JPS63297231A - Molding mold for glass product - Google Patents

Molding mold for glass product

Info

Publication number
JPS63297231A
JPS63297231A JP13458087A JP13458087A JPS63297231A JP S63297231 A JPS63297231 A JP S63297231A JP 13458087 A JP13458087 A JP 13458087A JP 13458087 A JP13458087 A JP 13458087A JP S63297231 A JPS63297231 A JP S63297231A
Authority
JP
Japan
Prior art keywords
glass
mold
molding
fluorine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13458087A
Other languages
Japanese (ja)
Inventor
Kazuo Kogure
和雄 小暮
Koji Hakamazuka
康治 袴塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP13458087A priority Critical patent/JPS63297231A/en
Publication of JPS63297231A publication Critical patent/JPS63297231A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/05Press-mould die materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/10Die base materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a press molding mold for an optical component being excellent in mold release properties to a glass and easy in processing, by forming the molding mold with the glass or glass ceramic containing nitrogen and fluorine. CONSTITUTION:The aimed molding mold consisting of a glass or glass ceramic containing nitrogen and fluorine. The molding mold is excellent in mold release properties to a glass product to be molded because of containing nitrogen and fluorine and excellent in shape reproducibility, because the coefficient of thermal expansion exhibits linearity. Such a mold contains nitrogen and fluorine having inferior affinity with an oxide and is formed from a glass or glass ceramic exhibiting diversing higher than molding temperature of the glass product to be molded and mirror polishing is applied to desired shape in the press molding face.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光学部品等のプレス成形用型、特にガラスまた
はプラスチックよりなるレンズやプリズム等の光学素子
または時計のカバーガラス等を成形するための成形用型
に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a mold for press molding optical parts, particularly for molding optical elements such as lenses and prisms made of glass or plastic, or cover glasses for watches. This relates to a mold for molding.

[従来の技術] ガラスを加熱プレスにより所定の成形品にすることは特
公昭55−11624号公報によって公知であるが、離
型性の問題から特に像形成用光学レンズに要求される厳
密な表面形状および表面特性は達成されていない。
[Prior Art] It is known from Japanese Patent Publication No. 55-11624 that glass is formed into a predetermined molded product by hot pressing. Shape and surface properties have not been achieved.

この離型性はプレス金型の材質に起因するガラスの濡れ
性に大きく依存しているからである。
This is because the mold releasability largely depends on the wettability of the glass resulting from the material of the press mold.

最近、ガラス状炭素、タングステン合金または石英ガラ
スより成る金型を用いることが米国特許第409859
6号やオランダ国特許第gQO30号明細書に開示され
、また5US400系ステンレスよりなる金型を用いる
ことが米国特許第316861号明細書に開示されてい
る。
Recently, the use of molds made of glassy carbon, tungsten alloys or quartz glass has been proposed in US Pat. No. 4,098,599.
No. 6 and Dutch Patent No. gQO 30, and US Pat. No. 316,861 discloses the use of a mold made of 5US400 stainless steel.

[発明が解決しようとする問題点1 しかしながら、これら従来の金型においては、以下に記
載するような問題点を有している。たとえば、ステンレ
ス等の金属はガラスの成形および熱間加工の温度サイク
ルにより結晶粒等の成長を生じて結晶構造が変わり、そ
の結果表面が肌荒れしたものとなる。これは表面形状や
離型性を劣化させて成形早期に結晶の平滑度や光沢を損
ない、また金型の寿命を非常に短くする欠点がある。
[Problem to be Solved by the Invention 1] However, these conventional molds have the following problems. For example, in metals such as stainless steel, crystal grains and the like grow due to temperature cycles during glass forming and hot working, changing the crystal structure, resulting in a rough surface. This has the drawback of deteriorating the surface shape and mold releasability, impairing the smoothness and gloss of the crystal in the early stage of molding, and extremely shortening the life of the mold.

他方ガラス状炭素は酸化しやすく、構造的に弱く、表面
に掻き傷を受けやすく、また耐破壊衝撃力も低い。
Glassy carbon, on the other hand, is easily oxidized, structurally weak, susceptible to surface scratches, and has low fracture impact resistance.

