JP3469369B2 - Electric measuring instrument - Google Patents

Electric measuring instrument

Info

Publication number
JP3469369B2
JP3469369B2 JP21662495A JP21662495A JP3469369B2 JP 3469369 B2 JP3469369 B2 JP 3469369B2 JP 21662495 A JP21662495 A JP 21662495A JP 21662495 A JP21662495 A JP 21662495A JP 3469369 B2 JP3469369 B2 JP 3469369B2
Authority
JP
Japan
Prior art keywords
value
measured
power supply
average
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21662495A
Other languages
Japanese (ja)
Other versions
JPH0943280A (en
Inventor
隆夫 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP21662495A priority Critical patent/JP3469369B2/en
Publication of JPH0943280A publication Critical patent/JPH0943280A/en
Application granted granted Critical
Publication of JP3469369B2 publication Critical patent/JP3469369B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はCPU(中央処理装
置)を備えた演算制御部等の微弱電流動作部から電源を
引き離すことのできる電気計測器に関する。 【0002】 【従来の技術】従来、実装基板等の良否を判定する場
合、インサーキットテスタ等の計測器を用いて、被測定
物の電気的測定を行なっている。その際、抵抗値等の真
値を直接測定することができない。何故なら、図6に示
すように実際の測定値は電源周波数の影響を受け、求め
るべき真値に電源周波数がノイズとして乗った状態の波
形となって変化しているからである。このような問題は
高抵抗測定器或いは高入力インピダンス測定器を使用す
る場合等にも同様に起きる。そこで、電源周波数を検出
するため、図7に示すような電源周波数検出回路を用い
ている。図中、10が電源周波数検出回路、12がその
商用交流電源、14が抵抗、16がサージアブソーバ、
18がダイオード、20が発光ダイオード22と受光ト
ランジスタ24とからなるフォトカプラである。なお、
フォトカプラ20を用いるのは電源12の側とCPUを
備えた演算制御部26等の微弱電流動作部の側とを絶縁
するためである。 【0003】このような電源周波数検出回路10を用い
ると、電源電圧を抵抗14で発光ダイオード22に印加
できる電圧レベルまで制限し、サージアブソーバ16で
電源に含まれるノイズを吸収し、ダイオード18によっ
て電源周波数の一周期の半波分を発光ダイオード22に
印加して受光トランジスタ24に伝達できる。すると、
電源周波数検出回路10の出力として、図8に示すよう
なパルス波形が発生するので、A−Dコンバータ28で
アナログ・デジタル変換した後、演算制御部26で
“H”の状態を読み取る。その際、電源周波数が60H
zか50Hzかによって1周期に相当するTの時間が異
なり、例えば60Hzの場合にはTが16.6ms、5
0Hzの場合には20msとなるので、演算制御部26
で電源周波数を判定できる。なお、演算制御部26に取
り込む電圧は低電圧例えば5Vに落す。そして、判定し
た電源周波数に基づき被測定物に対し、図9に示すよう
に一周期分の時間内をΔtの時間毎にサンプリングし
て、それ等のN回の測定値を平均化すると真値が求ま
る。尤も、電源周波数が60Hz或いは50Hzの場合
には測定値をアナログ−デジタル変換するA−Dコンバ
ータに積分形のものを使用すれば、60Hzでは6周
期、50Hzでは5周期に当る100ms間の測定信号
を積分することにより、先に電源周波数を求めることな
く真値を求めることができる。但し、この方法では測定
時間が100msと長くなり過ぎる。 【0004】 【発明が解決しようとする課題】しかしながら、このよ
うな電源周波数検出回路10を用いると、CPUを備え
た演算制御部26等の微弱電流動作部の近くに100V
等の商用交流電源12を引き込まなければならず、微弱
電流動作部が電源ノイズの影響を受けて誤動作し易くな
る。しかも、専用の電源周波数検出回路10を備えるこ
とにより、製品が高価になる。又、電源周波数検出不必
要型のものでは測定時間が長くなり過ぎる。 【0005】本発明はこのような従来の問題点に着目し
てなされたものであり、CPUを備えた演算制御部等の
微弱電流動作部が電源ノイズの影響を受け難く、製品も
安価で、測定時間の短い電気計測器を提供することを課
題とする。 【0006】 【課題を解決するための手段】上記課題を解決するため
の手段を、本発明を明示する図1を用いて説明する。こ
の電気計測器はその前段に、同一の被測定物に付き、任
意の時点、及びその任意時点から8.3ms後、10m
s後、16.6ms後の同種の各電気値を測定する測定
手段40を備えている。 【0007】そして、中段にその任意時点の測定値と
8.3ms後の測定値との平均値を算出し、更に8.3
ms後の測定値と16.6ms後の測定値との平均値を
算出する平均値算出手段42と、それ等の両平均値が等
しいか判定する平均値比較手段44とを備え、後段に両
平均値が等しい時、その平均値を真値と決定し、両平均
値が異なるとき、任意時点の測定値と10ms後の測定
値との平均値を算出して、その平均値を真値と決定する
真値決定手段46とを備えている。 【0008】 【発明の実施の形態】以下、添付図面に基づいて、本発
明の実施の形態を説明する。図2は本発明を適用したイ
ンサーキットテスタの測定時における機能構成を示すブ
ロック図である。図中、30が演算制御部、32が計測
部、34がスキャナ、36がA−Dコンバータ、38が
被測定物である。この演算制御部30は測定時に計測部
32、スキャナ34、A−Dコンバータ36等にそれぞ
れ制御信号を与えて測定を制御し、演算を実施する部分
であり、CPU、ROM(読取り専用メモリ)、RAM
(読取り書込み可能メモリ)等を備えている。 【0009】又、計測部32はスキャナ34を介して被
測定物38に定電圧を印加し、或いは定電流を流す等し
て種々の電気的測定を行なう部分であり、定電圧源、定
電流源等を備えている。又、スキャナ34は多数の被測
定物38の測定に当り、計測部32と多数の被測定物3
8を接続する測定用の電線を共通化し、順次被測定物3
8と切り換えて測定を行なう装置であり、多数のリレー
を備えている。A−Dコンバータ36は計測部32で測
定したアナログ値をデジタル値に変換して演算制御部3
0に与える装置である。因みに、被測定物38は抵抗、
コンデンサ、コイル等である。 【0010】次に、インサーキットテスタの測定時にお
ける動作を説明する。図3は演算制御部30に備えたR
AM或いはROM中に格納する真値決定処理プログラム
による動作を示すP1〜P11のステップからなるフロ
ーチャートである。測定に当っては、スキャナ34の各
測定用支線に接続されたプローブピン(図示なし)の先
端を多数の各被測定物38の指定箇所にそれぞれ接触す
る。そして、プログラムによる処理を開始し、測定を実
施しようとしている一つの被測定物38につき、先ずP
1で任意の時点t0 の電気的値M1 を測定する。その
際、演算制御部30により計測部32で発生した定電圧
値Vと測定した電流値Iから例えば抵抗値RをR=V/
Iの式より算出する。次にP2へ行き、同一の被測定物
38につき、その任意時点t0 から8.3ms後の同種
の電気的値M2 を測定する。 【0011】そして、更にP3へ行き、同様に測定して
任意時点t0 から10ms後の測定値M3 を得る。又、
P4へ行き、任意時点t0 から16.6ms後の測定値
M4を得る。このように、任意時点t0 から8.3m
s、10ms、16.6ms後の各測定値M2 、M3 、
M4 を得るのは、電源周波数が60Hzの場合に一周期
が16.6ms、半周期が8.3msであり、50Hz
