JPS6329274A - Testing method for semiconductor element - Google Patents

Testing method for semiconductor element

Info

Publication number
JPS6329274A
JPS6329274A JP17161986A JP17161986A JPS6329274A JP S6329274 A JPS6329274 A JP S6329274A JP 17161986 A JP17161986 A JP 17161986A JP 17161986 A JP17161986 A JP 17161986A JP S6329274 A JPS6329274 A JP S6329274A
Authority
JP
Japan
Prior art keywords
voltage
current
circuit
semiconductor device
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17161986A
Other languages
Japanese (ja)
Inventor
Katsuo Saito
勝雄 斉藤
Koichi Kawagoe
浩一 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17161986A priority Critical patent/JPS6329274A/en
Publication of JPS6329274A publication Critical patent/JPS6329274A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

PURPOSE:To remove an ineffective component flowing to stray capacity at the time of voltage application and to measure element characteristics at a high speed by finding the difference between a voltage corresponding to a current flowing through an element and its differentiated voltage and using a current value corresponding to the difference voltage as the real positive current value of an element to be tested. CONSTITUTION:A voltage V generated by a circuit 1 is switched by a circuit 31 or 32 and supplied to the element 4 to be tested and a circuit 22 measures the current I. The circuit 31 or 32 is switched at time T1 to apply the voltage V. The current I at this time is the sum of a charging current i1 and a leak current i2. The V is divided by resistances and passed through a differential amplifier 22l, whose output V2 has a waveform similar to the charging current i1. The output V3 of an insulating amplifier 22k, on the other hand, has the same waveform as that of the current I. It is inputted to a differential amplifier 22m to obtain an output V4=V3-V2. The V3 corresponds to i1+i2, so the V4 has a waveform nearly equal to that of the i2. For the purpose, the V4 is measured and converted to obtain the i2. Consequently, element characteristics can be measured at a high speed without any decrease in measurement sensitivity.

Description

【発明の詳細な説明】 、3・〔産業上の利用分野〕 ゛〜′本発明は、半導体素子の試験法に係り、特に、半
導体素子の電気的特性を高速で測定する方法に関するも
のである。
[Detailed Description of the Invention] , 3. [Field of Industrial Application] ゛~' The present invention relates to a method for testing semiconductor devices, and in particular to a method for measuring the electrical characteristics of semiconductor devices at high speed. .

〔従来の技術〕[Conventional technology]

従来この種の半導体素子の特性測定のため試験法として
は、第4図に示すような方法が代表的に知られている。
Conventionally, as a typical test method for measuring the characteristics of this type of semiconductor element, a method as shown in FIG. 4 is known.

即ち、電圧発生回路1とこの電圧発生回路1から流れる
電流を測定する電流測定回路21と、供試半導体素子4
の測定用端子へ電圧発生回路1を接続する切り換え回路
3によって構成される。電圧発生回路1から発生する電
圧を、供試半導体素子4へ印加して電流測定回路21に
より例えば漏洩電流を測定する。一般的に半導体素子の
電気的特性は、このように電圧を印加して電流を測定す
る方法と電流を印加して電圧を測定する方法など、1ケ
の半導体素子で数回ないし数十回行うものである。この
ような従来例を示すものとして、特開昭51−8347
6号公報がある。
That is, a voltage generating circuit 1, a current measuring circuit 21 that measures the current flowing from the voltage generating circuit 1, and a semiconductor device under test 4.
The voltage generating circuit 1 is configured by a switching circuit 3 that connects the voltage generating circuit 1 to the measuring terminal of the voltage generating circuit 1. A voltage generated from the voltage generation circuit 1 is applied to the semiconductor device under test 4, and the current measurement circuit 21 measures, for example, leakage current. Generally, the electrical characteristics of a semiconductor device are measured several to dozens of times on a single semiconductor device, such as by applying a voltage and measuring the current, and by applying a current and measuring the voltage. It is something. As an example of such a conventional example, Japanese Patent Laid-Open No. 51-8347
There is Publication No. 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第5図に1回の測定についてその電圧・電流の波形を示
す。切り換え回路3を時間T1で切り換えた後に電圧発
生回路1から電圧■を印加し、電流工を測定する。この
時、電圧■を印加直後電流工が大きくなるのは、電圧発
生回路1がら供試半導体素子4の測定端子までの容量と
、供試半導体素子4内部の容量に充電電流11が流れる
ことが原因である。このため、充電電流11がある程度
放電する時間T2後に漏洩電流生2だけを測定する。切
り換え回路3の切り替え素子は、機械的接点をもつ素子
または電気的接点をもつ素子どちらか一方で構成してい
るが、前者は動作時間が長いという欠点があり、後者は
接点間にある程度抵抗があり供試半導体素子4の測定端
子間の抵抗が小さいときは測定精度が低下する。
FIG. 5 shows the voltage and current waveforms for one measurement. After switching the switching circuit 3 at time T1, a voltage ■ is applied from the voltage generating circuit 1, and the current is measured. At this time, the reason why the current increases immediately after applying the voltage ■ is that the charging current 11 flows through the capacitance from the voltage generation circuit 1 to the measurement terminal of the semiconductor device under test 4 and the capacitance inside the semiconductor device under test 4. Responsible. Therefore, only the leakage current 2 is measured after the time T2 during which the charging current 11 has been discharged to some extent. The switching element of the switching circuit 3 is configured with either an element with mechanical contacts or an element with electrical contacts, but the former has the disadvantage of a long operating time, and the latter has the disadvantage that there is some resistance between the contacts. Yes When the resistance between the measurement terminals of the semiconductor device under test 4 is small, the measurement accuracy decreases.

