JPS63293879A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63293879A
JPS63293879A JP13010587A JP13010587A JPS63293879A JP S63293879 A JPS63293879 A JP S63293879A JP 13010587 A JP13010587 A JP 13010587A JP 13010587 A JP13010587 A JP 13010587A JP S63293879 A JPS63293879 A JP S63293879A
Authority
JP
Japan
Prior art keywords
layer
base
emitter
semiconductor substrate
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13010587A
Other languages
Japanese (ja)
Inventor
Shinichi Miyazaki
宮崎 紳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13010587A priority Critical patent/JPS63293879A/en
Publication of JPS63293879A publication Critical patent/JPS63293879A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the base resistance as well as to improve the frequency characteristics by forming a base and emitter in self alignment, and using as the base extraction electrode a metal silicide layer into which a P-type impurity was doped. CONSTITUTION:After forming on an N-type semiconductor substrate 1 a region isolated by an oxide film 2, a metal silicide layer 3 is stacked on the whole substrate 1 surface, and boron is ion-implanted. Then an oxide film 4 is grown on the layer 3, a hole is selectively opened to expose the substrate 1 surface. An impurity is diffused from the layer 3 into the substrate 1 by a heat treatment to form an external base 7. Then, after growing a second insulating film 6 on the layer 3 in which the base 7 was formed, the film 6 is left only on the sidewalls of the opening section. Then, a P region becoming a intrinsic base is formed in the substrate 1 from the opening. Then a polysilicon layer 11 is grown, arsenic is ion-implanted and a heat treatment is performed to form an emitter region 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特に超高速・超
高周波のバイポーラ・トランジスタの製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing an ultra-high speed and ultra-high frequency bipolar transistor.

〔従来の技術〕[Conventional technology]

従来のバイポーラ・トランジスタの構造トシて、例えば
第3図に示すものが代表的である。このトランジスタは
、N型基板l上に酸化膜2を形成し、ベース領域となる
P拡散層7とエミッタ領域のN型領域8t−形成し、エ
ミッタ電極13.ベース電極14を設け、さらにN+層
16を形成して、コレクタ電極15を設けたものである
。これらエミヴタ電極部13.ベース電極部14.コレ
クタ電極部15によってバイポーラ動作rさせている。
A typical structure of a conventional bipolar transistor is shown in FIG. 3, for example. This transistor includes an oxide film 2 formed on an N-type substrate 1, a P diffusion layer 7 serving as a base region, an N-type region 8t serving as an emitter region, and an emitter electrode 13 . A base electrode 14 is provided, an N+ layer 16 is further formed, and a collector electrode 15 is provided. These emivta electrode portions 13. Base electrode part 14. Bipolar operation is achieved by the collector electrode section 15.

このバイポーラ・トランジスタの性能指数の代表的なも
のとして、利得帯域幅積fT ベース抵抗r bb/、
最大発振周波数fmaX等があり、近年高周波用途の広
まりにより、その高性能化CfT。
As a typical figure of merit of this bipolar transistor, the gain bandwidth product fT base resistance r bb/,
CfT has a maximum oscillation frequency fmax, etc., and with the recent spread of high frequency applications, CfT has improved its performance.

、faAxの向上1rbb’の低減)が望まれている。, faAx improvement (1rbb' reduction) is desired.

〔発明が解決しようとする問題点J しかしながら、従来の構造において叱f。[Problem to be solved by the invention J However, in the conventional structure.

fwhx  ’bb’  の改番を図るには、棟々の制
限が多い。
There are many restrictions when trying to change the number of fwhx 'bb'.

まず、ベース抵抗rbb’については、第4図のマルチ
・エミッタ構造に示すように、抵抗ρ8゜電極間隔Sg
 SB Slのデバイス・パラメータによって次式のよ
うに表わされる。
First, regarding the base resistance rbb', as shown in the multi-emitter structure in Figure 4, the resistance ρ8゜ electrode spacing Sg
It is expressed as follows using the device parameters of SB Sl.