の場合に一周期が20ms、半周期が10msであるこ
とを考慮したからである。そこで、図4により時間tの
経過に従って測定値Mをつらねた波形を用い、各測定時
点t0 、t0 +8.3ms、t0 +10ms、t0 +1
6.6msと各測定値M1 、M2 、M3 、M4 との対応
関係を示しておく。なお、がt0 、がt0 +8.3
ms、がt0 +10ms、がt0 +16.6msの
各時点である。 【0012】次にP5へ行き、任意時点t0 の測定値M
1 と任意時点t0 より8.3ms後の測定値M2 とから
それ等の平均値M12をM12=(M1 +M2 )/2の式よ
り算出する。次にP6へ行き、任意時点t0 より8.3
ms後の測定値M2 と任意時点t0 より16.6ms後
の測定値M4 とからそれ等の平均値M24をM24=(M2
+M4 )/2の式より算出する。次にP7へ行き、それ
等の両平均値M12、M24が等しいか判定する。 【0013】すると、図5に示すように測定値M1 とM
4 が等しい場合、電源周波数は60Hzであり、YEs
と判定される。そこで、P8へ行き、電源周波数は60
Hzと決定する。次にP9へ行き、先のステップP5で
算出した平均値M12を真値M0 と決定する。なお、平均
値M24を真値M0 と決定してもよい。NOの場合、電源
周波数は50Hzであり、P10へ行き、電源周波数は5
0Hzと決定する。次にP11へ行き、任意時点t0 の
測定値M1 と10ms後の測定値M3 とからそれ等の平
均値M13をM13=(M1 +M3 )/2の式より算出し、
その平均値M13を真値M0 と決定する。なお、必ずしも
P8、P10のステップを設けて電源周波数を決定する
必要なく、P7の判定結果に基づいて、直接真値M0 を
求めてもよい。 【0014】 【発明の効果】以上説明した本発明によれば、電源周波
数が分からなくても4回のサンプリングで真値を求める
ことができる。それ故、専用の電源周波数検出回路等を
必要とせず、ノイズ源たる商用交流電源を微弱電流動作
部から引き離すことが可能になり、測定精度が向上す
る。又、製品が安価となり、測定時間も短くなる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric measuring instrument capable of separating a power supply from a weak current operating section such as an arithmetic control section having a CPU (Central Processing Unit). 2. Description of the Related Art Conventionally, when determining the quality of a mounting board or the like, an electric measurement of an object to be measured is performed using a measuring instrument such as an in-circuit tester. At this time, a true value such as a resistance value cannot be directly measured. This is because, as shown in FIG. 6, the actual measured value is affected by the power supply frequency and changes as a waveform in which the power supply frequency is superimposed on the true value to be obtained as noise. Such a problem similarly occurs when a high resistance measuring instrument or a high input impedance measuring instrument is used. Therefore, in order to detect the power supply frequency, a power supply frequency detection circuit as shown in FIG. 7 is used. In the figure, 10 is a power frequency detection circuit, 12 is the commercial AC power supply, 14 is a resistor, 16 is a surge absorber,
Reference numeral 18 denotes a diode, and reference numeral 20 denotes a photocoupler including a light emitting diode 22 and a light receiving transistor 24. In addition,
The reason for using the photocoupler 20 is to insulate the side of the power supply 12 from the side of the weak current operation unit such as the arithmetic control unit 26 having the CPU. When such a power supply frequency detecting circuit 10 is used, the power supply voltage is limited to a voltage level which can be applied to the light emitting diode 22 by the resistor 14, the noise contained in the power supply is absorbed by the surge absorber 16, and the power supply voltage is A half-wave of one cycle of the frequency can be applied to the light emitting diode 22 and transmitted to the light receiving transistor 24. Then
Since a pulse waveform as shown in FIG. 8 is generated as an output of the power supply frequency detection circuit 10, the analog-to-digital conversion is performed by the AD converter 28, and the “H” state is read by the arithmetic control unit 26. At that time, the power frequency is 60H
The time of T corresponding to one cycle differs depending on whether z or 50 Hz. For example, in the case of 60 Hz, T is 16.6 ms, 5
In the case of 0 Hz, the time is 20 ms.