上述のように従来の方法では、漏洩電流を測定するとき
に充電電流が放電するまでの待ち時間T2が20〜10
0m秒かかる欠点があった。さらに機械的接点の切り換
え回路を使用すると切り換え時間が長くなり、電気的接
点の切り換え回路を使用すると供試半導体素子の測定端
子間の内部抵抗が小さいときには測定精度が悪いという
欠点があった。
As mentioned above, in the conventional method, when measuring leakage current, the waiting time T2 until the charging current is discharged is 20 to 10
There was a drawback that it took 0ms. Furthermore, when a switching circuit using mechanical contacts is used, the switching time becomes long, and when using a switching circuit using electrical contacts, measurement accuracy is poor when the internal resistance between the measurement terminals of the semiconductor device under test is small.

従って、本発明の目的は、高速で測定が可能な半導体素
子の試験法を提供するにある。
Therefore, an object of the present invention is to provide a method for testing semiconductor devices that allows high-speed measurement.

〔問題点を解決するための手段〕 本発明は、供試半導体素子に流れる電流に相当する電圧
と印加した電圧を微分した電圧の差を求め、差電圧に相
当する電流値を真正に供試半導体素子に流れた電流とす
ることを特徴とするものである。
[Means for solving the problem] The present invention calculates the difference between the voltage corresponding to the current flowing through the semiconductor device under test and the voltage obtained by differentiating the applied voltage, and calculates the current value corresponding to the difference voltage in the true test sample. It is characterized in that it is a current flowing through a semiconductor element.

〔作用〕[Effect]

本発明では、供試半導体素子に印加した電圧を微分して
得た電圧が、電圧印加時に流れる充電電流波形に近似し
ていることを利用し、電圧印加時に浮遊容量等に流れる
電流無効分を除去する。
In the present invention, by utilizing the fact that the voltage obtained by differentiating the voltage applied to the semiconductor device under test approximates the waveform of the charging current that flows when the voltage is applied, the reactive portion of the current flowing through the stray capacitance etc. when the voltage is applied is calculated. Remove.

〔実施例〕〔Example〕

以下実施例を用いて本発明の詳細な説明する。 The present invention will be described in detail below using Examples.

第1図は本発明になる半導体素子の特性測定に用いられ
る試験回路であり、第4図と同符号の部分は、それぞれ
同じ部分に相当する。この回路は電圧発生回路1.電流
測定回路221機械的接魚の切り換え回路31と電気的
接点の切り換え回路32、供試半導体素子4で構成する
。電流測定回路22の中で22aないし22hは固定抵
抗、22iは可変抵抗、22jはコンデンサ、22には
接縁増幅器、22fl、22mは増幅器である。
FIG. 1 shows a test circuit used for measuring the characteristics of a semiconductor device according to the present invention, and parts having the same symbols as those in FIG. 4 correspond to the same parts. This circuit is voltage generating circuit 1. The current measuring circuit 221 is composed of a mechanical contact switching circuit 31, an electrical contact switching circuit 32, and a semiconductor device under test 4. In the current measuring circuit 22, 22a to 22h are fixed resistors, 22i is a variable resistor, 22j is a capacitor, 22 is a common-edge amplifier, and 22fl and 22m are amplifiers.