これら特性全ては、ガラスを加熱軟化して加圧成形する
ためには望ましくないものである。さらに1石英ガラス
は濡れ性を有し、熱伝導度も低いので、ガラス状炭素と
同様に金型材としては充分ではない、出願人の調査した
ところによれば特に高温耐酸化性および離型性に優れた
ものはなかった。
All of these properties are undesirable for heat-softening and pressure-forming glass. Furthermore, 1. Since quartz glass has wettability and low thermal conductivity, it is not sufficient as a mold material like glassy carbon, and according to the applicant's research, it has particularly good high-temperature oxidation resistance and mold release properties. There was nothing better.

これらの欠点を解消するために、ステンレス鋼等の金属
基材よりなる金型本体のプレス成形面にPVD (物理
的蒸着法)またはCVD (化学的蒸着法)等によりS
i3N4またはHfNのセラミ−7り層を形成すること
が特開昭61−72634号公報に開示されている。
In order to eliminate these drawbacks, S is applied to the press molding surface of the mold body made of a metal base material such as stainless steel by PVD (physical vapor deposition) or CVD (chemical vapor deposition).
JP-A-61-72634 discloses forming a ceramic layer of i3N4 or HfN.

しかし、ガラスの成形および熱間加工の温度サイクルに
より金属基材自身の結晶粒が成長し、結品構造が変化し
てしまうことは不可避的であり、薄いセラミック層の表
面に肌荒れを生じさせ、甚だしいときにはセラミック層
が剥離する。
However, it is inevitable that the crystal grains of the metal base material themselves will grow due to the temperature cycles of glass forming and hot working, and the crystal structure will change, causing roughness on the surface of the thin ceramic layer. In severe cases, the ceramic layer may peel off.

そこで、望ましいガラス成形物性を有し、かつ構造的お
よび熱的特性の向上した型材料の開発が強く望まれてい
る。
Therefore, there is a strong desire to develop a mold material that has desirable glass molding properties and improved structural and thermal properties.

本発明は、前述した従来技術の諸問題点を解消し、熱開
成形での温度サイクルでもプレス成形体の表面平滑さを
劣化させることなくガラスに対する離型性に優れ、加工
が極めて容易な光学部品のプレス成形用型を提供せんと
するにある。
The present invention solves the problems of the prior art described above, and provides an optical fiber that is extremely easy to process and has excellent mold releasability from glass without deteriorating the surface smoothness of the press molded product even during temperature cycles in thermal open molding. We aim to provide molds for press molding parts.

[問題点を解決するための手段及び作用]すなわち、本
発明は窒素およびフッ素を含有するガラスまたはガラス
セラミックスよりなることを特徴とするガラス製品の成
形用型にある。
[Means and effects for solving the problems] That is, the present invention resides in a mold for molding a glass product, characterized in that it is made of glass or glass ceramics containing nitrogen and fluorine.

本発明に関わる型は、窒素およびフッ素を含有するので
、成形すべきガラス製品に対する離型性に優れ、また熱
膨張係数が直線性を示すことにより形状再現性にも優れ
ている。かかる型は、酸化風との親和性が悪い窒素およ
びフッ素を含有し、成形すべきガラス製品の成形温度よ
りも高いデーパージングを示すガラスまたはガラスセラ
ミックス材料より形成され、そのプレス成形面には所望
の形状に鏡面研磨が施されている。ここにデバージング
温度と称する徐歪と急冷ガラスの熱膨張曲線がガラス転
移温度Tg以下の領域で交わった点の温度を意味する。
Since the mold related to the present invention contains nitrogen and fluorine, it has excellent mold releasability for the glass product to be molded, and also has excellent shape reproducibility because the coefficient of thermal expansion exhibits linearity. Such molds are made of glass or glass-ceramic materials that contain nitrogen and fluorine, which have poor affinity with oxidizing air, and exhibit a tapering temperature higher than the molding temperature of the glass product to be molded. The shape is mirror polished. The temperature at the point where the thermal expansion curves of slow strain and quenched glass intersect in a region below the glass transition temperature Tg is referred to herein as devarging temperature.