Can be used to determine the power supply frequency. The voltage taken into the arithmetic control unit 26 is reduced to a low voltage, for example, 5V. Then, based on the determined power supply frequency, the DUT is sampled at intervals of Δt for one cycle as shown in FIG. 9 and the measured values of N times are averaged to obtain a true value. Is found. However, when the power supply frequency is 60 Hz or 50 Hz, if an integral type is used for the A / D converter for converting the measured value from analog to digital, a measurement signal for 100 ms corresponding to 6 cycles at 60 Hz and 5 cycles at 50 Hz , The true value can be obtained without first obtaining the power supply frequency. However, in this method, the measurement time is too long, such as 100 ms. [0004] However, when such a power supply frequency detecting circuit 10 is used, a voltage of 100 V near a weak current operating unit such as an arithmetic control unit 26 provided with a CPU.
In such a case, the commercial AC power supply 12 must be drawn in, and the weak current operation section is likely to malfunction due to the influence of power supply noise. Moreover, the provision of the dedicated power frequency detection circuit 10 makes the product expensive. On the other hand, when the power supply frequency detection is unnecessary, the measurement time is too long. The present invention has been made in view of such a conventional problem. A weak current operation section such as an arithmetic control section having a CPU is hardly affected by power supply noise, and the product is inexpensive. It is an object to provide an electric measuring instrument having a short measurement time. Means for solving the above problems will be described with reference to FIG. 1 which clearly shows the present invention. This electric measuring instrument is attached to the same DUT at an earlier stage, at an arbitrary time, and 8.3 ms after the arbitrary time, 10 m
A measuring means 40 is provided for measuring each electric value of the same kind after 16.6 ms after s. Then, in the middle, the average value of the measured value at that arbitrary point and the measured value after 8.3 ms is calculated, and 8.3 is further calculated.
An average value calculating means 42 for calculating an average value of the measured value after 1 ms and the measured value after 16.6 ms, and an average value comparing means 44 for judging whether or not the two average values are equal to each other are provided. When the average values are equal, the average value is determined as the true value, and when both average values are different, the average value of the measurement value at any time and the measurement value after 10 ms is calculated, and the average value is determined as the true value. And a true value determining means 46 for determining. Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 2 is a block diagram showing a functional configuration at the time of measurement of the in-circuit tester to which the present invention is applied. In the figure, 30 is an arithmetic control unit, 32 is a measuring unit, 34 is a scanner, 36 is an A / D converter, and 38 is an object to be measured. The arithmetic control unit 30 controls the measurement by giving control signals to the measuring unit 32, the scanner 34, the A / D converter 36, and the like at the time of measurement, and executes the arithmetic operation. The CPU, ROM (read only memory), RAM
(Read / write memory). The measuring section 32 is a section for performing various electrical measurements by applying a constant voltage to the device under test 38 via the scanner 34 or flowing a constant current thereto. Source. The scanner 34 measures a large number of objects 38 to be measured, and the measuring unit 32 and the large number of objects 3
8 are connected in common, and the DUT 3
This is a device that performs measurement by switching to 8 and has many relays. The A / D converter 36 converts the analog value measured by the measuring unit 32 into a digital value and converts the analog value into a digital value.
It is a device that gives 0. Incidentally, the measured object 38 is a resistor,
