JPH0539496Y2 - - Google Patents

Info

Publication number
JPH0539496Y2
JPH0539496Y2 JP5330687U JP5330687U JPH0539496Y2 JP H0539496 Y2 JPH0539496 Y2 JP H0539496Y2 JP 5330687 U JP5330687 U JP 5330687U JP 5330687 U JP5330687 U JP 5330687U JP H0539496 Y2 JPH0539496 Y2 JP H0539496Y2
Authority
JP
Japan
Prior art keywords
voltage
power supply
output
leakage current
manual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5330687U
Other languages
Japanese (ja)
Other versions
JPS63159776U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5330687U priority Critical patent/JPH0539496Y2/ja
Publication of JPS63159776U publication Critical patent/JPS63159776U/ja
Application granted granted Critical
Publication of JPH0539496Y2 publication Critical patent/JPH0539496Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はリーク電流測定器に関し、特に電気回
路や電気素子からなる被測定物に所定の電圧を印
加してリーク電流を測るリーク電流測定器に関す
る。
[Detailed description of the invention] (Field of industrial application) The present invention relates to a leakage current measuring device, and in particular a leakage current measuring device that measures leakage current by applying a predetermined voltage to an object to be measured consisting of an electric circuit or an electric element. Regarding.

(従来の技術) 従来のリーク電流測定器は例えば第2図aのブ
ロツク図に示す構成となつていた。このリーク電
流測定器は、被測定物21に電圧ECを印加する
ステツプ電圧電源23と、電流計22と、ステツ
プ電圧電源23の出力電圧Eを時間経過に伴い階
段状に変化させるコントローラ25とで構成され
ていた。第3図は、第2図のステツプ電圧電源2
3が出力する階段状電圧の1周期分を示す波形図
である。この階段状電圧はコントローラ25が電
圧制御信号125で指示したタイミングで変化
し、やはりその電圧制御信号125で指示したス
テツプ電圧VSだけそのタイミングに上昇する。
(Prior Art) A conventional leakage current measuring device has a configuration shown, for example, in the block diagram of FIG. 2a. This leakage current measuring device includes a step voltage power supply 23 that applies a voltage E C to an object to be measured 21, an ammeter 22, and a controller 25 that changes the output voltage E of the step voltage power supply 23 stepwise over time. It consisted of Figure 3 shows the step voltage power supply 2 in Figure 2.
FIG. 3 is a waveform diagram showing one cycle of the stepped voltage outputted by No. 3. This step voltage changes at the timing instructed by the controller 25 with the voltage control signal 125, and also rises by the step voltage V S instructed by the voltage control signal 125 at that timing.

第2図bは同図aの回路にマニユアル電源26
及び切り換えリレー27を加え、切り換えリレー
27で印加電圧の選択を可能とした従来の別のリ
ーク電流測定器を示すブロツク図である。マニユ
アル電源26は、ステツプ電圧電源23とは異な
る測定条件を設定し被測定物21のリーク状態を
観察する目的に用いる。第2図aおよびbの構成
では電流計22に流れる電流Iにより異なるドロ
ツプ電圧EVが生じるから、定められた電圧を被
測定物21へ正確に印加することは困難であつ
た。第4図aは、第2図の構成の欠点であるドロ
ツプ電圧EVを補正する機能を追加した従来例の
ブロツク図であり、電流計42を演算増幅48の
フイード・バツク・ループ内に含んで構成され
る。
Figure 2b shows a manual power supply 26 for the circuit shown in figure a.
12 is a block diagram showing another conventional leakage current measuring device in which a switching relay 27 is added and the switching relay 27 enables selection of the applied voltage. FIG. The manual power supply 26 is used for the purpose of setting measurement conditions different from those of the step voltage power supply 23 and observing the leak state of the object to be measured 21. In the configurations shown in FIGS. 2a and 2b, different drop voltages EV are generated depending on the current I flowing through the ammeter 22, so it is difficult to accurately apply a predetermined voltage to the object to be measured 21. FIG. 4a is a block diagram of a conventional example in which a function is added to correct the drop voltage EV , which is a drawback of the configuration shown in FIG. Consists of.

