JPH051824Y2 - - Google Patents

Info

Publication number
JPH051824Y2
JPH051824Y2 JP18331584U JP18331584U JPH051824Y2 JP H051824 Y2 JPH051824 Y2 JP H051824Y2 JP 18331584 U JP18331584 U JP 18331584U JP 18331584 U JP18331584 U JP 18331584U JP H051824 Y2 JPH051824 Y2 JP H051824Y2
Authority
JP
Japan
Prior art keywords
resistor
under test
terminal
switch element
resistor under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18331584U
Other languages
Japanese (ja)
Other versions
JPS6197772U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18331584U priority Critical patent/JPH051824Y2/ja
Publication of JPS6197772U publication Critical patent/JPS6197772U/ja
Application granted granted Critical
Publication of JPH051824Y2 publication Critical patent/JPH051824Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 「産業上の利用分野」 この考案は例えば測温抵抗体の抵抗値を測定し
て温度を測定するような場合或はIC素子の端子
間直流抵抗を測定するような場合に用いる四線式
抵抗測定装置に関する。
[Detailed explanation of the invention] "Industrial field of application" This invention is applicable, for example, to measuring temperature by measuring the resistance value of a resistance temperature detector, or to measuring the DC resistance between the terminals of an IC element. This invention relates to a four-wire resistance measuring device used in various cases.

「従来技術」 第3図に従来の四線式抵抗測定装置を示す。図
中1は被測定抵抗器を示す。この被測定抵抗器1
は例えば側温抵抗体或は被試験ICの端子間抵抗
のようなものとすることができる。被測定抵抗体
1に対し抵抗測定装置2が接続される。抵抗測定
装置2と被測定抵抗器1の間は四本の導線3A,
3B,3C,3Dによつて接続される。四本の導
線3A〜3Dの中の二本3Aと3Bに定電流源4
を接続し、定電流源4から被測定抵抗器1に一定
の定電流Iを供給する。定電流源4の一端側、こ
の例では導線3Bの接続側を抵抗測定装置2の共
通電位点5に接続する。従つて一般に導線3Aと
3Bを電流供給線と呼んでいる。 導線3C及び
3Dは電圧検出線と呼ばれスイツチ素子6A,6
Bを介して共通接続し、高入力インピーダンス回
路7の入力端子Aに接続する。高入力インピーダ
ンス回路7は入力インピーダンスが高い演算増幅
器を用い、電圧検出線3C,3Dを介して定電流
源4から電流を取り込まない構造とするために用
いる。
``Prior Art'' Figure 3 shows a conventional four-wire resistance measuring device. In the figure, 1 indicates the resistor to be measured. This resistor to be measured 1
can be, for example, a side temperature resistor or a resistance between terminals of the IC under test. A resistance measuring device 2 is connected to the resistor 1 to be measured. Between the resistance measuring device 2 and the resistor to be measured 1 are four conductive wires 3A,
Connected by 3B, 3C, and 3D. Constant current source 4 is connected to two of the four conductors 3A to 3D, 3A and 3B.
A constant current I is supplied from the constant current source 4 to the resistor 1 to be measured. One end of the constant current source 4, in this example the connection side of the conductive wire 3B, is connected to the common potential point 5 of the resistance measuring device 2. Therefore, the conductors 3A and 3B are generally called current supply lines. Conductive wires 3C and 3D are called voltage detection wires and switch elements 6A and 6
A common connection is made via B, and connected to the input terminal A of the high input impedance circuit 7. The high input impedance circuit 7 uses an operational amplifier with high input impedance, and is used to create a structure that does not take in current from the constant current source 4 via the voltage detection lines 3C and 3D.

高入力インピーダンス回路7の後段には例えば
AD変換器8を設け、このAD変換器8により高
入力インピーダンス回路7から与えられる電圧値
をAD変換し、そのAD変換出力をデータ処理器
9に与え、データ処理器9においてデータ処理し
て温度値等に変換し、その温度値を表示する等に
利用される。データ処理器9は制御機能も有し、
第4図AとBに示す制御信号P1とP2を二つのス
イツチ素子6A,6Bに与えることにより、これ
ら二つのスイツチ素子6A,6Bを交互にオン、
オフ制御し、被測定抵抗体1の一端側(B点)と
他端側(C点)の電圧を高入力インピーダンス回
路7に与える制御を行なう。
For example, in the subsequent stage of the high input impedance circuit 7,
An AD converter 8 is provided, and the AD converter 8 performs AD conversion on the voltage value given from the high input impedance circuit 7.The AD conversion output is given to the data processor 9, where the data is processed and the temperature is It is used to convert into a value, etc. and display the temperature value. The data processor 9 also has a control function,
By applying the control signals P 1 and P 2 shown in FIG. 4A and B to the two switch elements 6A and 6B, these two switch elements 6A and 6B are turned on alternately.
OFF control is performed to apply voltages at one end (point B) and the other end (point C) of the resistor to be measured 1 to the high input impedance circuit 7.