Capacitors, coils and the like. Next, the operation of the in-circuit tester at the time of measurement will be described. FIG.
It is a flowchart consisting of steps P1 to P11 showing an operation by a true value determination processing program stored in an AM or a ROM. In the measurement, the tips of probe pins (not shown) connected to the respective measurement branch lines of the scanner 34 come into contact with designated positions of a large number of the DUTs 38, respectively. Then, the processing by the program is started, and P is first set for one DUT 38 to be measured.
At step 1, the electric value M1 at an arbitrary time point t0 is measured. At this time, for example, the resistance value R is calculated from the constant voltage value V generated in the measurement unit 32 by the arithmetic control unit 30 and the measured current value I as R = V /
It is calculated from the formula of I. Next, the flow goes to P2, and the same electric value M2 of the same DUT 38 is measured 8.3 ms after the arbitrary time t0. Then, the process goes to P3, and the same measurement is performed to obtain a measured value M3 10 ms after the arbitrary time t0. or,
Go to P4 to obtain the measured value M4 16.6 ms after the arbitrary time t0. Thus, 8.3 m from the arbitrary time point t0
s, 10 ms, and 16.6 ms, the measured values M2, M3,
M4 is obtained when one cycle is 16.6 ms, half cycle is 8.3 ms when the power supply frequency is 60 Hz, and 50 Hz
In this case, it is considered that one cycle is 20 ms and a half cycle is 10 ms. Therefore, using the waveform obtained by plotting the measured value M as the time t elapses as shown in FIG.
The correspondence between 6.6 ms and each of the measured values M1, M2, M3, M4 is shown. Note that is t0, and t0 + 8.3.
ms, t0 + 10 ms, and t0 + 16.6 ms, respectively. Next, the flow goes to P5, where the measured value M at an arbitrary time t0 is obtained.
From 1 and the measured value M2 8.3 ms after the arbitrary time point t0, the average value M12 of them is calculated by the formula of M12 = (M1 + M2) / 2. Next, go to P6, and 8.3 from an arbitrary time point t0.
From the measured value M2 after ms and the measured value M4 16.6 ms after the arbitrary point in time t0, the average value of those values M24 is calculated as M24 = (M2
+ M4) / 2. Next, the process goes to P7, and it is determined whether the average values M12 and M24 are equal. Then, as shown in FIG. 5, the measured values M1 and M
4 are equal, the power supply frequency is 60 Hz and YEs
Is determined. Then, go to P8 and set the power frequency to 60
Hz. Next, the process goes to P9, and the average value M12 calculated in the previous step P5 is determined as the true value M0. Note that the average value M24 may be determined as the true value M0. If NO, the power frequency is 50 Hz, go to P10, and the power frequency is 5
Determine to be 0 Hz. Next, the process goes to P11, and from the measured value M1 at an arbitrary time point t0 and the measured value M3 after 10 ms, an average value M13 thereof is calculated from the equation of M13 = (M1 + M3) / 2.
The average value M13 is determined as the true value M0. It is not always necessary to determine the power supply frequency by providing steps P8 and P10, and the true value M0 may be directly obtained based on the determination result of P7. According to the present invention described above, a true value can be obtained by four samplings without knowing the power supply frequency. Therefore, it is not necessary to use a dedicated power supply frequency detection circuit or the like, and it is possible to separate the commercial AC power supply, which is a noise source, from the weak current operation unit, thereby improving measurement accuracy. In addition, the cost of the product is reduced and the measurement time is shortened.