第4図bは第2図bの構成と同様にマニユアル
電源46を切り換えリレー47により選択し同じ
電流計42で測定する機能を加えた構成である
が、実際には演算増幅器48のフイード・バツ
ク・ループがオープンになることを防ぐ回路とし
てフイード・バツク・ループを切り換える回路が
必要である。
4b shows a configuration similar to the configuration shown in FIG. 2b, with the addition of the function of switching the manual power supply 46 and selecting it with a relay 47 and measuring it with the same ammeter 42, but in reality, the function of switching the manual power supply 46 and selecting it with the same ammeter 42 is added. - A circuit for switching the feed back loop is required to prevent the loop from becoming open.

(考案が解決しようとする問題点) 上述した従来のリーク電流測定器では、第2図
aおよびbの構成においては電流計22のドロツ
プ電圧EVがリーク電流Iによつて変化するから
被測定物21に印加する電圧ECを定められた電
圧に保つことが困難である。またこの欠点を補う
従来例の第4図aおよびbにおいて電流計42が
演算増幅器45のフイード・バツク・ループ内に
入つておりマニユアル電源46等の別電源から被
測定物へ測定出力を供給する際にフイード・バツ
ク・ループを切り換える必要があるという欠点が
あつた。
(Problems to be solved by the invention) In the conventional leakage current measuring device described above, in the configurations shown in FIGS. 2a and 2b, the drop voltage E V of the ammeter 22 changes depending on the leakage current I, It is difficult to maintain the voltage E C applied to the object 21 at a predetermined voltage. In addition, in the conventional example shown in FIGS. 4a and 4b, which compensates for this drawback, an ammeter 42 is included in the feed back loop of an operational amplifier 45, and supplies measurement output to the object under test from a separate power source such as a manual power source 46. The disadvantage was that it was necessary to switch the feed back loop when necessary.

(問題点を解決するための手段) 前述の問題点を解決するために本考案を提供す
る手段は、電気回路または電気素子からなる被測
定物の第1及び第2の端子の間に電圧を印加して
その被測定物のリーク電流を測定するリーク電流
測定装置であつて、電圧制御信号で示される指示
に従つて基準電位に対して階段状に変化する電圧
を出力するステツプ電圧電源と、電圧手動設定手
段を備えこの電圧手動設定手段に設定された大き
さであつて前記基準電位に対する電圧を出力する
手動設定電圧電源と、前記第2の端子と前記基準
電位との間に接続してある電流計と、前記第2の
端子の電圧を受けるボルテージフオロワと、この
ボルテージフオロワの出力電圧と前記ステツプ電
圧電源の出力電圧とを加算する電圧加算器と、こ
の電圧加算器の出力の電流を増幅する電流ブース
タと、この電流ブースタの出力電圧または前記手
動設定電圧電源の出力電圧のうちのいずれか一方
を電圧選択信号に応じて選択して前記第1の端子
に導く電圧選択手段と、前記電圧制御信号および
前記電圧選択信号を出力するコントローラとを備
えることを特徴とする。
(Means for Solving the Problems) Means for providing the present invention in order to solve the above-mentioned problems is to apply a voltage between the first and second terminals of an object to be measured consisting of an electric circuit or an electric element. a step voltage power supply that outputs a voltage that changes stepwise with respect to a reference potential according to instructions indicated by a voltage control signal, the leakage current measurement device measuring the leakage current of the measured object by applying voltage; A manually set voltage power source comprising a manual voltage setting means and outputting a voltage with a magnitude set in the manual voltage setting means and relative to the reference potential, and connected between the second terminal and the reference potential. an ammeter, a voltage follower that receives the voltage at the second terminal, a voltage adder that adds the output voltage of the voltage follower and the output voltage of the step voltage power supply, and an output voltage of the voltage adder. a current booster for amplifying current; and voltage selection means for selecting either the output voltage of the current booster or the output voltage of the manually set voltage power supply according to a voltage selection signal and guiding the selected one to the first terminal. , and a controller that outputs the voltage control signal and the voltage selection signal.