このように高入力インピーダンス回路7によつ
て被測定抵抗器1のB点とC点の電圧をAD変換
器8に与える構造としたことにより電圧検出線3
Cと3Dが長くなつてもその線路抵抗の影響を受
けることなしに被測定抵抗器1の両端間の電位差
を正確に測定することができる。
In this way, by adopting a structure in which the voltages at points B and C of the resistor to be measured 1 are applied to the AD converter 8 using the high input impedance circuit 7, the voltage detection line 3
Even if C and 3D become longer, the potential difference between both ends of the resistor 1 to be measured can be accurately measured without being affected by the line resistance.

「考案が解決しようとする問題点」 ところで高入力インピーダンス回路7の入力端
子Aに浮遊容量Cが存在していたとすると、スイ
ツチ素子6Bがオンになつた場合は入力端子Aは
スイツチ素子6Bを通じて共通電位点5に接続さ
れる。このとき形成されるスイツチ6B−導線3
D−3B−共通電位点5の通路は低インピーダン
スであるため浮遊容量Cの充放電時定数は小さ
い。よつてスイツチ6Bがオンになるのとほとん
ど同時に入力端子Aの電位は被測定抵抗体1のC
点の電位と等しくなる。
``Problem that the invention attempts to solve'' By the way, if there is a stray capacitance C at the input terminal A of the high input impedance circuit 7, when the switch element 6B is turned on, the input terminal A is connected to the common input terminal A through the switch element 6B. Connected to potential point 5. Switch 6B-conducting wire 3 formed at this time
D-3B- Since the path of the common potential point 5 has low impedance, the charging/discharging time constant of the stray capacitance C is small. Therefore, almost at the same time as switch 6B turns on, the potential of input terminal A changes to C of resistor 1 to be measured.
It becomes equal to the potential at the point.

これに対しスイツチ6Aがオンになつたときは
浮遊容量Cに対する充放電電流通路は共通電位点
5−導線3B−被測定抵抗器1−導線3C−スイ
ツチ素子6Aの通路となる。このように浮遊容量
Cの充放電通路に被測定抵抗器1が直列に挿入さ
れるため被測定抵抗器1の抵抗値が大きい場合浮
遊容量Cに対する充放電時定数が大きくなり、第
4図Cに示すように入力端子Aの電位がB点の電
位に安定するまでに時間t1を要することとなる。
On the other hand, when the switch 6A is turned on, the charging/discharging current path for the stray capacitance C becomes a path from the common potential point 5 to the conductor 3B to the resistor to be measured 1 to the conductor 3C to the switch element 6A. In this way, since the resistor 1 to be measured is inserted in series in the charging/discharging path of the stray capacitance C, when the resistance value of the resistor 1 to be measured is large, the charging/discharging time constant for the stray capacitance C becomes large. As shown in Figure 2, it takes time t1 for the potential at input terminal A to stabilize to the potential at point B.

この結果AD変換器8におけるAD変換のタイ
ミングは時間t1が経過して入力端子Aの電位が安
定してからでなければならない。このため従来の
第4図Dに示すようにスイツチ素子6Aがオンに
なつたときのAD変換タイミングはスイツチ6A
がオンになつた時点から時間t1が経過した後に設
定される。
As a result, the AD converter 8 must perform AD conversion after time t1 has elapsed and the potential at the input terminal A has stabilized. Therefore, as shown in FIG. 4D in the conventional case, when the switch element 6A is turned on, the AD conversion timing is
It is set after the time t 1 has elapsed from the time when is turned on.

