protected with organic molecules, the affinity for the solvent is lowered, and the resulting metal nanoparticles are precipitated as aggregates. Thereby, a metal nanoparticle aggregate | assembly can be collect | recovered continuously.

特開2002−180110号公報(特許文献3)には、「金属コロイド溶液の製造方法」という名称で、均一な粒子径を有する金属コロイド微粒子が単分散した溶液を容易に製造可能な方法に関する発明が開示されている。この文献に開示された金属コロイド溶液の製造方法は、標準水素電極電位が−0.8〜+1.2eVの範囲にある金属塩、安定化剤及び溶媒を混合して調製した金属コロイド溶液調製用母液を、10〜95℃の温度に調整し、さらに、標準水素電極電位が−0.2〜+1.5eVの範囲にあり、かつ上記金属塩を構成する金属よりも標準水素電極電位が高い金属塩を添加するとともに、還元剤を用いてこれら2種類の金属塩を還元することを特徴としている。   Japanese Patent Application Laid-Open No. 2002-180110 (Patent Document 3) discloses an invention relating to a method capable of easily producing a solution in which metal colloidal fine particles having a uniform particle diameter are monodispersed under the name of “method for producing a metal colloid solution”. Is disclosed. The method for producing a metal colloid solution disclosed in this document is for preparing a metal colloid solution prepared by mixing a metal salt having a standard hydrogen electrode potential in the range of −0.8 to +1.2 eV, a stabilizer and a solvent. A metal whose mother liquor is adjusted to a temperature of 10 to 95 ° C. and whose standard hydrogen electrode potential is in the range of −0.2 to +1.5 eV and whose standard hydrogen electrode potential is higher than that of the metal constituting the metal salt. It is characterized by adding a salt and reducing these two types of metal salts using a reducing agent.

上記の特許文献3に記載の製造方法によれば、標準水素電極電位が−0.8〜+1.5eVの範囲にある金属からなる核微粒子の表面に、この核微粒子よりも標準水素電極電位が高く、かつ標準水素電極電位が−0.8〜+1.2eVの範囲にある金属が析出した複合金属微粒子が分散したコロイド溶液が生成される。そして、このコロイド溶液中には、粒径分布が狭く、大きさが揃った金属コロイド微粒子が単分散している。すなわち、本製造方法によれば、均一な粒子径を有する金属コロイド微粒子が単分散した溶液を製造することが可能である。   According to the manufacturing method described in Patent Document 3, the standard hydrogen electrode potential is higher than the nuclear fine particles on the surface of the nuclear fine particles made of a metal having a standard hydrogen electrode potential in the range of −0.8 to +1.5 eV. A colloidal solution in which composite metal fine particles in which a metal having a high and standard hydrogen electrode potential in the range of −0.8 to +1.2 eV is deposited is dispersed. In this colloid solution, metal colloidal fine particles having a narrow particle size distribution and uniform size are monodispersed. That is, according to this production method, it is possible to produce a solution in which metal colloidal fine particles having a uniform particle diameter are monodispersed.

特開2004−232012号公報JP 2004-232012 A 特開2005−220435号公報JP 2005-220435 A 特開2002−180110号公報JP 2002-180110 A

上述の特許文献1に開示された発明においては、還元剤としてジオールを用いた場合、反応させる際の温度を100℃以上にしなければならず、そのための設備を必要とする。また、ヒドラジンやヒドロキシルアミンは刺激臭を有するため、取扱いが容易でないという課題があった。   In the invention disclosed in Patent Document 1 described above, when a diol is used as a reducing agent, the temperature at the time of reaction must be 100 ° C. or higher, and equipment for that purpose is required. Further, since hydrazine and hydroxylamine have an irritating odor, there is a problem that handling is not easy.

また、特許文献2及び特許文献3に開示された発明においては、水素化ホウ素ナトリウムを還元剤として利用するため、夾雑物がナトリウム塩となる。この場合、ナトリウム塩を除去する操作を行うための設備が必要となり、製造コストが高くなるという課題があった。   Further, in the inventions disclosed in Patent Document 2 and Patent Document 3, since sodium borohydride is used as a reducing agent, impurities are sodium salts. In this case, there is a problem that equipment for performing an operation for removing the sodium salt is required, resulting in an increase in manufacturing cost.

本発明は、かかる従来の事情に対処してなされたものであり、安全かつ安価に金属ナノ粒子の懸濁液を製造し、この懸濁液から夾雑物を効率よく除去して高純度の金属ナノ粒子を製造する方法を提供することを目的とする。   The present invention has been made in response to such a conventional situation, and a metal nanoparticle suspension is produced safely and inexpensively, and impurities are efficiently removed from the suspension to obtain a high-purity metal. It aims at providing the method of manufacturing a nanoparticle.