(実施例) 次に、本考案の実施例について図面を参照して
詳細に説明する。
(Example) Next, an example of the present invention will be described in detail with reference to the drawings.

第1図は本考案の一実施例を示すブロツク図で
ある。
FIG. 1 is a block diagram showing one embodiment of the present invention.

ステツプ電圧電源13は電圧を外部信号により
一定のステツプを変える電源であり、電流計12
は被測定物11と接地の間に接続され、ボルテイ
ジ・フオロワ18は電流計12に生じるドロツプ
電圧EVを入力したドロツプ電圧信号として出力
し、演算器19はステツプ電圧電源13の出力と
ボルテイジ・フオロワ18の出力とを加算し、ブ
ースタ20は演算器19の電圧出力を受け電流増
幅し、切り換えリレー17はマニユアル電源16
の出力とブースタ20の出力とを切り換え被測定
物11に供給し、コントローラ15はステツプ電
圧電源13に電圧制御信号115aを出力し切り
換えリレー17に電圧選択信号115bを送出す
る。ステツプ電圧電源13は、コントローラ15
から送出される電圧制御信号115aに従い定め
られたシーケンスで電圧値をステツプ状に、例え
ば第3図の波形図に従い出力電圧E(以下基準電
圧Eと称する)を発生する。電流計12は負極端
子を接地し正極端子を被測定物11の出力に接続
しており、被測定物11を流れるリーク電流Iに
内部抵抗Rを乗じた分がドロツプ電圧EV(=RI)
である。このドロツプ電圧EVを高入力インピー
ダンスを有するボルテイジ・フオロワ18で受け
ドロツプ電圧信号118として演算器19へ送
り、前記の基準電圧Eと加算する。加算した電圧
E+EVは、測定出力としての電流容量をブース
タ20で付与され、切り換えリレー17を通つて
被測定物11へ出力される。被測定物11の正極
端子の電圧は接地に対してE+EVであるから、
このE+EVから電流計12のドロツプ電圧EV(被
測定物11の負極端子の接地に対する電位)を差
し引かれた被測定物11の印加電圧ECは基準電
圧Eと一致する。コントルーラ15は、自動的に
定められたシーケンスでステツプ電圧電源13を
制御しているときは切り換えリレー17をブース
タ20側へ接続し、シーケンスが終了するとマニ
ユアル電源16側へ接続する。この実施例では、
ステツプ電圧電源13が出力する電圧条件と異な
る条件をマニユアル電源16により設定し、被測
定物11と電流計12との接続を変更することな
くリーク電流を測定しながら被測定物11のリー
ク状態を観察することができる。
The step voltage power supply 13 is a power supply that changes the voltage in fixed steps according to an external signal, and the ammeter 12
is connected between the object to be measured 11 and ground, the voltage follower 18 outputs the drop voltage E V generated in the ammeter 12 as an input drop voltage signal, and the arithmetic unit 19 inputs the drop voltage E V generated in the ammeter 12 and outputs it as a drop voltage signal. The booster 20 receives the voltage output from the arithmetic unit 19 and amplifies the current, and the switching relay 17 receives the voltage output from the arithmetic unit 19 and amplifies the current.
The controller 15 outputs a voltage control signal 115a to the step voltage power supply 13 and a voltage selection signal 115b to the switching relay 17. The step voltage power supply 13 is connected to the controller 15
The output voltage E (hereinafter referred to as reference voltage E) is generated stepwise in a voltage value according to a predetermined sequence in accordance with the voltage control signal 115a sent from the output voltage control signal 115a, for example, in accordance with the waveform diagram shown in FIG. The ammeter 12 has a negative terminal connected to the ground and a positive terminal connected to the output of the device under test 11, and the leakage current I flowing through the device 11 multiplied by the internal resistance R is the drop voltage E V (=RI).
It is. This drop voltage EV is received by a voltage follower 18 having a high input impedance and sent as a drop voltage signal 118 to an arithmetic unit 19, where it is added to the reference voltage E mentioned above. The added voltage E+ EV is given a current capacity as a measurement output by the booster 20, and is output to the object to be measured 11 through the switching relay 17. Since the voltage of the positive terminal of the object to be measured 11 is E+E V with respect to the ground,
The applied voltage E C of the object to be measured 11, which is obtained by subtracting the drop voltage E V of the ammeter 12 (the potential of the negative terminal of the object to be measured 11 with respect to the ground) from this E+E V , matches the reference voltage E. The controller 15 connects the switching relay 17 to the booster 20 side when controlling the step voltage power source 13 in an automatically determined sequence, and connects it to the manual power source 16 side when the sequence is completed. In this example,
By setting the voltage conditions different from the voltage conditions output by the step voltage power supply 13 using the manual power supply 16, the leak state of the DUT 11 can be checked while measuring the leakage current without changing the connection between the DUT 11 and the ammeter 12. can be observed.