このように時間t1だけ持たなければならないか
らスイツチ6Aをオンにしておく時間TAが長く
なる。特に被測定抵抗器1の抵抗値が高抵抗の場
合、待ち時間t1はかなり大きい値となる。尚第4
図においてEはAD変換出力のタイミングを示
す。AD変換出力D1はスイツチ素子6Aがオンし
たときのAD変換出力である。これは被測定抵抗
器1のB点の電位に相当する。またAD変換出力
D2はスイツチ素子6BがオンのときAD変換出力
である。これは被測定抵抗器1のC点の電位に相
当する。
Since only the time t1 has to be maintained in this way, the time TA for which the switch 6A is kept on becomes longer. In particular, when the resistance value of the resistor 1 to be measured is high, the waiting time t 1 becomes a considerably large value. Furthermore, the fourth
In the figure, E indicates the timing of AD conversion output. The AD conversion output D1 is an AD conversion output when the switch element 6A is turned on. This corresponds to the potential at point B of the resistor 1 to be measured. Also AD conversion output
D2 is the AD conversion output when the switch element 6B is on. This corresponds to the potential at point C of the resistor 1 to be measured.

「問題点を解決するための手段」 この考案においては被測定抵抗器に定電流を流
し、被測定抵抗器の一端側と他端側に発生する電
圧を高入力インピーダンス回路を介して取り出
し、被測定抵抗器の両端間に発生する電位差を求
め、その電位差から被測定抵抗器の抵抗値を算出
するように構成した四線式抵抗測定装置におい
て、被測定抵抗器の非接地側の電圧を高入力イン
ピーダンス回路に与えるタイミングの初期のわず
かな時間高入力インピーダンス回路の入力端子を
インピーダンス変換回路を介して被測定抵抗器の
非接地側に接続するように構成したものである。
"Means for solving the problem" In this invention, a constant current is passed through the resistor under test, and the voltage generated at one end and the other end of the resistor under test is extracted through a high input impedance circuit. In a four-wire resistance measuring device configured to determine the potential difference that occurs between both ends of the resistor to be measured and calculate the resistance value of the resistor to be measured from that potential difference, the voltage on the non-grounded side of the resistor to be measured is increased. The input terminal of the high input impedance circuit is connected to the non-grounded side of the resistor under test via the impedance conversion circuit for a short period of time at the beginning of the timing applied to the input impedance circuit.

(作用) この考案による構成によれば被測定抵抗体の非
接地側の端部が高入力インピーダンス回路の入力
端子に接続されるタイミングの初期においてイン
ピーダンス変換器を介して高入力インピーダンス
回路の入力端子を被測定抵抗体の非接地側端子に
接続するものであるから、高入力インピーダンス
回路の入力端子に浮遊容量Cが存在していたとし
ても、インピーダンス変換器を通じて浮遊容量に
急速充電が行なわれる。
(Function) According to the configuration according to this invention, at the beginning of the timing when the non-grounded end of the resistor to be measured is connected to the input terminal of the high input impedance circuit, the input terminal of the high input impedance circuit is connected to the input terminal of the high input impedance circuit via the impedance converter. is connected to the non-grounded terminal of the resistor to be measured, so even if a stray capacitance C exists at the input terminal of the high input impedance circuit, the stray capacitance is rapidly charged through the impedance converter.

この結果被測定抵抗器1の非接地側の電位を取
り込むタイミングにおいて高入力インピーダンス
回路の入力点の電位は被測定点の電位に急速に変
化する。よつて被測定抵抗器1の抵抗値が高抵抗
の場合でも小さい待ち時間でAD変換動作を行な
わせることができる。
As a result, the potential at the input point of the high input impedance circuit rapidly changes to the potential at the point to be measured at the timing when the potential on the non-grounded side of the resistor 1 to be measured is taken in. Therefore, even if the resistance value of the resistor 1 to be measured is high, the AD conversion operation can be performed with a short waiting time.

「実施例」 第1図にこの考案の一実施例を示す。この第1
図の構成の大部分は従来の四線式抵抗測定装置と
同じである。この考案の特徴とする構成はスイツ
チ素子6Aと並列にインピーダンス変換器11と
スイツチ素子12とから成る直列回路を接続した
構造にある。
``Example'' Figure 1 shows an example of this invention. This first
Most of the configuration in the figure is the same as a conventional four-wire resistance measuring device. The feature of this invention is that a series circuit consisting of an impedance converter 11 and a switch element 12 is connected in parallel with the switch element 6A.

インピーダンス変換器11は演算増幅器を利得
が「1」の増幅器となるように帰還を掛け入力イ
ンピーダンスが高く入力インピーダンスが低いイ
ンピーダンス変換回路を用いた場合を示す。
The impedance converter 11 uses an impedance conversion circuit with high input impedance and low input impedance by applying feedback to an operational amplifier so that it becomes an amplifier with a gain of "1".