上記目的を達成するため、請求項1記載の発明である金属ナノ粒子の製造方法は、酸化還元電位が−1.6Vよりも高い金属イオンに還元剤を触媒存在下で反応させて金属ナノ粒子を製造する方法において、前記還元剤はケイ素−水素単結合(Si−H)を有するケイ素化合物であり、前記触媒はパラジウム化合物または白金化合物であることを特徴とするものである。   In order to achieve the above object, the method for producing metal nanoparticles according to the first aspect of the present invention comprises reacting a metal ion having a redox potential higher than −1.6 V with a reducing agent in the presence of a catalyst. The reducing agent is a silicon compound having a silicon-hydrogen single bond (Si—H), and the catalyst is a palladium compound or a platinum compound.

このような製造方法によれば、触媒であるパラジウムまたは白金がケイ素−水素単結合に酸化的付加することでケイ素−水素単結合(Si−H)を有するケイ素化合物のもつ還元する能力を高め、金属イオンを還元し、金属ナノ粒子の懸濁液を生成するという作用を有する。なお、パラジウムまたは白金が存在しなければ金属イオンの還元反応が進行しないものがある。例えば、ニッケルイオンや亜鉛イオンはパラジウムまたは白金が存在しなければケイ素−水素結合を有するケイ素化合物で還元することは困難である。銅イオン(II)の場合は、パラジウムまたは白金が存在しなくても還元反応が進行し銅ナノ粒子を与えるが、パラジウムまたは白金を存在させると還元反応が速く進行することで生産性が飛躍的に向上する。また、金属イオンが還元される際に、還元剤として使用するケイ素化合物の官能基が原料の陰イオンにより変換されるという作用を有する。例えば、酢酸ニッケルを原料に用いた場合、還元剤のケイ素−水素結合が変換されて酢酸のシリルエステルが生成する。このようにニッケルイオンの還元反応後の夾雑物は高分子量のものとなるため、限外濾過等による操作により金属ナノ粒子と高分子量の夾雑物や余剰の還元剤とを分離することとが可能となる。   According to such a manufacturing method, palladium or platinum as a catalyst is oxidatively added to a silicon-hydrogen single bond, thereby increasing the reducing ability of a silicon compound having a silicon-hydrogen single bond (Si-H), It has an effect of reducing metal ions to form a suspension of metal nanoparticles. In some cases, the reduction reaction of metal ions does not proceed unless palladium or platinum is present. For example, nickel ions and zinc ions are difficult to reduce with a silicon compound having a silicon-hydrogen bond unless palladium or platinum is present. In the case of copper ion (II), the reduction reaction proceeds even in the absence of palladium or platinum to give copper nanoparticles, but when palladium or platinum is present, the reduction reaction proceeds faster and the productivity is dramatically increased. To improve. Moreover, when a metal ion is reduced, it has the effect | action that the functional group of the silicon compound used as a reducing agent is converted with the anion of a raw material. For example, when nickel acetate is used as a raw material, the silicon-hydrogen bond of the reducing agent is converted to produce a silyl ester of acetic acid. As described above, since the impurities after the reduction reaction of nickel ions have a high molecular weight, it is possible to separate the metal nanoparticles from the high molecular weight impurities and excess reducing agent by an operation such as ultrafiltration. It becomes.

請求項2に記載の発明は、請求項1に記載の金属ナノ粒子の製造方法において、金属イオンは金属塩からの電離によって生成され、この金属塩から金属イオンともに電離する陰イオンは、酢酸イオン、トリフルオロ酢酸イオン、塩化物イオン、フッ化物イオン、硝酸イオン、過塩素酸イオンからなる群から選ばれる少なくとも1種であることを特徴とするものである。このような製造方法においては、金属イオンが還元される際に、加水分解し難く、空気中の湿気に対して強いケイ素化合物が生成されるという作用を有する。   Invention of Claim 2 is a manufacturing method of the metal nanoparticle of Claim 1, A metal ion is produced | generated by ionization from a metal salt, The anion ionized together with a metal ion from this metal salt is an acetate ion. And at least one selected from the group consisting of trifluoroacetate ions, chloride ions, fluoride ions, nitrate ions and perchlorate ions. Such a production method has an effect that when a metal ion is reduced, a silicon compound that is hardly hydrolyzed and strong against moisture in the air is generated.

請求項3に記載の導電材料は、請求項1または2に記載の方法によって製造された金属ナノ粒子を利用したものである。   The conductive material according to claim 3 uses metal nanoparticles produced by the method according to claim 1 or 2.

以上説明したように、本発明の請求項1に記載の金属ナノ粒子の製造方法によれば、還元剤の取扱いが容易であるため、安全かつ効率的に製造作業を行うことができる。また、ケイ素化合物や余剰還元剤などの夾雑物を限外濾過等により容易に除去することができる。従って、懸濁液中の金属ナノ粒子の純度を効率よく高めることができる。   As described above, according to the method for producing metal nanoparticles according to claim 1 of the present invention, since the handling of the reducing agent is easy, the production operation can be performed safely and efficiently. Further, impurities such as silicon compounds and excess reducing agents can be easily removed by ultrafiltration or the like. Therefore, the purity of the metal nanoparticles in the suspension can be increased efficiently.

