JPS63296245A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63296245A
JPS63296245A JP163888A JP163888A JPS63296245A JP S63296245 A JPS63296245 A JP S63296245A JP 163888 A JP163888 A JP 163888A JP 163888 A JP163888 A JP 163888A JP S63296245 A JPS63296245 A JP S63296245A
Authority
JP
Japan
Prior art keywords
layer
wiring layer
cuttings
wiring
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP163888A
Other languages
Japanese (ja)
Inventor
Tokuro Soma
相馬 得郎
Yoshio Harada
原田 吉男
Tadahiro Kusuda
忠弘 楠田
Kazuyoshi Kobayashi
和好 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP163888A priority Critical patent/JPS63296245A/en
Publication of JPS63296245A publication Critical patent/JPS63296245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent stepped cuttings, wedged cuttings and the like from being generated in an upper wiring layer, by forming an Si oxide layer, which contains As in a specific ratio or above, on a wiring layer and next forming openings in this oxide layer and heating them in an atmosphere of an inactive gas. CONSTITUTION:A thick oxidizing film 3 is formed selectively on a semiconductor substrate 1. Next an oxidizing film 4 serving as a gate oxidation film is formed on each part which is not covered with the film 3. Further a first wiring layer 5 is formed selectively thereon. In succession the whole surface including this layer 5 is coated with an Si oxide layer 6 containing As of 2.7 atom% or more. After openings 9s, 9d, 10s, 10d are formed on this layer 6, heat treatment in an atmosphere of an inactive gas is performed to provide them with fluidization processing. Edge parts of respective windows 9s, 9d, 10s, 10d in the layer 6 are thus rounded to have smooth shoulder parts by the fluidization processing. Next a second wiring layer 11 is formed on this layer 6. Accordingly, stepped cuttings and wedged cuttings and the like can be prevented from being generated in a layer 11 and the like.

Description

【発明の詳細な説明】 本発明は、例えば半導体集積回路装置に通用して好適な
半導体装置の製法に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device suitable for use in, for example, semiconductor integrated circuit devices.

半導体集積回路において、より高密度化が要求され、こ
れに伴って半導体基体上における配線の灸層化とその微
細化及び高密度化が要求されてくる。この場合これ等配
線の被着面に急峻な凹凸が存在するとこの凹凸によって
配線層の所謂断切れ、くさび切れ、更に配線間の耐圧等
の問題が生じてくる。従って、多層の配線層の形成面は
できるだけその凹凸がなたらに形成されていることが望
まれる。
In semiconductor integrated circuits, there is a demand for higher density, and along with this, there is a demand for wiring on a semiconductor substrate to be layered, to be finer, and to have higher density. In this case, if there are steep irregularities on the surface to which these wirings are attached, problems such as so-called breakage or wedge breakage of the wiring layer, and breakdown voltage between the wirings occur due to the irregularities. Therefore, it is desirable that the surface on which the multilayer wiring layer is formed has as many irregularities as possible.

このように配線層の被着面の凹凸をなだらかにする方法
としては種々の方法が提案されている。
Various methods have been proposed for smoothing the unevenness of the surface to which the wiring layer is adhered.

例えば燐Pをドープしたシリコン酸化物、いわゆる燐ド
ープガラス層を配し、これを加熱流動化してその表面が
丸味を帯びたなだらかな面とし、これの上に上l−の配
線層を形成する方法が提案されている。しかしながらこ
の場合、燐がドープされたシリコン酸化物層は比較的そ
の融点が高く、これを流動化させてその凹凸をなだらか
にするには高温の1100℃程度を必要とする為にこの
熱処理に際して半導体集積回路の回路素子としての各領
域例えば絶縁ゲート型電界効果トランジスタ素子(以下
MOSトランジスタという)等のソース。
For example, a silicon oxide layer doped with phosphorus (P), a so-called phosphorus-doped glass layer, is placed, heated and fluidized to create a smooth, rounded surface, and the upper l- wiring layer is formed on top of this. A method is proposed. However, in this case, the phosphorus-doped silicon oxide layer has a relatively high melting point, and a high temperature of about 1100°C is required to fluidize it and smooth out its unevenness. Sources of each region as a circuit element of an integrated circuit, such as an insulated gate field effect transistor element (hereinafter referred to as a MOS transistor).

