JPS63292567A - Manufacture of cell with lead terminal - Google Patents

Manufacture of cell with lead terminal

Info

Publication number
JPS63292567A
JPS63292567A JP62127671A JP12767187A JPS63292567A JP S63292567 A JPS63292567 A JP S63292567A JP 62127671 A JP62127671 A JP 62127671A JP 12767187 A JP12767187 A JP 12767187A JP S63292567 A JPS63292567 A JP S63292567A
Authority
JP
Japan
Prior art keywords
laser
welding
wavelength
battery
lead terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62127671A
Other languages
Japanese (ja)
Inventor
Tomoya Murata
村田 知也
Yoshiro Harada
吉郎 原田
Yasuhiro Ishiguro
康裕 石黒
Hideaki Nagura
名倉 秀哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP62127671A priority Critical patent/JPS63292567A/en
Publication of JPS63292567A publication Critical patent/JPS63292567A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To facilitate the positioning work at the time of welding and improve the reliability of the work by performing the laser welding with YAG double harmonic laser with the wavelength of 0.53 mum. CONSTITUTION:In producing a cell with lead terminal laser-welded with one end of a current extracting lead terminal 9 on the cell terminal face, the laser welding is performed with YAG double harmonic laser with the wavelength of 0.53mum. The wavelength of laser rays 10 is 0.53mum, thus an objective lens 7 with the double focal distance can be used to obtain the same spot diameter as that obtained with the wavelength of 1.06mum in the past. The divergent angle of the laser rays 10 radiated from the objective lens 7 to the cell 3 terminal face is made half, and the output change of the laser rays 10 by positions is decreased. The optimum welding range in the vertical direction is thereby expanded, not so high positioning precision is required, and the degree of dispersion of the welding strength due to displacement is reduced.

Description

【発明の詳細な説明】 −〈産業上の利用分野〉 この発明は、プリント基板などへの直付は用のリード端
子をその端子面に溶接してなるリード端子付き電池の製
造方法に関するものである。
[Detailed Description of the Invention] - <Industrial Application Field> The present invention relates to a method for manufacturing a battery with lead terminals, which is made by welding lead terminals for direct attachment to a printed circuit board, etc. to the terminal surface thereof. be.

〈従来の技術〉 上記リード端子付き電池は、ICメモリのバックアップ
用電源などとして用いられ、偏平形電池や円筒形電池な
どの電池の端子面(0,2〜0.3mm厚程度の金属板
などでできたリード端子の一端部をレーザ溶接などで直
接固着し、またリード端子の他端部は基板端子穴にはん
だ付けすることで、長期に亘って安定に動作させる構造
が取られている。このようにリード端子をレーザ溶接す
る場合は、通常、電池端子面にリード端子の一端部を密
着させて載置し、この状態で上部よりレーザ光をリード
端子の溶接個所に当て、この溶接個所を瞬間的に高温に
加熱し溶融させる方法が用いられている。上記レーザ溶
接において、従来は、波長1.06μmのレーザ光を発
するYAGレーザを用い、これと例えば焦点距離i o
ommの対物レンズを組合せ、このレンズによってYA
Gレーザからのレーザ光を電池端子面近傍で収束させる
構成としている。
<Prior art> The above-mentioned lead terminal-equipped battery is used as a backup power source for IC memory, etc. One end of the lead terminal made of is directly fixed by laser welding or the like, and the other end of the lead terminal is soldered to the terminal hole of the board, so that it can operate stably over a long period of time. When laser welding lead terminals in this way, normally one end of the lead terminal is placed in close contact with the battery terminal surface, and in this state a laser beam is applied from above to the welding point of the lead terminal. In the above laser welding, conventionally, a YAG laser that emits a laser beam with a wavelength of 1.06 μm is used, and a YAG laser that emits a laser beam with a wavelength of 1.06 μm is used.
Combined with an omm objective lens, this lens allows YA
The configuration is such that the laser light from the G laser is focused near the battery terminal surface.

〈発明が解決しようとする問題点〉 しかしながら、上記した従来の方法では、例えば上記の
焦点距離ioommの対物レンズを用いた場合、上下方
向での最適溶接範囲は大体±0.2mm程度と非常に狭
い。そして、この種のリード端子付き電池では、例えば
偏平形リチウム電池を用いた場合、リード嫡子及び/ま
たは電池の端子板や電池缶の厚さがいずれも0.3mm
以下とかなり薄いため、対物レンズからの電池の位置ず
れによる溶接不良が生じ易い。また、このため、極めて
高い位置決め精度が要求され、また溶接強度のばらつき
が大きいという問題がある。
<Problems to be Solved by the Invention> However, in the conventional method described above, for example, when the objective lens with the focal length ioomm is used, the optimal welding range in the vertical direction is approximately ±0.2 mm, which is very large. narrow. In this type of battery with lead terminals, for example, when a flat lithium battery is used, the thickness of the lead heir and/or battery terminal plate and battery can are all 0.3 mm.
Since the battery is quite thin, welding defects are likely to occur due to misalignment of the battery from the objective lens. Moreover, for this reason, extremely high positioning accuracy is required, and there is a problem in that there are large variations in welding strength.