特に、プレス成形面と反応しやすい被成形ガラス製品と
の離型性を確保するために、十分な強度を有し、熱間加
工時の成形温度サイクルでも安定で、鏡面性の劣化しな
い均一な連続離型被膜を形成し得る材料でプレス成形面
を形成する。かかる材料としては、MgF2 、CaF
2 、CeF3等(7) 7−/化物、SiO,5i0
2 、CeO3。
In particular, in order to ensure mold releasability between the press forming surface and the molded glass product that tends to react, it has sufficient strength, is stable even during forming temperature cycles during hot processing, and has a uniform shape without deterioration of specularity. The press molding surface is formed of a material capable of forming a continuous mold release film. Such materials include MgF2, CaF
2, CeF3, etc. (7) 7-/compound, SiO, 5i0
2, CeO3.

An、03.5n02等の酸化物で、融点がガラス製品
の成形温度サイクルよりも高温のものを使用することが
できる。
An oxide such as An, 03.5n02, etc. having a melting point higher than the molding temperature cycle of the glass product can be used.

また、物理的蒸着を強固にするためには、Cr、ITO
(インジウム−スズの混合物)。
In addition, in order to strengthen physical vapor deposition, Cr, ITO
(Indium-tin mixture).

SnO2等の導電性のFlllを第1層としてプレス成
形面に形成し、その上にT i N 、 Cr N 。
A conductive film such as SnO2 is formed as a first layer on the press molding surface, and TiN and CrN are deposited on top of it.

CrCN、BN、AJIN’、SiC,Si’3 N4
゜T iB2  、 T I C、Ba C等のセラミ
ックス膜を一覆することもできる。
CrCN, BN, AJIN', SiC, Si'3 N4
It is also possible to completely cover a ceramic film such as T iB2, T I C, Ba C, etc.

このような離型被膜をガラス製品のプレス成形用型のプ
レス成形面に、たとえば真空蒸着、スパッタリング、高
周波イオンブレーティング。
Such a release film can be applied to the press molding surface of a press mold for glass products by, for example, vacuum deposition, sputtering, or high frequency ion blasting.

ディッピング、化学的蒸着等の種々の方法により形成す
る。生成する離型被膜の厚さは導電性薄膜を含めても0
.1〜数μ層程度が望ましい。
It can be formed by various methods such as dipping and chemical vapor deposition. The thickness of the mold release film produced is 0 even including the conductive thin film.
.. It is desirable that the thickness be about 1 to several microns.

[実施例] 以下、本発明を実施例により具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

第1図に示すプレス成形用型1は、硝材よりなる型本体
2と、所望する被成形ガラスの形状に対応する成形面1
図示例では球面状に形成された成形面3とからなる。
The press molding die 1 shown in FIG.
In the illustrated example, the molding surface 3 is formed into a spherical shape.

型本体2を構成する硝材としては、被成形ガラスが約4
70℃のガラス転移温度を有するSF8の場合、該ガラ
ス転移温度よりも高いデーパージング温度を有するオキ
シナイトライドφガラス(Y (12,7) −S i
 ’u8.8) −A又(8,7)−O(57,8) 
−N (4,4) )を用いる。成形面3の加工は高い
形状精度で鏡面仕りげが容易な通常ガラス研削、研磨に
よりニュートリング1〜2本、表面粗さ0.01−0.
02μ麟以下になるように行う。
As for the glass material constituting the mold body 2, the glass to be formed is about 4
In the case of SF8 with a glass transition temperature of 70°C, oxynitride φ glass (Y (12,7) -S i
'u8.8) -A or (8,7) -O(57,8)
-N (4,4) ) is used. The molding surface 3 is processed by ordinary glass grinding and polishing, which has high shape accuracy and easy mirror finishing, to form one or two Newt rings and a surface roughness of 0.01-0.
Do this so that it is less than 0.02 μm.

このようにして製作した一対のプレス成形型1.1を用
いて下記の条件でプレス成形を行う。
Using the pair of press molds 1.1 thus manufactured, press molding is performed under the following conditions.