スイツチ素子12は第2図Cに示すようにスイ
ツチ素子6Aがオンになるタイミングの初期にお
いてわずかな時間オンに制御する。
The switch element 12 is controlled to be turned on for a short time at the beginning of the timing when the switch element 6A is turned on, as shown in FIG. 2C.

このように構成することによりスイツチ素子1
2がオンになるのと同時に浮遊容量Cにインピー
ダンス変換器11を通じて充放電が行なわれるた
めA点の電位は直ちに被測定抵抗器1のB点の電
位に変化する。
With this configuration, the switch element 1
At the same time that 2 turns on, the floating capacitance C is charged and discharged through the impedance converter 11, so the potential at point A immediately changes to the potential at point B of resistor 1 to be measured.

よつてAD変換器8のAD変換のタイミングは
第2図Eに示すようにスイツチ素子6Aがオンに
なつた時点からわずかな時間の後つまりスイツチ
素子12がオフになつた直後に設定することがで
きる。ここで特に浮遊容量Cにはインピーダンス
変換器11を通じて充放電電流が与えられるから
被測定抵抗器1の抵抗値が大きくてもその影響を
受けることなく短時間に浮遊容量Cの電圧をB点
の電圧に変化させることができる。
Therefore, the timing of AD conversion by the AD converter 8 can be set a short time after the switch element 6A is turned on, that is, immediately after the switch element 12 is turned off, as shown in FIG. 2E. can. In particular, since a charging/discharging current is applied to the stray capacitance C through the impedance converter 11, even if the resistance value of the resistor 1 to be measured is large, the voltage of the stray capacitance C can be changed from point B in a short time without being affected by it. It can be changed to voltage.

「考案の効果」 上述したようにこの考案によれば被測定抵抗器
1の抵抗値が大きくても高入力インピーダンス回
路7の入力端子Aの電位をスイツチ素子12がオ
ンになるのとほぼ同時に被測定抵抗器1の非接地
側の端子B点の電位に変化させることができる。
よつてAD変換のタイミングを大きく遅らせなく
て済むため測定の周期を短かい時間に設定するこ
とができる。この結果変化が厳しい温度等に追従
して高速度で測定データを取り込むことができ
る。
"Effect of the invention" As described above, according to this invention, even if the resistance value of the resistor under test 1 is large, the potential of the input terminal A of the high input impedance circuit 7 can be applied almost simultaneously when the switch element 12 is turned on. The potential can be changed to the potential at point B of the non-grounded terminal of the measuring resistor 1.
Therefore, it is not necessary to significantly delay the timing of AD conversion, and the measurement period can be set to a short time. As a result, it is possible to capture measurement data at high speed while following temperatures that are subject to severe changes.

また、ICの試験を行なう場合は試験時間を短縮
することができ単位時間当りの試験個数を多くす
ることができる利点が得られる。
Furthermore, when testing an IC, there is an advantage that the test time can be shortened and the number of test pieces per unit time can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案の一実施例を説明するための
接続図、第2図はこの考案による四線式抵抗測定
装置の動作を説明するための波形図、第3図は従
来の四線式抵抗測定装置を説明するための接続
図、第4図は従来の四線式抵抗測定装置の動作を
説明するための波形図である。 1……被測定抵抗器、2……抵抗測定器、3
A,3B……電流供給線3C,3D……電圧検出
線、4……定電流源、5……共通電位点、6A,
6B,12……スイツチ素子、7……高入力イン
ピーダンス回路、8……AD変換器、9……デー
タ処理器、C……浮遊容量、11……インピーダ
ンス変換器、A……高入力インピーダンス回路の
入力端子、B……被測定抵抗器の非接地側端子、
C……被測定抵抗器の接地側端子。
Figure 1 is a connection diagram for explaining one embodiment of this invention, Figure 2 is a waveform diagram for explaining the operation of the four-wire resistance measuring device according to this invention, and Figure 3 is a conventional four-wire resistance measuring device. A connection diagram for explaining the resistance measuring device, and FIG. 4 is a waveform diagram for explaining the operation of the conventional four-wire resistance measuring device. 1... Resistor to be measured, 2... Resistance measuring device, 3
A, 3B... Current supply line 3C, 3D... Voltage detection line, 4... Constant current source, 5... Common potential point, 6A,
6B, 12... Switch element, 7... High input impedance circuit, 8... AD converter, 9... Data processor, C... Stray capacitance, 11... Impedance converter, A... High input impedance circuit input terminal, B...non-grounded terminal of the resistor under test,
C... Ground side terminal of the resistor to be measured.