本発明の請求項2に記載の金属ナノ粒子の製造方法においては、製造環境を無水条件に設定する必要がないため、乾燥設備の設置等による余分な設備費用が発生しない。従って、金属ナノ粒子を安価に製造することが可能である。   In the method for producing metal nanoparticles according to claim 2 of the present invention, since it is not necessary to set the production environment to anhydrous conditions, no extra equipment costs are generated due to installation of drying equipment or the like. Therefore, it is possible to produce metal nanoparticles at a low cost.

本実施例の金属ナノ粒子の製造方法は、ケイ素−水素単結合(Si−H)を有するケイ素化合物によって金属イオンを溶液中で還元し、金属ナノ粒子の懸濁液を製造することを特徴とする。ケイ素−水素単結合(Si−H)を有するケイ素化合物は、ケイ素原子(Si)の有する4つの結合手のうち、少なくとも1つの結合手に水素原子(H)が直接結合したものであり、この水素原子の数によって区別され、それぞれモノヒドロシラン(Hが1つ)、ジヒドロシラン(Hが2つ)、トリヒドロシラン(Hが3つ)と呼ばれている。そして、ケイ素−水素単結合(Si−H)を有するケイ素化合物はほとんど無臭であり、刺激臭を伴わないため、取扱いが容易である。従って、ヒドロシラン化合物を還元剤として用いることによれば、金属ナノ粒子を安全かつ効率よく製造することができる。このように、上記3種類のヒドロシラン化合物はいずれも還元剤として優れた特性を有している。また、シロキサンポリマーのようなケイ素原子と酸素原子が直鎖状に結合した高分子であってもケイ素−水素単結合が存在すればニッケルナノ粒子の製造に用いることができる。なお、本実施例では、特にポリヒドロメチルシロキサンを用いている。本発明で用いることが可能なケイ素化合物を例示すると、ペンチルシラン、ヘキシルシラン等のアルキシシラン類、ジエチルシラン等のジアルキルシラン類、トリエチルシラン、tert−ブチルジメチルシラン等のトリアルキルシラン類、フェニルシラン、ジフェニルシラン等のフェニルシラン類、ポリヒドロメチルシロキサンなどの有機ケイ素ポリマーなどが挙げられる。   The method for producing metal nanoparticles of the present embodiment is characterized in that a metal ion is reduced in a solution by a silicon compound having a silicon-hydrogen single bond (Si-H) to produce a suspension of metal nanoparticles. To do. The silicon compound having a silicon-hydrogen single bond (Si-H) is a compound in which a hydrogen atom (H) is directly bonded to at least one of the four bonds of the silicon atom (Si). They are distinguished by the number of hydrogen atoms and are called monohydrosilane (one H), dihydrosilane (two H), and trihydrosilane (three H), respectively. And the silicon compound which has a silicon-hydrogen single bond (Si-H) is almost odorless, and since it does not accompany an irritating odor, handling is easy. Therefore, by using a hydrosilane compound as a reducing agent, metal nanoparticles can be produced safely and efficiently. Thus, all of the above three types of hydrosilane compounds have excellent properties as reducing agents. Further, even a polymer such as a siloxane polymer in which a silicon atom and an oxygen atom are linearly bonded can be used for producing nickel nanoparticles if a silicon-hydrogen single bond exists. In this embodiment, polyhydromethylsiloxane is particularly used. Examples of silicon compounds that can be used in the present invention include alkoxysilanes such as pentylsilane and hexylsilane, dialkylsilanes such as diethylsilane, trialkylsilanes such as triethylsilane and tert-butyldimethylsilane, phenylsilane, Examples include phenylsilanes such as diphenylsilane, and organosilicon polymers such as polyhydromethylsiloxane.

本実施例においては、金属イオンの供給源として主に酢酸塩を用いている。同様に、塩化物塩等を用いることも可能である。上記金属塩から電離する陰イオンとしては、例えば、酢酸イオン(CHCOO)、塩化物イオン(Cl)などがあげられる。これらの陰イオンは、多くの場合、ケイ素−水素単結合(Si−H)を有するケイ素化合物と反応して新たな化合物を形成する。例えば、酢酸イオン(CHCOO)と金属イオンの溶液にポリヒドロシロキサン化合物を加えると、ポリヒドロシロキサン化合物のケイ素−水素結合の部位が酢酸シリルエステルに変換される。また、塩化物イオン(Cl)を含む溶液の場合は、クロロシラン化合物が生成される。 In this embodiment, acetate is mainly used as a supply source of metal ions. Similarly, a chloride salt or the like can be used. Examples of the anion ionized from the metal salt include acetate ion (CH 3 COO ) and chloride ion (Cl ). These anions often react with silicon compounds having silicon-hydrogen single bonds (Si—H) to form new compounds. For example, when a polyhydrosiloxane compound is added to a solution of acetate ions (CH 3 COO ) and metal ions, the silicon-hydrogen bond sites of the polyhydrosiloxane compound are converted to silyl acetate. In the case of a solution containing chloride ions (Cl ), a chlorosilane compound is generated.