電圧発生回路1で発生した電圧■を切り換え回路31ま
たは切り換え回路32により供試半導体素子4の測定用
端子へ接続し、電流測定回路22により電流■を測定す
る。第2図は、第1図の各部の電圧・電流波形を1項目
の測定について示したものである。切り換え回路31ま
たは切り換え回路32を切り換え時間T1で切り換えた
後に、電圧発生回路1で電圧Vを印加する。この時の電
流■は充電電流主1+漏洩電流12となる。微分増幅器
22Qの入力端での電圧v1は固定抵抗22bと固定抵
抗22cで分圧した電圧となる。
The voltage ■ generated by the voltage generating circuit 1 is connected to the measurement terminal of the semiconductor device under test 4 by the switching circuit 31 or the switching circuit 32, and the current ■ is measured by the current measuring circuit 22. FIG. 2 shows voltage and current waveforms at each part in FIG. 1 for measurement of one item. After switching the switching circuit 31 or the switching circuit 32 at the switching time T1, the voltage generation circuit 1 applies the voltage V. The current ■ at this time is the main charging current 1+the leakage current 12. The voltage v1 at the input end of the differential amplifier 22Q is a voltage divided by the fixed resistors 22b and 22c.

微分増幅器の出力電圧■2は入力電圧Vz を微分した
波形となる。この電圧v2は充電電流11に近似した波
形となる。絶縁増幅器22にの出力電圧■8は電流■と
同じ波形となる。増幅器22mは差動形の増幅器でその
出力電圧v4は、V 4 = Va −V 2となる。
The output voltage (2) of the differential amplifier has a waveform obtained by differentiating the input voltage Vz. This voltage v2 has a waveform similar to the charging current 11. The output voltage ■8 to the isolation amplifier 22 has the same waveform as the current ■. The amplifier 22m is a differential amplifier, and its output voltage v4 is V4 = Va - V2.

ここで電圧v8は充電電流ix+漏洩電流12に相当す
るから、■4は漏洩電流i2にほぼ等しい波形となる。
Here, voltage v8 corresponds to charging current ix+leakage current 12, so 4 has a waveform approximately equal to leakage current i2.

従って差電圧7番を測定しこれを電料に換算することに
より漏洩電流12を求めることができる。差電圧■4は
電流工と比較して明らかなように安定する時間が早いの
で、電圧Vを印加してから電圧v4を測定するまでの待
ち時間T2が短くなる。この試験法では電圧Vが数百7
以上で、漏洩電流12が数十μA以下のときには、待ち
時間T2を第5図と比較すると1/3〜115にできる
Therefore, the leakage current 12 can be determined by measuring the differential voltage No. 7 and converting it into electric charge. It is clear that the differential voltage (4) stabilizes more quickly than the current voltage, so the waiting time T2 from applying the voltage V to measuring the voltage v4 becomes shorter. In this test method, the voltage V is several hundred seven
As described above, when the leakage current 12 is several tens of microamperes or less, the waiting time T2 can be reduced to ⅓ to 115 times compared to FIG. 5.

第3図に電圧■を供試半導体素子に印加して電流工を測
定する等価回路を記載した。電圧発生回路の出力電圧を
V、切り換え回路の内部抵抗をR1供試半導体素子の測
定端子間の内部抵抗をRt、とすると、測定する電流■
は、I = V (Rh+2 R)となる。ここで切り
換え回路の内部抵抗2Rは電流・工を測定するときの測
定誤差となる。そこで、第1図において、供試半導体素
子4の測定端子間の内部抵抗Rしが小さい場合は、切り
換え回路の内部抵抗が小さい機械的接点の切り換え回路
31を使用する。供試半導体素子4の測定端子間の内部
抵抗RLが大きい場合は切り換え回路の内部抵抗が大き
いが切り換え時間が早い電気的接的の切り換え回路32
を使用する。この場合、供試半導体製子の測定端子間の
抵抗RLが、切り換え回路の内部抵抗2Rに比べて非常
に大きいので測定誤差は非常に小さくなる。このように
供試半導体素子の測定端子間の内部抵抗が小さいときは
機械的接点の切り換え回路31を使用し、供試半導体素
子の測定端子間の内部抵抗が大きい場合は電気的接点の
切り換え回路を使用することにより、1ケの半導体素子
を数十項目測定する場合は、切り換えの総合時間が短く
なる。
FIG. 3 shows an equivalent circuit for measuring the current by applying the voltage (■) to the semiconductor device under test. Assuming that the output voltage of the voltage generating circuit is V, the internal resistance of the switching circuit is R1, and the internal resistance between the measurement terminals of the semiconductor device under test is Rt, the current to be measured is
becomes I = V (Rh+2 R). Here, the internal resistance 2R of the switching circuit becomes a measurement error when measuring current/power. Therefore, in FIG. 1, when the internal resistance R between the measurement terminals of the semiconductor device under test 4 is small, a mechanical contact switching circuit 31 having a small internal resistance is used. When the internal resistance RL between the measurement terminals of the semiconductor device under test 4 is large, the internal resistance of the switching circuit is large, but the switching time is fast.
use. In this case, since the resistance RL between the measurement terminals of the semiconductor device under test is much larger than the internal resistance 2R of the switching circuit, the measurement error becomes very small. In this way, when the internal resistance between the measurement terminals of the semiconductor device under test is small, the mechanical contact switching circuit 31 is used, and when the internal resistance between the measurement terminals of the semiconductor device under test is large, the electrical contact switching circuit 31 is used. By using this method, when measuring several dozen items on one semiconductor device, the total switching time is shortened.