ドレイン各領域又は拡散配線における不純物に拡散が生
じこれら領域のパターンの微細化がしがたいという欠点
を有し、又この燐ドープのシリコン酸化物は吸湿性が商
い等の欠点がある。
This method has the disadvantage that impurities in each drain region or diffusion wiring are diffused, making it difficult to miniaturize the pattern of these regions.Also, this phosphorus-doped silicon oxide has disadvantages such as low hygroscopicity.

本発明はこのような欠点がなく配線層の断切れ、くさび
切れ等を効果的に回避でき信頼性の商い半導体装置を得
ることができる半導体装置の製法を提供するものである
The present invention provides a method for manufacturing a semiconductor device that is free from such drawbacks and can effectively avoid disconnection, wedge breakage, etc. in the wiring layer and can provide a highly reliable semiconductor device.

第1図ないし第゛1図を参照して本発明製法の一例を説
明する。図示の例では共通の半導体基体+1)に2つの
MO3I−ランジスタを形成する場合を図示したもので
ある。
An example of the manufacturing method of the present invention will be explained with reference to FIGS. 1 to 1. In the illustrated example, two MO3I transistors are formed on a common semiconductor substrate +1).

先ずこの場合、第1図に示すように例えはN型のシリコ
ン半導体基体+1)を設け、その−主面(la)に臨ん
で、選択的にP型の領域(2)を周知の技術例えばイオ
ン注入法、或いは拡散法等によって形成する。そしてこ
の主面(la)に臨んでP型のw4域(2)と、この領
域(2)以外の部分とに夫々Nチャンネル型とPチャン
ネル型のMOS)ランジスタを形成するもので、この場
合、主面(la)の各MOSトランジスタを形成する部
分以外の部分に厚い酸4tA引3)を熱酸化によって形
成する。この厚い5i02酸化膜(3)の形成は、図示
しないが例えば主面(1a)上に耐酸化性のマスク層例
えばSi3N4層を選択的に被着しパターニングし、こ
れをマスクとして熱酸化処理を施してこの耐酸化マスク
によって覆われていない部分に選択的に厚い酸化膜(3
)の形成を行なう。
In this case, first, as shown in FIG. 1, for example, an N-type silicon semiconductor substrate +1) is provided, and facing its − principal surface (la), a P-type region (2) is selectively formed using a well-known technique, for example. It is formed by an ion implantation method, a diffusion method, or the like. Then, facing this main surface (la), N-channel type and P-channel type MOS) transistors are formed in the P-type w4 region (2) and in the area other than this region (2), respectively. , a thick acid 4tA layer 3) is formed by thermal oxidation on the main surface (la) at the portions other than the portions where each MOS transistor is to be formed. Although not shown, the thick 5i02 oxide film (3) is formed by selectively depositing and patterning an oxidation-resistant mask layer, such as a Si3N4 layer, on the main surface (1a), and using this as a mask, thermal oxidation treatment is performed. Then, a thick oxide film (3
).

次に第2図に示すように厚い酸化15ij (31によ
って覆われていない各部分にゲートa化膜となる薄い例
えば5t(h酸化lit (4)を熱酸化等によって形
成し、史にこれの上に選択的に第1の配線1415)を
形成し、これをマスクとして周知の技術によってP型の
ソース領域(7s)とドレイン領域(7d)と、N型の
ソース領域(8s)とドレイン領域(8d)とを形成す
る0図示の例ではこの第1の配線層(5)が、最終的に
MO5I−ランジスタのゲート電極となる部分と、図示
しないがこれより延在する配線部とより成りこの配線部
(5)は不純物が高濃度をもっ゛ζトープされて低比批
抗とされた多結晶シリコン層又はptなどのシリサイド
層より構成し得る。
Next, as shown in FIG. 2, a thin layer of, for example, 5T (h oxide lit (4)), which will become the gate a film, is formed by thermal oxidation on each part not covered by the thick oxide 15ij (31). A first wiring 1415) is selectively formed thereon, and using this as a mask, a P-type source region (7s) and drain region (7d) and an N-type source region (8s) and drain region are formed using a well-known technique. (8d) In the illustrated example, this first wiring layer (5) consists of a portion that will eventually become the gate electrode of the MO5I-transistor and a wiring portion extending from this, although not shown. The wiring portion (5) may be composed of a polycrystalline silicon layer or a silicide layer such as PT which is heavily doped with impurities and has a low specific resistance.