本実施例において、触媒となるパラジウムまたは白金の供給源として酢酸パラジウム(II)、塩化白金酸(IV)を用いている。同様にパラジウム、パラジウムアセトナート、テトラキス(トリフェニルホスフィン)パラジウム、塩化パラジウム、白金、塩化白金(II)を用いることも可能である。   In this example, palladium (II) acetate and chloroplatinic acid (IV) are used as a source of palladium or platinum serving as a catalyst. Similarly, palladium, palladium acetonate, tetrakis (triphenylphosphine) palladium, palladium chloride, platinum, or platinum (II) chloride can be used.

なお、金属イオンとケイ素−水素単結合(Si−H)を有するケイ素化合物を反応させる際には、溶媒や添加剤等を共存させても良い。溶媒としては、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、ブタノール、sec−ブタノール、tert−ブタノール、エチレングリコール、プロピレングリコール、フェノール、シクロへキサノール等のアルコール類、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキサン等のエーテル類、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ウンデカン、ドデカン、トリデカン、テトラデカン、シクロヘキサン、ベンゼン、トルエン、キシレン、メシチレン、ビニルベンゼン、フェニルアセチレン、トラン等の炭化水素類、フルオロベンゼンクロロベンゼン、クロロホルム、ジクロロメタン、ブロモベンゼン、ヨードベンゼン等のハロゲン化炭化水素類、トリエチルアミン、アニリン、ピリジン等のアミン類、アセトン、シクロヘキサノン、アセトフェノン等のケトン類、酢酸エチル、酢酸イソプロピル、安息香酸メチル、γ―ブチロラクトン、エチレンカーボート、プロピレンカーボネート等のエステル類等、N−メチル−2−ピロリドン、アセトアニリド等のアミド類、ベンゾニトリル、4−シアノ−4’−ペンチルビフェニル、4−シアノ−4’−ペンチルオキシビフェニル、等のニトリル化合物類、ニトロベンゼン等のニトロ化合物類、ヘキサンチオール、ヘプタンチオール、オクタンチオール等のチオール類および水等の溶媒から単独あるいは混合して用いることができる。また、カルボン酸塩、アルキルスルホン酸塩等の界面活性剤類、ポリ(N−ビニルピロリドン)、オレイン酸等のカルボン酸類等の酸類、ポリアクリル酸、ポリエチレングリコール、ポリ(ジメチルシロキサン)等の高分子類を添加しても良い。なお、本願発明で使用可能な溶媒は本実施例に示すものに限定されるものではない。すなわち、ポリヒドロシロキサン化合物による金属イオンの還元反応を阻害しないものであれば、上記溶媒以外の溶媒であっても良い。   In addition, when making the silicon compound which has a metal ion and a silicon-hydrogen single bond (Si-H) react, you may coexist a solvent, an additive, etc. Examples of the solvent include methanol, ethanol, 1-propanol, 2-propanol, butanol, sec-butanol, tert-butanol, alcohols such as ethylene glycol, propylene glycol, phenol, cyclohexanol, diethyl ether, diisopropyl ether, Ethers such as dibutyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, dioxane, pentane, hexane, heptane, octane, nonane, decane, undecane, dodecane, tridecane, tetradecane, cyclohexane, benzene, toluene, xylene, mesitylene, vinylbenzene, phenyl Hydrocarbons such as acetylene and tolane, fluorobenzene chlorobenzene, chloroform, dichloromethane, bromobenzene, iodo Halogenated hydrocarbons such as benzene, amines such as triethylamine, aniline, pyridine, ketones such as acetone, cyclohexanone, acetophenone, ethyl acetate, isopropyl acetate, methyl benzoate, γ-butyrolactone, ethylene carboat, propylene carbonate, etc. Esters such as N-methyl-2-pyrrolidone, amides such as acetanilide, nitrile compounds such as benzonitrile, 4-cyano-4′-pentylbiphenyl, 4-cyano-4′-pentyloxybiphenyl, nitrobenzene Nitro compounds such as hexanethiol, heptanethiol, octanethiol and the like, and solvents such as water can be used alone or in combination. Also, surfactants such as carboxylates and alkyl sulfonates, acids such as poly (N-vinylpyrrolidone) and carboxylic acids such as oleic acid, polyacrylic acid, polyethylene glycol, poly (dimethylsiloxane) Molecules may be added. In addition, the solvent which can be used by this invention is not limited to what is shown in a present Example. That is, a solvent other than the above solvent may be used as long as it does not inhibit the reduction reaction of metal ions by the polyhydrosiloxane compound.