まず、第4図に示すように、円筒状胴型6に一対の成形
型1.1を嵌合する一方、これら型の間にガラス素材7
をa置する。この組立体を非酸化性雰囲気下の電気炉(
図示せず)内で加熱する。加熱温度はガラス素材7の軟
化点付近の580℃で、加熱時間は約1時間とする。こ
の間、上方の型におもりWをのせて50g/c■2の圧
力をガラス素材7に加える。成形後、約200℃まで徐
冷して型からガラス成形体を取り出すと、これは成形面
3に全く融着せず、成形体の表面に成形面3の高い形状
精度と表面粗さがそのまま転写された研磨を必要としな
いプレスレンズが得られる。
First, as shown in FIG.
Place a. This assembly was heated in an electric furnace (
(not shown). The heating temperature is 580° C., which is around the softening point of the glass material 7, and the heating time is about 1 hour. During this time, a weight W is placed on the upper mold and a pressure of 50 g/cm2 is applied to the glass material 7. After molding, when the glass molded body is slowly cooled to approximately 200°C and taken out from the mold, it does not adhere to the molding surface 3 at all, and the high shape accuracy and surface roughness of the molded surface 3 are directly transferred to the surface of the molded body. A pressed lens that does not require polishing can be obtained.

第1図に示すプレス成形用型lの型本体2はデーパージ
ング温度が800℃と高いので、該温度以下で型を使用
しつづける限り、成形面の形状は全く変化せず、また非
晶質であるため、金属のように結晶粒が成長することが
なく、成形面3の表面粗さが劣化することもない、他方
、従来のステンレス型は約500℃を越えると、結晶粒
が成長しはじめるので、ガラス製品の成形用型としての
使用に限界がある。
The mold body 2 of the press molding mold l shown in Fig. 1 has a high depurging temperature of 800°C, so as long as the mold is continued to be used below this temperature, the shape of the molding surface will not change at all, and the amorphous Therefore, unlike metals, crystal grains do not grow and the surface roughness of the molding surface 3 does not deteriorate.On the other hand, with conventional stainless steel molds, crystal grains grow when the temperature exceeds about 500°C. Because of this, there are limits to its use as a mold for molding glass products.

また、型本体の硝材としてマイカ系結晶を析出するフッ
素含有ガラスセラミックス(Li20−A1203−M
gO−Na20−ZnO−5iO2−ZrO2−TiO
2−F)を用イテ前記と同様な条件下で成形加工を行っ
ても、同様のプレスレンズが得られる。
In addition, fluorine-containing glass ceramics (Li20-A1203-M) that precipitates mica crystals are used as the glass material for the mold body.
gO-Na20-ZnO-5iO2-ZrO2-TiO
A similar pressed lens can be obtained even if the molding process using 2-F) is performed under the same conditions as described above.

第2図に示すような成形面3の表面が離型被膜4として
のMgFで被覆された型lを用い、鉛含有量の覆い反応
しゃすい5FS3ガラス素材7を非酸化性雰囲気下電気
炉内で加熱成形する。加熱はガラス素材の軟化点付近の
560℃で約1時間行い、この間20 g / c層2
の圧力をガラス素材に加える0次いで、約150℃まで
徐冷した後、ガラス成形体を室温で取り出したところ、
これは成形面に全く融着せず、高い形状精度と表面粗さ
がそのまま転写された研磨を必要としないプレスレンズ
が得られる。
Using a mold 1 whose molding surface 3 is coated with MgF as a mold release film 4 as shown in FIG. Heat and mold. Heating was carried out at 560 °C near the softening point of the glass material for about 1 hour, during which time 20 g / c layer 2
After applying a pressure of
This results in a press lens that does not require any polishing and does not fuse to the molding surface at all, and has high shape accuracy and surface roughness that are directly transferred.

上述したように、本実施例の成形用型は従来のステンレ
ス型に比べ、200℃以上の高温領域で使用するに十分
な熱的性質を有するのみならず、成形面の鏡面性も金属
やセラミックスよりもすぐれ、ピンホールや結晶粒界を
生ずることなく高精度の研磨加工を容易に行い得る特徴
を有する。また、窒素およびフッ素を含有し、更に離型
被膜を備えるために、被成形ガラスの融着が有効に防止
されて離型が容易になる。
As mentioned above, compared to conventional stainless steel molds, the molding mold of this example not only has sufficient thermal properties for use in high-temperature ranges of 200°C or higher, but also has a mirror-like surface that is superior to metals and ceramics. It has the characteristic that it can be easily polished with high precision without producing pinholes or grain boundaries. Further, since it contains nitrogen and fluorine and is further provided with a mold release film, fusion of the glass to be molded is effectively prevented and mold release becomes easy.