【図面の簡単な説明】 【図1】本発明による電気計測器の構成を示すブロック
図である。 【図2】本発明を適用したインサーキットテスタの測定
時における機能構成を示すブロック図である。 【図3】同インサーキットテスタの演算制御部に備えた
メモリに格納する真値決定処理プログラムによる動作を
示すフローチャートである。 【図4】同インサーキットテスタによる測定値波形につ
き、各指定した測定時点と各測定値との対応関係を示す
図である。 【図5】同インサーキットテスタによる電源周波数が6
0Hzの場合の測定値波形につき、任意時点の測定点値
と16.6ms後の測定値とが等しいことを示す図であ
る。 【図6】電源周波数の影響を受けた実際の測定波形と求
めるべき測定値である真値との関係を示す図である。 【図7】従来の測定に必要な電源周波数を検出する専用
回路とその電源周波数を取り込む演算制御部との接続関
係を示す図である。 【図8】同電源周波数検出回路の出力波形を示す図であ
る。 【図9】一周期分の測定波形につき、真値を求めるため
に実施するサンプリング時点を示す図である。 【符号の説明】 30…演算制御部 32…計測部 34…スキャナ 3
6…A−Dコンバータ38…被測定物 40…測定手段
42…平均値算出手段 44…平均値比較手段 46
…真値決定手段
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of an electric measuring instrument according to the present invention. FIG. 2 is a block diagram showing a functional configuration at the time of measurement of an in-circuit tester to which the present invention is applied. FIG. 3 is a flowchart showing an operation according to a true value determination processing program stored in a memory provided in an arithmetic control unit of the in-circuit tester. FIG. 4 is a diagram showing a correspondence relationship between each designated measurement time point and each measured value for a measured value waveform by the in-circuit tester. FIG. 5 shows a power supply frequency of 6 using the in-circuit tester.
It is a figure which shows that the measured value at an arbitrary point and the measured value after 16.6 ms are equal about the measured value waveform in the case of 0 Hz. FIG. 6 is a diagram showing a relationship between an actual measurement waveform affected by a power supply frequency and a true value which is a measurement value to be obtained. FIG. 7 is a diagram showing a connection relationship between a conventional dedicated circuit for detecting a power supply frequency required for measurement and an arithmetic control unit for capturing the power supply frequency. FIG. 8 is a diagram showing an output waveform of the power supply frequency detection circuit. FIG. 9 is a diagram showing sampling points performed to obtain a true value for a measurement waveform for one cycle. [Explanation of Symbols] 30: arithmetic control unit 32: measuring unit 34: scanner 3
6 ... A / D converter 38 ... DUT 40 ... Measurement means 42 ... Average value calculation means 44 ... Average value comparison means 46
… True value determination means