金属イオンとケイ素−水素単結合(Si−H)を有するケイ素化合物を反応させる際に溶媒を用いる場合、反応温度は、溶媒の還流温度以下であることが望ましい。ただし、これに限定されるものではなく、溶媒の沸点以上とすることもできる。また、金属イオンとケイ素−水素単結合(Si−H)を有するケイ素化合物とを、溶媒を蒸発させながら反応させても良い。なお、金属イオンとケイ素−水素単結合(Si−H)を有するケイ素化合物とを反応させる際には、反応を均一に進行させる必要があるため、磁気攪拌子やスリーワンモーター等の攪拌機で溶液を攪拌することが好ましい。また、撹拌機は、得られる金属ナノ粒子の均一性を高めるため、せん断速度が0.5m/秒以上となるように設定することが望ましい。   In the case of using a solvent when reacting a metal compound with a silicon compound having a silicon-hydrogen single bond (Si—H), the reaction temperature is preferably not higher than the reflux temperature of the solvent. However, it is not limited to this, It can also be made more than the boiling point of a solvent. Alternatively, a metal ion and a silicon compound having a silicon-hydrogen single bond (Si—H) may be reacted while the solvent is evaporated. In addition, when reacting a metal compound and a silicon compound having a silicon-hydrogen single bond (Si-H), it is necessary to make the reaction proceed uniformly. Therefore, the solution is prepared using a stirrer such as a magnetic stirrer or a three-one motor. It is preferable to stir. The stirrer is preferably set so that the shear rate is 0.5 m / second or more in order to improve the uniformity of the metal nanoparticles obtained.

金属イオンとケイ素−水素単結合(Si−H)を有するケイ素化合物との反応時間は、反応温度や溶媒等により異なるが、反応の終点についてはイオンクロマトグラフィー等で残留する金属イオンを定量することで調べることができる。なお、反応の終点は、生成される金属ナノ粒子と原料の金属イオンとで可視−紫外領域の吸収スペクトルが異なるという現象を利用することによっても調べることができる。   The reaction time between the metal ion and the silicon compound having a silicon-hydrogen single bond (Si-H) varies depending on the reaction temperature, solvent, etc., but the end point of the reaction should be determined by ion chromatography or the like. Can be examined. The end point of the reaction can also be examined by utilizing the phenomenon that the absorption spectrum in the visible-ultraviolet region is different between the produced metal nanoparticles and the raw material metal ions.

また、金属イオンとケイ素−水素単結合(Si−H)を有するケイ素化合物を反応させるときの圧力は、特に限定されるものではないが、少なくとも反応に使用する容器の耐圧限界以下で行う必要がある。   Further, the pressure when the metal ion and the silicon compound having a silicon-hydrogen single bond (Si—H) are reacted is not particularly limited, but it is necessary to perform the pressure at least below the pressure limit of the container used for the reaction. is there.

金属イオンとケイ素−水素単結合(Si−H)を有するケイ素化合物との反応濃度は特に限定されるものではなく、適宜変更可能である。すなわち、金属ナノ粒子の用途に応じて、懸濁液中の金属含有量が所望の値となるように、溶媒等の添加や濃縮等で反応濃度を調整すると良い。   The reaction concentration of the metal ion and the silicon compound having a silicon-hydrogen single bond (Si—H) is not particularly limited and can be changed as appropriate. That is, according to the use of the metal nanoparticles, the reaction concentration may be adjusted by adding or concentrating a solvent or the like so that the metal content in the suspension becomes a desired value.

本実施例の製造方法によれば、金属ナノ粒子を製造する過程でポリヒドロシロキサン化合物と金属塩の陰イオンの反応によって生成されるケイ素化合物及び懸濁液中に残留する余剰還元剤を限外濾過や遠心分離により安全かつ効率よく除去することが可能である。これにより、懸濁液中の金属ナノ粒子の純度を効率よく高めることができる。そして、このように懸濁液中の夾雑物を限外濾過や遠心分離によって除去することによれば、高価な設備が不要であるため、設備コストの削減を図ることができる。従って、金属ナノ粒子を安価に製造することが可能である。   According to the production method of this example, the silicon compound produced by the reaction of the polyhydrosiloxane compound and the anion of the metal salt in the process of producing the metal nanoparticles and the excess reducing agent remaining in the suspension are limited. It can be removed safely and efficiently by filtration or centrifugation. Thereby, the purity of the metal nanoparticles in the suspension can be increased efficiently. And by removing the impurities in the suspension by ultrafiltration or centrifugation in this way, expensive equipment is unnecessary, so that equipment costs can be reduced. Therefore, it is possible to produce metal nanoparticles at a low cost.

以下に実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。金属微粒子の粒径は、透過型電子顕微鏡、X線小角散乱法により測定を行った。   Examples The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples. The particle size of the metal fine particles was measured by a transmission electron microscope and an X-ray small angle scattering method.

[実施例1]
酢酸ニッケル(II)0.17g、ポリ(N‐ビニルピロリドン)0.17gをエタノール50mLに溶解し、ポリ(ヒドロメチルシロキサン)([−Si(H)(CH)O−]n)1gを加えてエタノール還流温度に加熱し、酢酸パラジウム(II)5mgを加えると反応溶液の色が緑色から黒色に変化した。X線小角散乱、X線回折、透過型電子顕微鏡による各測定によりニッケルナノ粒子が生成したことを確認した。
[Example 1]
0.17 g of nickel (II) acetate and 0.17 g of poly (N-vinylpyrrolidone) are dissolved in 50 mL of ethanol, and 1 g of poly (hydromethylsiloxane) ([—Si (H) (CH 3 ) O—] n) is dissolved. In addition, heating to ethanol reflux temperature and adding 5 mg of palladium (II) acetate changed the color of the reaction solution from green to black. It was confirmed that nickel nanoparticles were produced by each measurement by X-ray small angle scattering, X-ray diffraction, and transmission electron microscope.