上述した実施例においては、成形温度を被成形ガラスの
軟化点付近としたが、これに限定されることはない、被
成形ガラスのガラス転移点以上であれば、成形圧力も数
十g / am2で成形可1艶となり、型の強度も十分
である。
In the above-mentioned examples, the molding temperature was set near the softening point of the glass to be molded, but the molding temperature is not limited to this; as long as it is above the glass transition point of the glass to be molded, the molding pressure can be several tens of g/am2. It can be molded with a 1-gloss finish, and the mold strength is sufficient.

離型被膜の材料としては、窒化物やフッ化物に限定され
ることはなく、前述した各種酸化物の膜でも同様の効果
が得られる。
The material for the release film is not limited to nitrides or fluorides, and similar effects can be obtained with films of the various oxides mentioned above.

第3図に本発明の他の例を示す、この場合、成形用型1
における型本体2の材料としてガラスデーパージング温
度よりも高いマイカ結晶を析出するガラスセラミックス
を用い、その成形面3は要求精度に応じてNC制御の加
工機等による研磨、研削によって非球面形状に加工され
ている。
FIG. 3 shows another example of the present invention, in this case the mold 1
Glass ceramics, which precipitates mica crystals at a temperature higher than the glass depurging temperature, is used as the material for the mold body 2, and the molding surface 3 is processed into an aspherical shape by polishing and grinding with an NC-controlled processing machine, etc. according to the required accuracy. has been done.

この成形面3にまずイオンブレーティング法により0.
1#1■厚のCr導電性Wi5を形成して型lに導電性
を付与し、次いでその上にイオンブレーティング法によ
り1.5μ層厚のBNの離型被膜4を形成する。
This molding surface 3 is first coated with 0.
A Cr conductive Wi5 having a thickness of 1#1■ is formed to impart conductivity to the mold 1, and then a release film 4 of BN having a thickness of 1.5 .mu.m is formed thereon by an ion blasting method.

この離型被膜4はガラスとの濡れ性が悪い緻密なセラミ
ックスの薄膜であるので、被成形ガラスの融着が一層長
期間にわたって防止される。型本体のガラスセラミック
スは絶縁物であるため、その上に離型被膜を直接形成す
ることができないので、予め成形面に導電性膜を形成し
た後で離型被膜を形成するものである。導電性膜として
はCrのほかにITO,5n02等の薄膜を用いてもよ
い、また、離型被膜を形成するセラミックスとしては、
TiN、CrN、CrCN、BN。
Since the mold release film 4 is a dense ceramic thin film with poor wettability with glass, fusion of the glass to be molded is prevented for a longer period of time. Since the glass-ceramic material of the mold body is an insulator, it is not possible to directly form a mold release film thereon; therefore, a conductive film is formed on the molding surface in advance, and then a mold release film is formed. In addition to Cr, thin films such as ITO and 5n02 may be used as the conductive film, and as the ceramic for forming the release film,
TiN, CrN, CrCN, BN.

AuN、SiC,Si3 N、、TiB2 。AuN, SiC, Si3N,, TiB2.

TiC,B4C等から成形温度、圧力等に応じて適宜選
択すればよい。
It may be appropriately selected from TiC, B4C, etc. depending on the molding temperature, pressure, etc.

[発明の効果] 一般に、ガラスの成形は温度と圧力が関係する。すなわ
ち、ガラス転移点付近の温度の成形は数十kg/cm2
の圧力が必要であり、軟化点付近の温度での成形は数g
/c+w2の圧力でよい、ガラスよりなる成形用型はこ
のような温度および圧力の範囲内で割れ、形状変化等が
発生しないようにして用いる。この点に関して1本発明
によれば、デーパージング温度が高い窒素およびフッ素
を含有するガラスまたはガラスセラミックスをガラス製
品のプレス成形用型として用いる。これは従来のステン
レス系型では結晶粒が成長して使用できない温度でもプ
レス成形することを可能にし、またその成形面に対して
も高精度の研磨加工を容易にする。
[Effects of the Invention] Generally, glass molding involves temperature and pressure. In other words, molding at a temperature near the glass transition point requires tens of kg/cm2.
A pressure of several grams is required, and molding at a temperature near the softening point requires a pressure of several grams.
A mold made of glass, which can be used at a pressure of /c+w2, is used in such a way that it does not crack or change its shape within such temperature and pressure ranges. In this regard, one aspect of the invention is to use nitrogen- and fluorine-containing glasses or glass-ceramics with high depurging temperatures as molds for press-molding glass products. This makes it possible to perform press molding even at temperatures where conventional stainless steel molds cannot be used due to crystal grain growth, and also facilitates high-precision polishing of the molding surface.