この多結晶シリコン層より成るゲート電極(5)の形成
は周知の技術例えば科学的気相成長法(CVD法)によ
って多結晶シリコン層を全面的に形成し、その後例えば
フォトエツチングによるパターニングを行う0次いでこ
の第1の配線層(5)上を含んで全面的に特に砒素As
を2.7原子パーセント以上含むシリコン酸化物即ち砒
素ドープガラス層(6)を被着する。この砒素A3を含
むシリコン酸化物層(61の形成は、基体+11を配置
した加熱炉中に、例えばキャリアガスとしてN2ガスを
用いて^5cffi3+5IH4+ 02の各ガスを送
り込み、熱分解反応によって基体+1)上に化学的気相
成長法によって形成し得る。この場合、屓(6)中のA
 Sの甘は^5c13の供給相を制御することによって
選定し得る。
The gate electrode (5) made of this polycrystalline silicon layer is formed by forming a polycrystalline silicon layer on the entire surface by a well-known technique such as chemical vapor deposition (CVD), and then patterning by photoetching, for example. Next, the entire surface including the first wiring layer (5) is coated with arsenic (As).
A layer (6) of silicon oxide or arsenic doped glass containing at least 2.7 atomic percent of arsenic is deposited. This silicon oxide layer (61) containing arsenic A3 is formed by feeding each gas of ^5cffi3+5IH4+ 02 into a heating furnace in which the base body +11 is placed, using N2 gas as a carrier gas, and causing a thermal decomposition reaction to form the base body +1). It can be formed on top by chemical vapor deposition. In this case, A in 屓(6)
The sweetness of S can be selected by controlling the supply phase of ^5c13.

次に第3図に示すようにAs ドープ酸化物シリコン1
iit (61とこれの下の5i(h酸化液1fi (
4)に対して特に領域(7s)  (7d)  (8s
)  (8d)上に夫々電極窓すなわち開口(9s) 
 (9d)  (10s )  (10d )を穿設す
る。この場合これ等窓(開口)  (9!l)  (9
d)(10g )  (10d )の縁部は急峻な段部
を形成している。
Next, as shown in FIG. 3, As doped oxide silicon 1
iit (61 and 5i below this (h oxidizing liquid 1fi (
4), especially the area (7s) (7d) (8s
) (8d) Each electrode window or opening (9s) on top
(9d) (10s) (10d) is drilled. In this case, these windows (openings) (9!l) (9
d) (10g) The edge of (10d) forms a steep step.

次に酸化物シリコン層に対して800℃以上、例えば8
50℃、10分間の熱処理を行なってこれの流動化処理
を行なう、このようにすると、酸化物シリコンJd (
6)の各窓(9s)  (9d)  (10s )  
(10d )における縁部は、その流動化によって第4
図に示すように、丸味を帯びてなだらかな胴部を形成す
る。この場合Asドープ酸化物層(6)は、比較的この
低温の800℃程度以上で流動化するものであり、この
ように低い例えば850℃程度の流動化の加熱によって
は他部の各領域が広がるなどの拡散等の発生の虞れはな
い6面この流動化の為の熱処理は特にN2その他の不活
性ガス中において行なう。
Next, the oxide silicon layer is heated to a temperature of 800°C or higher, for example, 80°C.
Heat treatment is performed at 50°C for 10 minutes to fluidize this. By doing this, silicon oxide Jd (
6) Each window (9s) (9d) (10s)
The edge at (10d) becomes fourth due to its fluidization.
As shown in the figure, it forms a rounded and gentle body. In this case, the As-doped oxide layer (6) is fluidized at a relatively low temperature of about 800°C or higher, and heating for fluidization at such a low temperature, for example, about 850°C, may damage other regions. This heat treatment for fluidization is particularly carried out in an inert gas such as N2.

次に第5図に示すように、これら窓(9s)  (9d
)(10g )  (10d )内を含んで例えば全面
的にアルミニウムAffi等の金属層を蒸着等によって
被着し、これを例えばフォトエツチングによってパター
ン化し夫々の領域(7s)  (7d)  (8s) 
 (8d)にオーミックに被着された電極となり且つ配
線部を構成する第2の配線層(11)を形成する。
Next, as shown in Figure 5, these windows (9s) (9d
) (10g) (10d) A metal layer such as aluminum Affi is deposited on the entire surface by vapor deposition or the like, and this is patterned by, for example, photoetching to form a pattern in each region (7s) (7d) (8s).
A second wiring layer (11) is formed on (8d), which serves as an ohmically attached electrode and constitutes a wiring section.

次に第6図に示すように、この第2の配線層(11)上
に、例えば全面的に絶縁層(12)例えばS +02を
化学的気相成長法(CVD法)によって形成する。
Next, as shown in FIG. 6, an insulating layer (12) such as S+02 is formed over the entire surface of the second wiring layer (11) by chemical vapor deposition (CVD).