[実施例2]
酢酸ニッケル(II)0.17g、ポリ(N‐ビニルピロリドン)0.17gをエタノール50mLに溶解し、トリエチルシラン1.2gを加えてエタノール還流温度に加熱し、酢酸パラジウム(II)5mgを加えると反応溶液の色が緑色から黒色に変化した。X線小角散乱、X線回折、透過型電子顕微鏡による各測定によりニッケルナノ粒子が生成したことを確認した。
[Example 2]
When 0.17 g of nickel (II) acetate and 0.17 g of poly (N-vinylpyrrolidone) are dissolved in 50 mL of ethanol, 1.2 g of triethylsilane is added and heated to ethanol reflux temperature, and 5 mg of palladium (II) acetate is added. The color of the reaction solution changed from green to black. It was confirmed that nickel nanoparticles were produced by each measurement using X-ray small angle scattering, X-ray diffraction, and transmission electron microscope.

[実施例3]
酢酸マンガン(IV)0.1g、ポリ(N‐ビニルピロリドン)0.1gをテトラエチレングリコール50mLに溶解し、ポリ(ヒドロメチルシロキサン)([−Si(H)(CH)O−]n)2gを加えて200度に加熱し、酢酸パラジウム(II)5mgを加えると反応溶液の色が薄赤色から黒色に変化した。X線小角散乱による測定によりマンガンナノ粒子が生成したことを確認した。
[Example 3]
Manganese acetate (IV) 0.1 g and poly (N-vinylpyrrolidone) 0.1 g are dissolved in tetraethylene glycol 50 mL to obtain poly (hydromethylsiloxane) ([—Si (H) (CH 3 ) O—] n). When 2 g was added and heated to 200 ° C., and 5 mg of palladium (II) acetate was added, the color of the reaction solution changed from light red to black. It was confirmed that manganese nanoparticles were produced by measurement by X-ray small angle scattering.

[実施例4]
酢酸すず(II)0.4g、ポリ(N‐ビニルピロリドン)0.1gを炭酸プロピレン50mLに溶解し、ポリ(ヒドロメチルシロキサン)([−Si(H)(CH)O−]n)2gを加えて180度に加熱し、酢酸パラジウム(II)5mgを加えると反応溶液の色が薄黄色から黒色に変化した。X線小角散乱、X線回折による各測定によりすずナノ粒子が生成したことを確認した。
[Example 4]
0.4 g of tin acetate (II) and 0.1 g of poly (N-vinylpyrrolidone) are dissolved in 50 mL of propylene carbonate, and poly (hydromethylsiloxane) ([—Si (H) (CH 3 ) O—] n) 2 g And heated to 180 ° C., and 5 mg of palladium (II) acetate was added, and the color of the reaction solution changed from light yellow to black. It was confirmed that tin nanoparticles were produced by each measurement by X-ray small angle scattering and X-ray diffraction.

[実施例5]
酢酸銅(II)0.28g、ポリ(N‐ビニルピロリドン)0.15gを2−プロパノール50mLに溶解し、ポリ(ヒドロメチルシロキサン)([−Si(H)(CH)O−]n)2gを加えて180度に加熱し、酢酸パラジウム(II)5mgを加えると反応溶液の色が青色から赤黒色に変化した。X線小角散乱、透過型電子顕微鏡、X線回折による各測定により銅ナノ粒子が生成したことを確認した。
[Example 5]
0.28 g of copper (II) acetate and 0.15 g of poly (N-vinylpyrrolidone) were dissolved in 50 mL of 2-propanol, and poly (hydromethylsiloxane) ([—Si (H) (CH 3 ) O—] n) When 2 g was added and heated to 180 ° C. and 5 mg of palladium (II) acetate was added, the color of the reaction solution changed from blue to red-black. It was confirmed that copper nanoparticles were produced by each measurement by X-ray small angle scattering, transmission electron microscope, and X-ray diffraction.

[実施例6]
酢酸鉄(II)0.2g、ポリ(N‐ビニルピロリドン)0.17gをエタノール50mLに溶解し、ポリ(ヒドロメチルシロキサン)([−Si(H)(CH)O−]n)2gを加えて還流温度に加熱し、塩化白金酸5mgを加えると反応溶液の色が青色から赤黒色に変化した。X線小角散乱、透過型電子顕微鏡による各測定により鉄ナノ粒子が生成したことを確認した。
[Example 6]
0.2 g of iron (II) acetate and 0.17 g of poly (N-vinylpyrrolidone) are dissolved in 50 mL of ethanol, and 2 g of poly (hydromethylsiloxane) ([—Si (H) (CH 3 ) O—] n) is dissolved. In addition, heating to reflux temperature and adding 5 mg of chloroplatinic acid, the color of the reaction solution changed from blue to red-black. It was confirmed that iron nanoparticles were generated by X-ray small angle scattering and transmission electron microscope measurements.