〔発明の効果〕〔Effect of the invention〕

上述のように本発明試験法によれば、測定精度の低下を
伴うことなく、半導体素子の特性測定の総、所要時間を
短縮し得ることができる。
As described above, according to the test method of the present invention, the total time required to measure the characteristics of a semiconductor element can be shortened without reducing measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明試験法で用いられる試験回路を示す回路
図、第2図はその回路各部の電圧・電流の波形図、第3
図は電流測定の回路図、第4図は従来の半導体素子の試
験法の一例を示す回路図、第5図はその回路各部の波形
図である。 1・・・電圧発生回路、21.22・・・電流測定回路
、3.31.32・・・切り換え回路、4・・・被測半
導体。
Fig. 1 is a circuit diagram showing the test circuit used in the test method of the present invention, Fig. 2 is a voltage/current waveform diagram of each part of the circuit, and Fig. 3 is a circuit diagram showing the test circuit used in the test method of the present invention.
FIG. 4 is a circuit diagram for current measurement, FIG. 4 is a circuit diagram showing an example of a conventional semiconductor device testing method, and FIG. 5 is a waveform diagram of each part of the circuit. 1... Voltage generation circuit, 21.22... Current measurement circuit, 3.31.32... Switching circuit, 4... Semiconductor to be measured.

Claims (1)

【特許請求の範囲】[Claims] 1、供試半導体素子へ電圧を印加し、その時に流れる電
流を測定して供試半導体素子の特性を測定する半導体素
子の試験法において、供試半導体素子に流れる電流に相
当する電圧と印加した電圧を微分した電圧の差を求め、
差電圧に相当する電流値を真正に供試半導体素子に流れ
た電流とする半導体素子の試験法。
1. In a semiconductor device testing method in which a voltage is applied to the semiconductor device under test and the current flowing at that time is measured to measure the characteristics of the semiconductor device under test, a voltage equivalent to the current flowing through the semiconductor device under test is applied. Find the difference in voltage by differentiating the voltage,
A test method for semiconductor devices in which the current value corresponding to the voltage difference is the true current flowing through the semiconductor device under test.
JP17161986A 1986-07-23 1986-07-23 Testing method for semiconductor element Pending JPS6329274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17161986A JPS6329274A (en) 1986-07-23 1986-07-23 Testing method for semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17161986A JPS6329274A (en) 1986-07-23 1986-07-23 Testing method for semiconductor element

Publications (1)

Publication Number Publication Date
JPS6329274A true JPS6329274A (en) 1988-02-06

Family

ID=15926529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17161986A Pending JPS6329274A (en) 1986-07-23 1986-07-23 Testing method for semiconductor element

Country Status (1)

Country Link
JP (1) JPS6329274A (en)

Similar Documents

Publication Publication Date Title
JP2003028900A (en) Non-contact voltage measurement method and apparatus
JPH0316626B2 (en)
JP2829063B2 (en) Subscriber line measuring method and its measuring device
JPS61292067A (en) Method for measuring electric energy
JPS6329274A (en) Testing method for semiconductor element
JPS6325572A (en) Leakage current measuring system of electrometer amplifier
CN207751929U (en) A kind of Hall effect tester
JP3281163B2 (en) Current measuring device and method
JP2001091562A (en) Device for inspecting circuit board
JP2687615B2 (en) Switch arc voltage measuring device
JPH0641174Y2 (en) Voltage-current measuring device
RU2240571C1 (en) Device for controlling technical condition of transformer windings
JPH0539496Y2 (en)
JPS5931011B2 (en) Method for measuring input offset voltage of semiconductor integrated linear circuit
JP3461258B2 (en) Apparatus for measuring conductivity or pH
JPH0466878A (en) Apparatus and method for measuring electrostatic capacitance, resistance and inductance
JPH0313741Y2 (en)
JPH04315062A (en) Method for measuring resistance value of resistor
JP3469369B2 (en) Electric measuring instrument
SU978055A1 (en) Current to voltage converter
KR0180291B1 (en) Current detecting circuit enable to test pa level dc current & ic device testing apparatus enbedding it
JPS6316278A (en) Testing circuit for electrostatic breakdown of semiconductor device
JPH0637340Y2 (en) Insulation resistance measuring instrument
RU2256184C1 (en) Measuring converter for alternating current
JPH051824Y2 (en)