次に第7図に示すようにこの絶縁層(12)に対して例
えばフォトエツチングによって所要部分に窓(12a)
を穿設し、これを通じて第3の配線層(13)を例えば
アルミニウムの全面熱着及びフォトエツチングによるパ
ターン化によって形成して目的とする図においては2(
囚のMOS)ランジスタが形成された半導体集積回路が
得られる。
Next, as shown in FIG. 7, windows (12a) are formed in required portions of the insulating layer (12) by, for example, photoetching.
2 (2) in the intended figure, through which the third wiring layer (13) is formed by, for example, heating the entire surface of aluminum and patterning it by photo-etching.
A semiconductor integrated circuit in which a MOS transistor is formed is obtained.

上述したように本発明においては不純物として特にAs
がドープされたシリコン酸化物層(6)を用いるもので
、その不純物の濃度が2.5原子%以上就中2.7原子
%以上とする時不袷性ガス中での加熱による流動化が可
能となり、史にまたその加熱?、1度は800℃程吸以
上の低い温度で流動化することができ、これによって第
4図で説明したようにその電極窓開けによって形成され
る段部における周部が丸みをおびてなだらかな面とされ
るので、これの上に形成する例えばアルミニウムより成
る第2の配線層(11)等に断切れ、くさび切れ等が生
じることがないのでこれを微細なパターンに形成するこ
とができこれに伴って配線パターンの高密度化が容易と
なり又信頼性の高い半導体集積回路を得ることができる
ものである。
As mentioned above, in the present invention, As is particularly used as an impurity.
A silicon oxide layer (6) doped with is used, and when the impurity concentration is 2.5 at% or more, particularly 2.7 at% or more, fluidization by heating in an indestructible gas is possible. Will it become possible and will it become heated again in history? , 1 degree can be fluidized at temperatures as low as 800°C or higher, and as a result, as explained in Fig. 4, the periphery of the step formed by the opening of the electrode window becomes rounded and smooth. Since the second wiring layer (11) made of, for example, aluminum is formed on the second wiring layer (11) made of aluminum, there will be no breaks or wedges, so it can be formed into a fine pattern. Accordingly, it becomes easy to increase the density of wiring patterns, and a highly reliable semiconductor integrated circuit can be obtained.

上述したように本発明によれば、Asを含むシリコン酸
化物の流動化のための熱処理を不活性ガス中で行うこと
ができるものであるが、この加熱を不活性ガス中で行う
ことによって、例えば酸化雰囲気中で行う場合における
開口部に酸化膜が生成されるような不都合、したがって
、流動化処理後における開口部中の酸化膜除去工程を必
要とせず、製造上程数の簡略化を図ることができる。
As described above, according to the present invention, heat treatment for fluidizing silicon oxide containing As can be performed in an inert gas, but by performing this heating in an inert gas, For example, to eliminate the inconvenience of forming an oxide film on the opening when the process is carried out in an oxidizing atmosphere, and therefore eliminate the need for a step of removing the oxide film from the opening after fluidization treatment, thereby simplifying the number of manufacturing steps. Can be done.

また上述したように本発明においては砒素Asを含むシ
リコン酸化物jiiii +61を使用するものである
がこの場合Asの2.5原子パーセントは、^s20〕
に換算して4モル%以上に相当する。又このシリコン酸
化物層(6)を直接的にシリコンノル体或いは多結晶シ
リコン層すなわち第1の配線層(5)等に直接的に形成
する場合、上述した流動化の為の熱処理をN2等の不活
性ガス中で行なう場合、表面荒れ等を発生する虞れがあ
る場合は、これ等シリコン基体或いは多結晶層上に10
0人程度の薄いS iO2酸化膜を介してシリコン酸化
物層(6)の形成を行なうことが望ましくこのようにす
ることによって上述した表面荒等の発生を回避すること
ができる。
Further, as mentioned above, in the present invention, silicon oxide jiii +61 containing arsenic As is used, but in this case, 2.5 atomic percent of As is ^s20]
This corresponds to 4 mol% or more. In addition, when this silicon oxide layer (6) is directly formed on a silicon nordium or polycrystalline silicon layer, that is, the first wiring layer (5), etc., the above-mentioned heat treatment for fluidization is performed using N2, etc. When carrying out the process in an inert gas, if there is a risk of surface roughness, etc.
It is desirable to form the silicon oxide layer (6) through a SiO2 oxide film as thin as 0.000. By doing so, the occurrence of the above-mentioned surface roughness etc. can be avoided.