[比較例1]
酢酸ニッケル(II)0.17g、ポリ(N‐ビニルピロリドン)0.17gをエタノール50mLに溶解し、ポリ(ヒドロメチルシロキサン)([−Si(H)(CH)O−]n)1gを加えてエタノール還流温度で反応させたが、ニッケルナノ粒子が生成しなかった。
[Comparative Example 1]
0.17 g of nickel (II) acetate and 0.17 g of poly (N-vinylpyrrolidone) are dissolved in 50 mL of ethanol, and 1 g of poly (hydromethylsiloxane) ([—Si (H) (CH 3 ) O—] n) is dissolved. In addition, the reaction was performed at the ethanol reflux temperature, but nickel nanoparticles were not produced.

本発明は、電子部品の配線材料や液晶表示装置等、各種分野で使用される金属ナノ粒子に対して適用可能である。例えば、本発明の方法によって製造された金属ナノ粒子をバインダー樹脂、溶媒等と混合することで金属ペーストを作成し、これをインクジェット印刷、スクリーン印刷等の印刷技術等によりパターンを形成し、適当な温度、適当な時間で焼成することで金属の導電パターンを形成することができる。この導電パターンは積層コンデンサの内部電極材料として利用されることが期待される。他にも金属ナノ粒子は燃料電池等の触媒に広く利用することができる。さらに本発明における金属ナノ粒子製造方法は、特殊な製造設備を必要としないため、適用範囲が広く極めて工業的な意義が高い。   The present invention is applicable to metal nanoparticles used in various fields such as wiring materials for electronic parts and liquid crystal display devices. For example, a metal paste produced by mixing the metal nanoparticles produced by the method of the present invention with a binder resin, a solvent, etc., is formed into a pattern by a printing technique such as inkjet printing, screen printing, etc. A metal conductive pattern can be formed by baking at an appropriate time for temperature. This conductive pattern is expected to be used as an internal electrode material for multilayer capacitors. In addition, metal nanoparticles can be widely used for catalysts such as fuel cells. Furthermore, since the metal nanoparticle production method in the present invention does not require special production equipment, it has a wide range of applications and is extremely industrially significant.

Claims (3)

酸化還元電位が−1.6Vよりも高い金属イオンに還元剤を触媒存在下で反応させて金属ナノ粒子を製造する方法において、前記還元剤はケイ素−水素単結合(Si−H)を有するケイ素化合物であり、前記触媒はパラジウム化合物または白金化合物であることを特徴とする金属ナノ粒子の製造方法。   In the method for producing metal nanoparticles by reacting a metal ion having a redox potential higher than −1.6 V with a reducing agent in the presence of a catalyst, the reducing agent is silicon having a silicon-hydrogen single bond (Si—H). It is a compound, The said catalyst is a palladium compound or a platinum compound, The manufacturing method of the metal nanoparticle characterized by the above-mentioned. 前記金属イオンは金属塩からの電離によって生成され、この金属塩から前記金属イオンともに電離する陰イオンは、酢酸イオン、トリフルオロ酢酸イオン、塩化物イオン、フッ化物イオン、硝酸イオン、過塩素酸イオンからなる群から選ばれる少なくとも1種であることを特徴とする請求項1に記載の金属ナノ粒子の製造方法。   The metal ion is generated by ionization from a metal salt, and the anion ionized together with the metal ion from this metal salt is acetate ion, trifluoroacetate ion, chloride ion, fluoride ion, nitrate ion, perchlorate ion. The method for producing metal nanoparticles according to claim 1, wherein the method is at least one selected from the group consisting of: 請求項1または2に記載の方法によって製造された金属ナノ粒子を利用した導電材料。   The electrically conductive material using the metal nanoparticle manufactured by the method of Claim 1 or 2.
JP2012009982A 2012-01-20 2012-01-20 Method for producing metal nanoparticles and conductive material Active JP5874086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009982A JP5874086B2 (en) 2012-01-20 2012-01-20 Method for producing metal nanoparticles and conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009982A JP5874086B2 (en) 2012-01-20 2012-01-20 Method for producing metal nanoparticles and conductive material

Publications (2)

Publication Number Publication Date
JP2013147713A true JP2013147713A (en) 2013-08-01
JP5874086B2 JP5874086B2 (en) 2016-03-01

Family

ID=49045508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009982A Active JP5874086B2 (en) 2012-01-20 2012-01-20 Method for producing metal nanoparticles and conductive material

Country Status (1)

Country Link
JP (1) JP5874086B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049430A1 (en) * 2014-09-26 2016-03-31 The Regents Of The University Of California Methods to produce ultra-thin metal nanowires for transparent conductors