・・・・・・・・・ (1) ここで、nはエミッタ本数、ρ3.は真性ベース領域の
P1抵抗、ρS!は外部ベースのp +4抵抗。
・・・・・・・・・ (1) Here, n is the number of emitters, ρ3. is the P1 resistance in the intrinsic base region, ρS! is an externally based p+4 resistor.

ρ3.ハベース・コンタクト直下のP層抵抗” con
は接触抵抗s 111nエミツタ(ベース)ストライプ
長を示す。
ρ3. P layer resistance directly under the Habase contact” con
represents the contact resistance s 111n emitter (base) stripe length.

この式によれば、エミッタの微細化?進めることにより
、(1)式の第1項は減少させることが可能であるが、
−万%PRの目合せ精度によっ−C%SRの距離が制限
さルるため、(1)式の第2項の減少をはかることは難
しく、従って、ベース抵抗rbb’の抜本的改善は図る
ことができない。
According to this formula, is the emitter miniaturized? By proceeding, the first term of equation (1) can be reduced, but
Since the distance of -C%SR is limited by the alignment accuracy of -10,000%PR, it is difficult to reduce the second term in equation (1). Therefore, it is difficult to drastically improve the base resistance rbb'. I can't figure it out.

また% fTについては次式で表わされる。Further, %fT is expressed by the following formula.

fT=l/(2π(τ8十τb十τ、十τ工月 ・・・
・・・(2)ここで、τeはエミッタ元てん時間、τb
はベース走行時間、τXはコレクタ空乏層走行時間、τ
0はコレクタ充てん時間であって、第3図から明らかな
ように、トランジスタ動作に必要な真性ベース以外の寄
生ベースのtめ、τ。の寄与が大きく、fTの向上は望
めない。
fT=l/(2π(τ80τb1τ, 10τ work months...
...(2) Here, τe is the emitter original heating time, τb
is the base transit time, τX is the collector depletion layer transit time, τ
0 is the collector filling time, and as is clear from FIG. 3, t and τ of the parasitic base other than the intrinsic base necessary for transistor operation. contribution is large, and no improvement in fT can be expected.

さらに、fMAxについては、次式で示される。Furthermore, fMAX is expressed by the following equation.

fMAxocFi宕7違・・・・・・・・・(3)この
式から明らかなようにs fT ’bb〆の改善に依存
しているから、これも従来構造では、大幅な改″#は望
めない。
fMAxocFi宕7difference (3) As is clear from this equation, it depends on the improvement of s fT 'bb〆, so with the conventional structure, no significant improvement can be expected. do not have.

不発明の目的rよ、このような問題点f:′Is決し。Object of non-invention, such a problem f:'Is never solved.

ベース抵抗rbl)#tl!わめて小さくすると共に、
高周波特性fT  fMAX”改善することができる半
導体装置を提供することにある。
Base resistance rbl) #tl! In addition to making it extremely small,
An object of the present invention is to provide a semiconductor device that can improve high frequency characteristics fT fMAX.

〔問題点を解決するための乎段〕[Steps to solve problems]

本発明の半導体装置の製造方法は、第1導電型半導体基
叡に1選択的に素子領域を形成する工程と、前記半導体
基板全面にメタルシリサイド層を成長させ第2導電型不
純物を導入する工程と、前記クリサイド層上に第1の絶
縁膜を成長し、選択的に開口して前記半導体基板表面f
:、露光し、かつ熱処理により前記シリサイド層から前
記半導体基板に不純物を拡散する工程と、この不純物拡
散を  。
The method for manufacturing a semiconductor device of the present invention includes a step of selectively forming an element region in a semiconductor substrate of a first conductivity type, and a step of growing a metal silicide layer on the entire surface of the semiconductor substrate and introducing impurities of a second conductivity type. Then, a first insulating film is grown on the crystalcide layer, and selectively opened to cover the semiconductor substrate surface f.
: a step of diffusing impurities from the silicide layer into the semiconductor substrate by exposure and heat treatment, and this impurity diffusion.