また、本発明においては、Asドープシリコン酸化物層
(6)を用いるものであるが、成る場合はこのm(61
に多榊のAsを含ましめておき、これを不純物踪として
基体(1)の拡散領域の形成をも行うようにすることも
できる。この拡散熱処理の際に流動化が行われる。
Further, in the present invention, an As-doped silicon oxide layer (6) is used, but if it is formed, this m(61
It is also possible to include a large amount of As in the substrate and use this as an impurity to form the diffusion region of the substrate (1). Fluidization is performed during this diffusion heat treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は本発明製法の一例を不す各工程の
拡大断面図である。 (1)は半導体基体、(2)はこれと異なる導電型の一
部に形成された領域、(3)は厚い酸化膜、(4)は絶
縁破膜、(5)は第1の配線l−1(6)は砒素を含む
シリコン酸化物層、(11)は第2図の配線層である。 第1図
FIGS. 1 to 7 are enlarged cross-sectional views of each process other than an example of the manufacturing method of the present invention. (1) is a semiconductor substrate, (2) is a region formed in a part of a different conductivity type, (3) is a thick oxide film, (4) is a dielectric breakdown film, and (5) is a first wiring l. -1 (6) is a silicon oxide layer containing arsenic, and (11) is the wiring layer shown in FIG. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 不純物拡散領域が形成された半導体基体の一主面に第1
の配線層を形成する工程と、該第1の配線層上にAsを
2.7原子%以上含むシリコン酸化物層を形成する工程
と、該シリコン酸化膜層に上記不純物拡散領域に対する
電極取出し用開口を形成する工程と、該シリコン酸化物
層を不活性ガス中で加熱することにより流動化させる工
程と、該シリコン酸化物層上に第2の配線層を形成する
工程とを有する半導体装置の製法。
A first
a step of forming a silicon oxide layer containing 2.7 atomic % or more of As on the first wiring layer; and a step of forming a silicon oxide layer containing 2.7 at. A semiconductor device comprising the steps of forming an opening, fluidizing the silicon oxide layer by heating it in an inert gas, and forming a second wiring layer on the silicon oxide layer. Manufacturing method.
JP163888A 1988-01-07 1988-01-07 Manufacture of semiconductor device Pending JPS63296245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP163888A JPS63296245A (en) 1988-01-07 1988-01-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP163888A JPS63296245A (en) 1988-01-07 1988-01-07 Manufacture of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6272781A Division JPS57177541A (en) 1981-04-24 1981-04-24 Manufacturing method for semiconductor device

Publications (1)

Publication Number Publication Date
JPS63296245A true JPS63296245A (en) 1988-12-02

Family

ID=11507069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP163888A Pending JPS63296245A (en) 1988-01-07 1988-01-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63296245A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523390A (en) * 1975-06-27 1977-01-11 Toshiba Corp Manufacturing method of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS523390A (en) * 1975-06-27 1977-01-11 Toshiba Corp Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
JPS6173370A (en) Semiconductor device and method of producing same
JP3626773B2 (en) Conductive layer of semiconductor device, MOSFET, and manufacturing method thereof
JPS63129647A (en) Semiconductor device
JP2662029B2 (en) Method for manufacturing MOS transistor
JPS63296245A (en) Manufacture of semiconductor device
JPH0319370A (en) Semiconductor device
JPS63296246A (en) Manufacture of semiconductor device
JPH09186295A (en) Semiconductor device and manufacture thereof
JPS62114231A (en) Semiconductor device
JPS62290147A (en) Manufacture of semiconductor device
JP2853143B2 (en) Method for manufacturing semiconductor device
JP3538969B2 (en) Method of forming oxide film on polysilicon semiconductor layer
JPS61156885A (en) Polycrystalline semiconductor device and manufacture thereof
JPS59210659A (en) Manufacture of metal oxide semiconductor device
JPH07273197A (en) Semiconductor device and its fabrication
JPS61228661A (en) Semiconductor device and manufacture thereof
JPH0579184B2 (en)
JPS63163A (en) Manufacture of semiconductor device
JPH07273281A (en) Manufacture of semiconductor device
JPH0786195A (en) Fabrication of semiconductor device
JPS6083372A (en) Mis type semiconductor device and manufacture thereof
JPS6148778B2 (en)
JPH07283323A (en) Manufacture of semiconductor device
JPH0216019B2 (en)
JPH10209150A (en) Manufacture of semiconductor device