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297511A (en) * 1987-05-28 1988-12-05 Agency Of Ind Science & Technol Production of fine metal powder
JPS6415309A (en) * 1987-07-08 1989-01-19 Agency Ind Science Techn Production of metal fine powder
JP2002180110A (en) * 2000-12-08 2002-06-26 Catalysts & Chem Ind Co Ltd Method for manufacturing metallic colloidal solution
JP2004332055A (en) * 2003-05-08 2004-11-25 Sumitomo Metal Mining Co Ltd Nickel powder and its producing method
WO2006062186A1 (en) * 2004-12-10 2006-06-15 Mitsui Mining & Smelting Co., Ltd. Nickel powder, process for producing the same, and conductive paste
JP2009035781A (en) * 2007-08-02 2009-02-19 Yamaguchi Prefecture Method for producing metal nanoparticle
JP2010150619A (en) * 2008-12-26 2010-07-08 Mitsui Mining & Smelting Co Ltd Method for producing copper nanoparticle
JP2011034749A (en) * 2009-07-31 2011-02-17 Tosoh Corp Composition for conductive film formation and conductive film formation method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63297511A (en) * 1987-05-28 1988-12-05 Agency Of Ind Science & Technol Production of fine metal powder
JPS6415309A (en) * 1987-07-08 1989-01-19 Agency Ind Science Techn Production of metal fine powder
JP2002180110A (en) * 2000-12-08 2002-06-26 Catalysts & Chem Ind Co Ltd Method for manufacturing metallic colloidal solution
JP2004332055A (en) * 2003-05-08 2004-11-25 Sumitomo Metal Mining Co Ltd Nickel powder and its producing method
WO2006062186A1 (en) * 2004-12-10 2006-06-15 Mitsui Mining & Smelting Co., Ltd. Nickel powder, process for producing the same, and conductive paste
JP2009035781A (en) * 2007-08-02 2009-02-19 Yamaguchi Prefecture Method for producing metal nanoparticle
JP2010150619A (en) * 2008-12-26 2010-07-08 Mitsui Mining & Smelting Co Ltd Method for producing copper nanoparticle
JP2011034749A (en) * 2009-07-31 2011-02-17 Tosoh Corp Composition for conductive film formation and conductive film formation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016049430A1 (en) * 2014-09-26 2016-03-31 The Regents Of The University Of California Methods to produce ultra-thin metal nanowires for transparent conductors
TWI583799B (en) * 2014-09-26 2017-05-21 美國加利福尼亞大學董事會 Methods to produce ultra-thin metal nanowires for transparent conductors
CN107073576A (en) * 2014-09-26 2017-08-18 加利福尼亚大学董事会 The method for producing the super thin metal nano wire for transparent conductor
JP2017534755A (en) * 2014-09-26 2017-11-24 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Method for producing ultrafine metal nanowires for transparent conductors
US10406602B2 (en) 2014-09-26 2019-09-10 The Regents Of The University Of California Methods to produce ultra-thin metal nanowires for transparent conductors
CN107073576B (en) * 2014-09-26 2019-09-13 加利福尼亚大学董事会 Method of the production for the super thin metal nano wire of transparent conductor

Also Published As

Publication number Publication date
JP5874086B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5234389B2 (en) Method for producing metal nanoparticles
CN104080562B (en) The manufacture method and Nano silver grain and silver coating composition of Nano silver grain
TWI579242B (en) Silver nanoparticles, method of producing the same, silver nanoparticle dispersion, and substrate having silver element formed thereon
US20120330044A1 (en) Chelating agent modified graphene oxides, methods of preparation and use
KR101020844B1 (en) Reducing agent for low temperature reducing and sintering of copper nanoparticels, and method for low temperature sintering using the same
CN104520033A (en) Method for manufacturing silver nanoparticle-containing ink, and silver nanoparticle-containing ink
Kowsari et al. Ultrasound and ionic-liquid-assisted synthesis and characterization of polyaniline/Y2O3 nanocomposite with controlled conductivity
JP2008198595A (en) Metal particulate ink paste and organic acid treated metal particulate
JP5785023B2 (en) Silver particle dispersion composition, conductive circuit using the same, and method for forming conductive circuit
JP2012162767A (en) Coated metal microparticle and manufacturing method thereof
JP5426270B2 (en) Method for producing metallic copper fine particles
JP2011034750A (en) Composition for conductive film formation and conductive film formation method
JP2005220435A (en) Method of producing metal nanoparticle and dispersion of metal nanoparticle
WO2014024901A1 (en) Method for producing silver nano-particles and silver nano-particles
JP2010174313A (en) Copper particulate dispersion and method for producing the same
JP5716432B2 (en) Method for producing metal nanoparticles and conductive material
US20180355191A1 (en) Method for producing electro-conductive paste
Khodaei et al. Synthesis and characterization of copper nanoparticles stabilized with polyvinyl pyrrolidone and its performance on the conductivity and stability of polyindole
JP5874086B2 (en) Method for producing metal nanoparticles and conductive material
JP6414085B2 (en) Method for producing metal nanoparticles
JP5588475B2 (en) Composition containing fine metal particles
KR20110115691A (en) Fabrication method of cnt-metal composite and fabrication method of conductive paste using thereof
WO2010098402A1 (en) Method for producing fine metal particles, fine metal particle dispersion liquid, and sintered body
WO2018190397A1 (en) Method for producing silver nanoparticles having a wide particle size distribution, and silver nanoparticles
JP2012126815A (en) Conductive ink composition, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151204

R150 Certificate of patent or registration of utility model

Ref document number: 5874086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250