(考案の効果) 以上説明したように本考案のリーク電流測定器
は、電流計12に生じるドロツプ電圧EVを基準
電圧Eに加算して出力することにより、被測定物
11に印加する電圧ECを基準電圧Eと一致させ
ることができる。そこで本考案の採用により測定
精度が向上するという効果が得られる。さらに、
本考案では電流計12が電圧加算器(演算増幅器
で構成される)のフイード・バツク・ループ内に
入つていないから、被測定物11と電流計12の
接続を変更することなく別の電流(実施例ではマ
ニユアル電源16)に切り換えて測定することが
できる。本考案にはこのような効果がある。
(Effects of the invention) As explained above, the leakage current measuring device of the invention adds the drop voltage E V generated in the ammeter 12 to the reference voltage E and outputs the resultant voltage E V to be applied to the object to be measured 11. C can be made to match the reference voltage E. Therefore, the adoption of the present invention has the effect of improving measurement accuracy. moreover,
In the present invention, since the ammeter 12 is not included in the feed back loop of the voltage adder (consisting of an operational amplifier), different currents can be measured without changing the connection between the device under test 11 and the ammeter 12. (In the embodiment, the manual power source 16) can be switched to perform measurement. The present invention has such effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示すブロツク図、
第2図a,bおよび第4図a,bは従来の例を示
すブロツク図、第3図はステツプ電圧電源の出力
電圧の一例を示す波形図である。 11,21,41……被測定物、12,22,
42……電流計、13,23,43……ステツプ
電圧電源、15,25,45……コントローラ、
16,26,46……マニユアル電源、17,2
7,47……切り換えリレー、18……ボルテイ
ジ・フオロワ、19……演算器(加算器)、20
……ブースタ、48……演算増幅器、E……基準
電圧(ステツプ電圧電源13の出力電圧)、EV
…電流計のドロツプ電圧、EC……被測定物への
印加電圧、I……リーク電流、TI……インター
バルタイム、TC……電圧印加時間、TM……測定
時間、VS……ステツプ電圧。
FIG. 1 is a block diagram showing an embodiment of the present invention.
2a and 2b and 4a and 4b are block diagrams showing conventional examples, and FIG. 3 is a waveform diagram showing an example of the output voltage of a step voltage power supply. 11, 21, 41...Object to be measured, 12, 22,
42... Ammeter, 13, 23, 43... Step voltage power supply, 15, 25, 45... Controller,
16,26,46...Manual power supply, 17,2
7, 47... Switching relay, 18... Voltage follower, 19... Arithmetic unit (adder), 20
...Booster, 48...Operation amplifier, E...Reference voltage (output voltage of step voltage power supply 13), EV ...
...Drop voltage of ammeter, E C ...Voltage applied to the object to be measured, I ... Leak current, T I ... Interval time, T C ... Voltage application time, T M ... Measurement time, V S ... ...step voltage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 電気回路または電気素子からなる被測定物の第
1及び第2の端子の間に電圧を印加してその被測
定物のリーク電流を測定するリーク電流測定装置
において、電圧制御信号で示される指示に従つて
基準電位に対して段階状に変化する電圧を出力す
るステツプ電圧電源と、電圧手動設定手段を備え
この電圧手動設定手段に設定された大きさであつ
て前記基準電位に対する電圧を出力する手動設定
電圧電源と、前記第2の端子と前記基準電位との
間に接続してある電流計と、前記第2の端子の電
圧を受けるボルテージフオロワと、このボルテー
ジフオロワの出力電圧と前記ステツプ電圧電源の
出力電圧とを加算する電圧加算器と、この電圧加
算器の出力の電流を増幅する電流ブースタと、こ
の電流ブースタの出力電圧または前記手動設定電
圧電源の出力電圧のうちのいずれか一方を電圧選
択信号に応じて選択して前記第1の端子に導く電
圧選択手段と、前記電圧制御信号および前記電圧
選択信号を出力するコントローラとを備えること
を特徴とするリーク電流測定装置。
In a leakage current measuring device that measures the leakage current of a device under test by applying a voltage between the first and second terminals of a device under test consisting of an electric circuit or an electric element, Therefore, there is a step voltage power supply that outputs a voltage that changes stepwise with respect to a reference potential, and a manual voltage power supply that is equipped with a manual voltage setting means and outputs a voltage that is of a magnitude set in the manual voltage setting means and is relative to the reference potential. A set voltage power supply, an ammeter connected between the second terminal and the reference potential, a voltage follower receiving the voltage of the second terminal, and an output voltage of the voltage follower and the step a voltage adder that adds the output voltage of the voltage power supply; a current booster that amplifies the output current of the voltage adder; and either the output voltage of the current booster or the output voltage of the manually set voltage power supply. A leakage current measuring device comprising: voltage selection means for selecting a voltage according to a voltage selection signal and guiding the voltage to the first terminal; and a controller for outputting the voltage control signal and the voltage selection signal.
JP5330687U 1987-04-07 1987-04-07 Expired - Lifetime JPH0539496Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5330687U JPH0539496Y2 (en) 1987-04-07 1987-04-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5330687U JPH0539496Y2 (en) 1987-04-07 1987-04-07