Claims (1)

【実用新案登録請求の範囲】 A 被測定抵抗器に一対の電流供給線を通じて定
電流を与え、一端が共通電位点に接続された定
電流源と、 B 被測定抵抗器の両端に発生する電圧を取り込
むための一対の電圧検出線と、 C この一対の電圧検出線によつて検出した電圧
を交互に時分割して高入力インピーダンス回路
の入力端子に取り出すための一対のスイツチ素
子と、 D 上記高入力インピーダンス回路に取り込んだ
二つの電圧を順次AD変換するAD変換器と、 E このAD変換器でAD変換した二つの電圧値
の差の値と上記定電流源から与えられる定電流
の値とから上記被測定抵抗体の抵抗値を算出す
るデータ処理器と、 F 上記被測定抵抗器の非接地側の端子と上記共
通端子との間に接続され上記被測定抵抗器の非
接地側の端子に接続されたスイツチ素子がオン
の状態に制御された直後のわずかな時間、オン
に制御されるスイツチ素子及びこのスイツチ素
子を通じて上記被測定抵抗体の非接地側端子の
電位を低インピーダンスで上記高入力インピー
ダンス回路の入力端子に与えるインピーダンス
変換回路と、 によつて構成したことを特徴とする四線式抵抗測
定装置。
[Claims for Utility Model Registration] A. A constant current source that applies a constant current to the resistor under test through a pair of current supply lines, one end of which is connected to a common potential point, and B. A voltage generated across the resistor under test. A pair of voltage detection lines for taking in the voltage, C A pair of switch elements for alternately time-sharing the voltage detected by the pair of voltage detection lines and taking it out to the input terminal of the high input impedance circuit, D The above. An AD converter that sequentially AD converts two voltages input into a high input impedance circuit; a data processor that calculates the resistance value of the resistor under test from F, a terminal on the non-ground side of the resistor under test connected between the non-ground terminal of the resistor under test and the common terminal Immediately after the switch element connected to is controlled to be on, the potential of the non-grounded terminal of the resistor under test is changed to the above high level with low impedance through the switch element that is controlled to be on and this switch element. A four-wire resistance measuring device comprising: an impedance conversion circuit that applies to an input terminal of an input impedance circuit;
JP18331584U 1984-12-03 1984-12-03 Expired - Lifetime JPH051824Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18331584U JPH051824Y2 (en) 1984-12-03 1984-12-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18331584U JPH051824Y2 (en) 1984-12-03 1984-12-03

Publications (2)

Publication Number Publication Date
JPS6197772U JPS6197772U (en) 1986-06-23
JPH051824Y2 true JPH051824Y2 (en) 1993-01-18

Family

ID=30740821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18331584U Expired - Lifetime JPH051824Y2 (en) 1984-12-03 1984-12-03

Country Status (1)

Country Link
JP (1) JPH051824Y2 (en)

Also Published As

Publication number Publication date
JPS6197772U (en) 1986-06-23

Similar Documents

Publication Publication Date Title
JPH051824Y2 (en)
JPH0752622Y2 (en) Voltage applied current measuring instrument
JPH0438303Y2 (en)
JPH0641174Y2 (en) Voltage-current measuring device
JP3003056B2 (en) Self-diagnosis circuit
JP3461258B2 (en) Apparatus for measuring conductivity or pH
JPS6230971A (en) Semiconductor integrated circuit device
SU1018044A1 (en) Electric radio component parameter automatic measuring device
JP2553945B2 (en) Conductivity and resistivity measuring device
JPH0539496Y2 (en)
SU1239651A1 (en) Device for measuring current noises of reactive structures
JPH0533977Y2 (en)
JPH0524222Y2 (en)
JPH0827307B2 (en) Printed wiring board test equipment
JPS633222Y2 (en)
JPS5852543Y2 (en) Poor contact detection device
SU1606115A1 (en) Rheoplethysmograph
JPS5825353Y2 (en) Micro resistance change measuring device
SU1580283A1 (en) Digital ohmmeter
SU1425558A1 (en) Electrical resistance simulator
JPH09145748A (en) Electric current measuring instrument
JPS6142138Y2 (en)
SU1250992A1 (en) Device for contactless determining of location of break of current conductive track of lacquered printed-circuit board
JPH05870Y2 (en)
JPH0375059B2 (en)