Claims (1)

(57)【特許請求の範囲】 【請求項1】 同一の被測定物につき、任意の時点、及
びその任意時点から8.3ms後、10ms後、16.
6ms後の同種の各電気値を測定する測定手段と、その
任意時点の測定値と8.3ms後の測定値との平均値を
算出し、更に8.3ms後の測定値と16.6ms後の
測定値との平均値を算出する平均値算出手段と、それ等
の両平均値が等しいか判定する平均値比較手段と、その
両平均値が等しい時、平均値を真値と決定し、両平均値
が異なる時、任意時点の測定値と10ms後の測定値と
の平均値を算出して、その平均値を真値と決定する真値
決定手段とを備えることを特徴とする電気計測器。
(57) [Claims 1] Regarding the same DUT, at an arbitrary time, and 8.3 ms, 10 ms, and 16.
A measuring means for measuring each electric value of the same kind after 6 ms, an average value of the measured value at any time point and the measured value after 8.3 ms is calculated, and the measured value after 8.3 ms and 16.6 ms after The average value calculation means for calculating the average value of the measured values, and the average value comparison means for determining whether both average values are equal, and when both average values are equal, determine the average value as a true value, When the two average values are different, an electric measurement characterized by comprising a true value determining means for calculating an average value of a measured value at an arbitrary time point and a measured value after 10 ms and determining the average value as a true value. vessel.
JP21662495A 1995-08-02 1995-08-02 Electric measuring instrument Expired - Lifetime JP3469369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21662495A JP3469369B2 (en) 1995-08-02 1995-08-02 Electric measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21662495A JP3469369B2 (en) 1995-08-02 1995-08-02 Electric measuring instrument

Publications (2)

Publication Number Publication Date
JPH0943280A JPH0943280A (en) 1997-02-14
JP3469369B2 true JP3469369B2 (en) 2003-11-25

Family

ID=16691357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21662495A Expired - Lifetime JP3469369B2 (en) 1995-08-02 1995-08-02 Electric measuring instrument

Country Status (1)

Country Link
JP (1) JP3469369B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179012A (en) * 2014-03-19 2015-10-08 日置電機株式会社 Frequency detection device and measurement device

Also Published As

Publication number Publication date
JPH0943280A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
JP2889227B2 (en) Method and device for measuring current in a conductor
JPS61292067A (en) Method for measuring electric energy
JP3469369B2 (en) Electric measuring instrument
JP4222678B2 (en) Current measuring device
JP2002055128A (en) Ac signal measuring instrument
JP3281163B2 (en) Current measuring device and method
JPH0645909Y2 (en) IC test equipment
JP3577912B2 (en) Electronic circuit inspection equipment
JP3494942B2 (en) Integrated semiconductor circuit
JPH05297038A (en) Grounding-resistance testing instrument
KR0121568B1 (en) Current/voltage test circuit in circuit tester
JP2001066334A (en) Low-resistance measuring instrument and circuit board inspecting device
CN108414824A (en) A kind of electric current detecting method and device
JPH0634705Y2 (en) IC test equipment
SU1170376A1 (en) Device for measuring instability of electric contast resistance
JPH073352Y2 (en) Measuring device equipped with an AC voltage source having a waveform control function
JPS60201265A (en) Insulation resistance tester
JPH0546505B2 (en)
SU978069A1 (en) Method of checking devices for measuring resistance of electrical circuits under voltage
JPH0342560Y2 (en)
Avallone et al. A digital technique based on real-time error compensation for high accuracy power measurement on variable speed drives
SU1140062A2 (en) Device for checking electrical circuit insulation condition
JP2541595Y2 (en) IC test equipment
RU2039364C1 (en) Induction motor current monitoring process
SU712777A1 (en) Resistance measuring method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term