Publications (2)

Publication Number Publication Date
JPS63159776U JPS63159776U (en) 1988-10-19
JPH0539496Y2 true JPH0539496Y2 (en) 1993-10-06

Family

ID=30879247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5330687U Expired - Lifetime JPH0539496Y2 (en) 1987-04-07 1987-04-07

Country Status (1)

Country Link
JP (1) JPH0539496Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4659296B2 (en) * 2001-08-31 2011-03-30 日置電機株式会社 Method for measuring equivalent parallel resistance of power storage device
JP2006084249A (en) * 2004-09-15 2006-03-30 Hioki Ee Corp Method and apparatus for inspecting insulation

Also Published As

Publication number Publication date
JPS63159776U (en) 1988-10-19

Similar Documents

Publication Publication Date Title
US5448173A (en) Triple-probe plasma measuring apparatus for correcting space potential errors
JPH0539496Y2 (en)
KR970077879A (en) A system for monitoring the charging of a modular set of serially connected electrochemical cells, and a corresponding cell measuring module
JPH0694762A (en) Simple measuring method for insulation resistance
JPH0850931A (en) Charging state measurement device of electrochemical type battery
JP3461258B2 (en) Apparatus for measuring conductivity or pH
JP2671358B2 (en) Dynamometer controller
JP2565866Y2 (en) IC tester parallel connected device power supply
JPS625665Y2 (en)
JPH0132413Y2 (en)
JP2570113B2 (en) Line insulation resistance measurement method
JPS5828709Y2 (en) welding monitor
JPS6134474A (en) Testing of hysteresis range
JPH01193659A (en) Circuit for digital resistance measuring apparatus
SU943613A1 (en) Device for measuring eddy current time constant
JPH051824Y2 (en)
RU1810837C (en) Device for measuring voltage drop in terminals
JP2673639B2 (en) Voltage generator
JPH05340982A (en) Tester and testing method for pwm power amplifier
JPH02210275A (en) Storage battery reproducing device
JPH0426076A (en) Power unit for test and memory formation device therefor
JPH0546090Y2 (en)
JPH10221302A (en) Device of measuring dissolved oxygen and ph
JPH03221827A (en) Pressure sensor adjusting device
JPS62124465A (en) Detecting circuit for disconnection of analog input signal line