すなわb、本発明では、型と反応しやすい素材と反応し
ない素材とを使い分けて成形面の形状。
In other words, b. In the present invention, the shape of the molding surface is determined by using materials that easily react with the mold and materials that do not.

精度9表面粗さ等が確実に転写されたガラス製品、たと
えばプレスレンズ等を型への融着なしに得ることができ
る。また、本発明の型は従来のステンレスまたはセラミ
ックス製の型と比べて著しく安価に製造することができ
る。
Accuracy 9 Glass products, such as press lenses, with surface roughness etc. reliably transferred can be obtained without being fused to a mold. Furthermore, the mold of the present invention can be manufactured at a significantly lower cost than conventional molds made of stainless steel or ceramics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る型の第1の例を示す断面図、 第2図は本発明に係る型の第2の例を示す断面図、 第3図は本発明に係る型の第3の例を示す断面図、 第4図は本発明に係る型を用いて被成形ガラスの成形加
工状態を示す説明図である。 1・・・成形用型 2・・・型本体 3・・・成形面 4・・・離型被膜 5・・・導電性膜 6;・・調型 7・・・ガラス素材 特許出願人  オリンパス光学工業株式会社N 第1図 第2図
FIG. 1 is a sectional view showing a first example of the mold according to the invention, FIG. 2 is a sectional view showing a second example of the mold according to the invention, and FIG. 3 is a sectional view showing a third example of the mold according to the invention. FIG. 4 is an explanatory diagram showing the state of forming glass to be formed using the mold according to the present invention. 1... Molding mold 2... Mold body 3... Molding surface 4... Mold release coating 5... Conductive film 6;... Adjustment mold 7... Glass material patent applicant Olympus Optical Kogyo Co., Ltd. N Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)窒素およびフッ素を含有するガラス又はガラスセ
ラミックスよりなることを特徴とするガラス製品の成形
用型。
(1) A mold for molding a glass product, characterized in that it is made of glass or glass ceramics containing nitrogen and fluorine.
JP13458087A 1987-05-29 1987-05-29 Molding mold for glass product Pending JPS63297231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13458087A JPS63297231A (en) 1987-05-29 1987-05-29 Molding mold for glass product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13458087A JPS63297231A (en) 1987-05-29 1987-05-29 Molding mold for glass product

Publications (1)

Publication Number Publication Date
JPS63297231A true JPS63297231A (en) 1988-12-05

Family

ID=15131682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13458087A Pending JPS63297231A (en) 1987-05-29 1987-05-29 Molding mold for glass product

Country Status (1)

Country Link
JP (1) JPS63297231A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274331U (en) * 1988-11-28 1990-06-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274331U (en) * 1988-11-28 1990-06-06

Similar Documents

Publication Publication Date Title
US4747864A (en) Process for the precision molding of glass articles
JP2620875B2 (en) Manufacturing method of glass molded products for precision optics
EP0078658B1 (en) A process for moulding glass shapes
JPH0461816B2 (en)
US4391622A (en) Method for the precision/manufacture of glass articles
US4883525A (en) Glass-ceramic support for fusing and sagging ophthmalmic multifocal lenses
JPS63297231A (en) Molding mold for glass product
JPH0247411B2 (en) KOGAKUGARASUSOSHINOPURESUSEIKEIYOKATA
JPS63297232A (en) Molding mold for glass product
JPH0231012B2 (en)
US5762676A (en) Product for molding glass lenses having difficult shapes
JPH021779B2 (en)
JPS61291427A (en) Molded lens and production thererof
JPH0379299B2 (en)
JPH0361616B2 (en)
JPH08277125A (en) Formation of glass lens
JP2785888B2 (en) Mold for optical element molding
JP2571290B2 (en) Mold for optical element molding
JPH021781B2 (en)
JP2505897B2 (en) Mold for optical element molding
JPH02243524A (en) Press-molding of optical element
JPH09194216A (en) Die for forming optical element
JPH0361615B2 (en)
JPS63307129A (en) Production of optical element
JP3199825B2 (en) Optical element molding method