行っ友シリサイド層上に、第2の絶縁膜成長後。After the second insulating film is grown on the Yukitomo silicide layer.

異方性エツチングにより開口部側壁のみその第2の絶縁
膜t−残す工程と、前記開口部から半導体基板に第24
′tIL型不純物を導入し之後、多摘晶ンリコンま几は
アモルファス・シリコンを成長して第1導電型不純物を
導入し熱処理する工程と、前記開口部上部のエミッタと
なる領域に前記多結晶シリコンまたはアモルファスシリ
コン層を選択的に残す工程と、前記シリサイド層に選択
的に開口してベース・コンタクトとすると共に、前記エ
ミッタ、ベース・コンタクト部に配線を形成する工程と
を有することを特徴とする。
A step of leaving only the second insulating film on the side wall of the opening by anisotropic etching, and etching a second insulating film from the opening to the semiconductor substrate.
After introducing the IL-type impurity, the polycrystalline silicone process involves growing amorphous silicon, introducing the first conductivity-type impurity, and heat-treating it, and adding the polycrystalline silicon to the region above the opening that will become the emitter. Alternatively, the method may include a step of selectively leaving an amorphous silicon layer, and a step of selectively opening the silicide layer to form a base contact, and forming wiring in the emitter and base contact portions. .

〔作 用〕[For production]

本発明の構成によれば。 According to the configuration of the present invention.

[1)  P型不純物をドープしたメタル・シリサイド
層によって、自己整合的にベース、エミッタ領域を形成
し、かつこのシリサイド層をベース引出し電極とできる
ので、(1)式第2項がほとんど零にできる。
[1] Since the base and emitter regions are formed in a self-aligned manner by the metal silicide layer doped with P-type impurities, and this silicide layer can be used as the base extraction electrode, the second term in equation (1) becomes almost zero. can.

2 ま九、クリサイド層自体も、@わめて低抵抗である
ので、全体としてベース抵抗rbb’2大幅に減少させ
ることができる。
2. Also, since the crystalide layer itself has an extremely low resistance, the base resistance rbb'2 as a whole can be significantly reduced.

(3)更に、自己整合的にベース、エミッタを形成する
九め、トランジスタ動作に不要な寄生ベースを大幅に低
減でき、J’T  fMhx を大幅に向上させること
ができる。
(3) Furthermore, since the base and emitter are formed in a self-aligned manner, parasitic bases unnecessary for transistor operation can be significantly reduced, and J'T fMhx can be significantly improved.

〔実施子アリ〕[Executive child Ali]

次に図面を用いて本発明の詳細な説明する。 Next, the present invention will be explained in detail using the drawings.

第1図(al〜(hlは本発明の一実施例全工程順に説
明する断面図である。まず、N型半導体基板1に酸化膜
2で分離され次領域を形成する(第1図(a))。
FIGS. 1A to 1C are cross-sectional views explaining the entire process order of an embodiment of the present invention. First, an N-type semiconductor substrate 1 is separated by an oxide film 2 and a region is formed (FIG. 1A). )).

引続き、メタル・クリサイド層3金例えばCVD法金用
いて1000〜2000Aの厚さで基板l上に積層し、
ボロンのイオン注入を行なう。ここで7リサイド層3に
用いるメタルとしては、TiW等の高融点金属が望まし
い(第1図(b))。
Subsequently, a metal/cryside layer 3 is laminated on the substrate 1 to a thickness of 1000 to 2000 Å using, for example, CVD gold.
Perform boron ion implantation. Here, as the metal used for the 7-reicide layer 3, a high melting point metal such as TiW is preferable (FIG. 1(b)).

次に酸化膜4t″シリサイド層3上に成長し、写真食刻
法を用いて異方性エツチングを行ない、基板lの表面?
4出する(第1図(C))。更に、全面に、第二の絶縁
膜6tl−CVD法によって形成する。
Next, an oxide film 4t'' is grown on the silicide layer 3, and anisotropic etching is performed using photolithography to etch the surface of the substrate l.
4 (Figure 1 (C)). Furthermore, a second insulating film 6tl-CVD is formed over the entire surface.

ここで絶縁W6は第1の絶縁膜4と同一の種類でもよい
し、異質のものでもよい。引続き、窒素雰囲気において
アニールを行ない、クリサイド層3中のボロンを基板l
中に拡散し、外部ベース7′f。
Here, the insulation W6 may be of the same type as the first insulating film 4, or may be of a different type. Subsequently, annealing is performed in a nitrogen atmosphere to remove boron in the crystalline layer 3 from the substrate l.
diffused into the external base 7'f.

形成する。なお、この工程は、後述する真性ベース(8
)の形式より前の工程にあればよい(第1図(d))。
Form. Note that this process is based on the intrinsic base (8), which will be described later.
) (Fig. 1(d)).

次いで、全面にわ九ってRIEを行なうと、第2の絶縁
膜6は上面のみ除去され、クリサイド層3の開孔部の側
壁のみ残る。ここで倒えば、熱拡散法、イオン注入法等
の方法により、真性ベースとなるP領域8を形成する(
第1図(e))。次に、全面に、ポリシリコン層、又は
アモルファス・ンリコン層9を積層し、ヒ素のイオン注
入を行なう(第1図げ))。さらに、900〜950’
O程iのm度でN+領領域エミッタ領域10の形成を行
なりt後、写真食刻法によって、エミッタ上のポリシリ
コン11のみ選択的に残す(第1図−(g))。
Next, when RIE is performed over the entire surface, only the upper surface of the second insulating film 6 is removed, leaving only the sidewalls of the openings in the crystalline layer 3. If it collapses here, the P region 8, which will become the intrinsic base, is formed by a method such as thermal diffusion or ion implantation (
Figure 1(e)). Next, a polysilicon layer or an amorphous silicon layer 9 is laminated on the entire surface, and arsenic ions are implanted (see Fig. 1). Furthermore, 900-950'
The N+ region emitter region 10 is formed at a temperature of 0 m degrees, and after t, only the polysilicon 11 on the emitter is selectively left by photolithography (FIG. 1-(g)).

最後に、クリサイド層3上の絶縁膜4を選択的に開口し
てベース−コンタクト12全形成し、アルミやTi−P
、−Au等によりそれぞれエミヴタ、ペース、コレクタ
電極13,14.15を形成して半導体装1llltl
−完成する(第1図(h))。
Finally, the insulating film 4 on the crystalcide layer 3 is selectively opened to form the entire base-contact 12, and aluminum or Ti-P
, -Au, etc. to form emitter, paste, and collector electrodes 13, 14, and 15, respectively, to form a semiconductor device 1lllltl.
- Completed (Fig. 1 (h)).

第2図(a)〜(h)は本発明の第2の実施例全工程順
に説明する断面図であ〕、半導体集積回路への適用例を
示したものである。まず、第2図(a)において、P型
半導体基板21にN型の埋込層22、N型エピタキンヤ
ル層23を順次形成した後、酸化膜2等によって、素子
分離を行なう。次に、コレクタと接続される高濃度のN
型不純物(リン)を 4含むコレクタ領域24t−形成
した後、クリサイド層3fI:FJ2長し、ボロンのイ
オン注入全行なう。第2図(b))。これにより後の引
続く工程としては、第1の実施例と同様で最終的に、第
2図(hlの半導体装置勿得ることができる。
FIGS. 2(a) to 2(h) are cross-sectional views explaining the second embodiment of the present invention in order of all steps, and show an example of application to a semiconductor integrated circuit. First, in FIG. 2(a), an N-type buried layer 22 and an N-type epitaxial layer 23 are sequentially formed on a P-type semiconductor substrate 21, and then elements are isolated using an oxide film 2 or the like. Next, a high concentration of N is connected to the collector.
After forming a collector region 24t containing a type impurity (phosphorus), a crystalline layer 3fI:FJ2 is lengthened and boron ions are fully implanted. Figure 2(b)). As a result, the subsequent steps are similar to those of the first embodiment, and finally the semiconductor device shown in FIG. 2 (hl) can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明し九ように、本発明によれは、バイポーラ・ト
ランジスタの特性改善に次のような効果がある。
As explained above, the present invention has the following effects on improving the characteristics of bipolar transistors.

(1)ベース、エミッタを自己整合的に形成できる九め
、ベース、エミッタ間の目合せマージンが不要となるだ
けでなく、引出し電極に7リサイドを使用することによ
り、ベース抵抗’bb−が大幅に低減できる。
(1) The base and emitter can be formed in a self-aligned manner.Not only does it eliminate the need for an alignment margin between the base and emitter, but the base resistance 'bb- can be significantly reduced by using 7reside for the extraction electrode. can be reduced to

(2)まt1ベース、エミッタの自己整合化にょう形成
できるので、外部ベース、即ち寄生ベースが低減でき、
fア fMAXも大幅に向上が図られる。
(2) Since the t1 base and emitter can be formed in a self-aligned manner, the external base, that is, the parasitic base, can be reduced.
fA fMAX will also be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(hl、第2図(al 〜(h)は本発
明の第1および第2の実施例を工程順に説明する断面図
、第3図は従来構造のトランジスタの一例の断面図、第
4図は第3図のベース抵抗rbbIヲ説明する断面図で
ある。 1・・・・・・N型基板、2・・・・・・酸化膜、3・
・・・・・シリサイド層、4・・・・・・第1絶縁膜、
5・・・・・・レジスト、6・・・・・・第2絶縁膜、
7・・・・・・P拡散層(エミッタ領域)、8・・・・
・・P領域(真性ベース)、9・・・・・・ポリ7リコ
/層、10・・・・・・N型領域(ベース領域)、12
・・・・・・ベースコンタクト、13・山・・エミヴ7
1iE極、14・・・・・・ベース電極、15・・・・
・・コレクタ電極、16・・・・・・N+層、21・・
・・・・P型半導体基板、22・・・・・・埋込層、2
3・・・・・・エピタキシャル層、24・・・・・・コ
レクタ層。 代理人 升埋士  内 原   t/ ’:”慎と1 
                 5)′−4−\ノ
Figures 1 (a) to (hl) and Figures 2 (al to h) are cross-sectional views explaining the first and second embodiments of the present invention in the order of steps, and Figure 3 is a cross-sectional view of an example of a transistor with a conventional structure. Cross-sectional view, FIG. 4 is a cross-sectional view for explaining the base resistor rbbI in FIG. 3. 1...N-type substrate, 2... Oxide film, 3.
...silicide layer, 4...first insulating film,
5...Resist, 6...Second insulating film,
7...P diffusion layer (emitter region), 8...
... P region (intrinsic base), 9 ... Poly7 lyco/layer, 10 ... N type region (base region), 12
・・・・・・Base contact, 13・Mountain・Emiv 7
1iE electrode, 14...Base electrode, 15...
...Collector electrode, 16...N+ layer, 21...
...P-type semiconductor substrate, 22...Buried layer, 2
3...Epitaxial layer, 24...Collector layer. Agent: Uchihara T/': “Shin and 1”
5)'-4-\ノ

Claims (1)

【特許請求の範囲】[Claims] 第1導電型半導体基板に、選択的に素子領域を形成する
工程と、前記半導体基板全面にメタルシリサイド層を成
長させ第2導電型不純物を導入する工程と、前記シリサ
イド層上に第1の絶縁膜を成長し、選択的に開口して前
記半導体基板表面を露光し、かつ熱処理により前記シリ
サイド層から前記半導体基板に不純物を拡散する工程と
、この不純物拡散を行ったシリサイド層上に第2の絶縁
膜成長後、異方性エッチングにより開口部側壁のみその
第2の絶縁膜を残す工程と、前記開口部から半導体基板
に第2導電型不純物を導入した後、多結晶シリコンまた
はアモルファス・シリコンを成長して第1導電型不純物
を導入し熱処理する工程と、前記開口部上部のエミッタ
となる領域に前記多結晶シリコンまたはアモルファルシ
リコン層を選択的に残す工程と、前記シリサイド層に選
択的に開口してベース・コンタクトとすると共に、前記
エミッタ、ベース・コンタクト部に配線を形成する工程
とを有することを特徴とする半導体装置の製造方法。
selectively forming an element region on a first conductivity type semiconductor substrate; growing a metal silicide layer over the entire surface of the semiconductor substrate and introducing second conductivity type impurities; and forming a first insulating layer on the silicide layer. A step of growing a film, exposing the surface of the semiconductor substrate by selectively opening it, and diffusing impurities from the silicide layer to the semiconductor substrate by heat treatment, and adding a second layer to the silicide layer after the impurity diffusion. After the insulating film is grown, there is a step of leaving the second insulating film only on the side walls of the opening by anisotropic etching, and after introducing impurities of the second conductivity type into the semiconductor substrate from the opening, polycrystalline silicon or amorphous silicon is added. a step of growing and introducing a first conductivity type impurity and heat treatment; a step of selectively leaving the polycrystalline silicon or amorphous silicon layer in a region above the opening that will become an emitter; 1. A method of manufacturing a semiconductor device, comprising the step of forming an opening to form a base contact, and forming wiring in the emitter and base contact portions.
JP13010587A 1987-05-26 1987-05-26 Manufacture of semiconductor device Pending JPS63293879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13010587A JPS63293879A (en) 1987-05-26 1987-05-26 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13010587A JPS63293879A (en) 1987-05-26 1987-05-26 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63293879A true JPS63293879A (en) 1988-11-30

Family

ID=15026069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13010587A Pending JPS63293879A (en) 1987-05-26 1987-05-26 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63293879A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216463A (en) * 1982-06-07 1983-12-16 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Bipolar transistor
JPS61230367A (en) * 1985-04-05 1986-10-14 Sony Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216463A (en) * 1982-06-07 1983-12-16 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Bipolar transistor
JPS61230367A (en) * 1985-04-05 1986-10-14 Sony Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4710241A (en) Method of making a bipolar semiconductor device
JPS6146063A (en) Manufacture of semiconductor device
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
JP3127455B2 (en) Semiconductor device manufacturing method
JPH06101473B2 (en) Semiconductor device
JPS6112388B2 (en)
JPH10214967A (en) Manufacture of semiconductor device
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
JPS63293879A (en) Manufacture of semiconductor device
JP3456864B2 (en) Semiconductor device and manufacturing method thereof
JP3233690B2 (en) Manufacturing method of bipolar transistor
JPS5837990B2 (en) Manufacturing method of semiconductor device
JP2697631B2 (en) Method for manufacturing semiconductor device
JPS5914898B2 (en) Manufacturing method of semiconductor device
JP3055781B2 (en) Semiconductor device and manufacturing method thereof
JP3152046B2 (en) Bipolar transistor and method of manufacturing the same
JPH07142505A (en) Manufacturing for semiconductor device
JP3196716B2 (en) Method for manufacturing semiconductor device
JPS5984469A (en) Manufacture of semiconductor device
JP2546650B2 (en) Method of manufacturing bipolar transistor
JP3121636B2 (en) Manufacturing method of bipolar transistor
JPH01108772A (en) Manufacture of bipolar transistor
JPH10321730A (en) Semiconductor device and its manufacturing method and communication device
JP3041886B2 (en) Method for manufacturing semiconductor device
JP2002231932A (en) Bipolar semiconductor device and method of manufacturing the same