〈問題点を解決するための手段〉 この発明のリード端子付き電池の製造方法は、電流取出
し用のリード端子の一端部を電池端子面にレーザ溶接し
てなるリード端子付き電池の製造方法において、前記レ
ーザ溶接を波長0.53μmのYAG2倍高調波レーザ
で行なったことを要旨とする。
<Means for Solving the Problems> A method for manufacturing a battery with a lead terminal according to the present invention is a method for manufacturing a battery with a lead terminal in which one end of a lead terminal for taking out current is laser welded to a battery terminal surface. The gist is that the laser welding was performed using a YAG double harmonic laser with a wavelength of 0.53 μm.

また、上記レーザ溶接においては、YAG 2倍高周波
パルスレーザを用いるのが電池内部への熱影響がなく十
分な溶接強度が得られるので好ましい。
Further, in the laser welding described above, it is preferable to use a YAG double high frequency pulse laser because sufficient welding strength can be obtained without any thermal influence on the inside of the battery.

〈作 用〉 焦点距離Fの対物レンズを用いてレーザ光を電池嫡子面
上に集光させた場合、その最小スポット径dは、d=F
θ・・・■(θはレーザ光を光束として送る時の回折に
よる光束の開き角)で表わされる。また、この開き角θ
は、θ−λ/b・・・■(λはレーザ光の波長、bは光
束径)であるから、これら■、■式より、最小スポット
径d=F・λ/bとなる。そして、本発明に用いるレー
ザ光の波長は0,53μmであり、従来の1.06μm
に較べて半分であるので、上記従来方法と本発明の方法
とを較べた場合、従来の方法と同じスポット径を得るの
に本発明では焦点距離が2倍(例えば200mm )の
対物レンズを用いることができる。そして、この対物レ
ンズを用いれば、対物レンズから電池端子面方向へ照射
されるレーザ光の広がり角は半分となり、位置によるレ
ーザ光の出力変化が小さくなる。
<Function> When the laser beam is focused on the legitimate surface of the battery using an objective lens with a focal length of F, the minimum spot diameter d is d=F.
It is expressed as θ...■ (θ is the opening angle of the light beam due to diffraction when the laser beam is sent as a light beam). Also, this opening angle θ
is θ-λ/b...■ (λ is the wavelength of the laser beam, b is the beam diameter), so from these formulas 1 and 2, the minimum spot diameter d=F·λ/b. The wavelength of the laser beam used in the present invention is 0.53 μm, compared to the conventional wavelength of 1.06 μm.
Therefore, when comparing the conventional method and the method of the present invention, the present invention uses an objective lens with twice the focal length (for example, 200 mm) to obtain the same spot diameter as the conventional method. be able to. If this objective lens is used, the spread angle of the laser beam irradiated from the objective lens toward the battery terminal surface is halved, and the change in output of the laser beam due to position is reduced.

この結果、上下方向での最適溶接範囲が広がり、従来に
較べてそれ程高い位置決め精度は必要とせず、また位置
ずれによる溶接強度のばらつきの度合が低下する。
As a result, the optimal welding range in the vertical direction is widened, positioning accuracy that is not so high as compared to the conventional method is required, and the degree of variation in welding strength due to positional deviation is reduced.

また、上記レーザ溶接として、例えばパルスレーザ溶接
を用いた場合、連続発振タイプに較べて短時間に大出力
が得られ、内部への熱の影響がなく十分な溶接強度が得
られるメリットがある。
Further, when pulsed laser welding is used as the laser welding, for example, compared to a continuous wave type, a large output can be obtained in a short time, and sufficient welding strength can be obtained without the influence of heat on the inside.

〈実施例〉 以下にこの発明を偏平形リチウム電池を用いてなるリー
ド端子付き電池の製造方法に適用した実施例について説
明する。
<Example> An example in which the present invention is applied to a method of manufacturing a battery with lead terminals using a flat lithium battery will be described below.

第1図において、1は放電管、2はYAG結晶、3はミ
ラーであり、これらによってレーザ発振部が構成されて
いる。このレーザ発振部より出力されたレーザ光は、 Ba2 NaNb3 o15(グリーン素子)からなる
2倍高調波素子4を通過した後、ハーフミラ−5に達す
る。このハーフミラ−5ではレーザ光のうちの波長が1
.06μmの成分が反射されて除去され、波長が0.5
3μmのレーザ光のみが通過する。次に、この波長0.
53μmのレーザ光は反射板6によって図中下方向にそ
の向きを変え、リード端子9をその嫡子面に密着して設
けた偏平形リチウム電池8の上部に位置させた対物レン
ズ7に導かれ、この対物レンズ7によって上記リード端
子9の表面近傍に収束される。第2図はこの収束された
レーザ光10によりリード端子9が電池の負極端子面に
溶接される状態を示したもので、図中、11は電池缶、
12は正極合剤、13はセパレータ、14はリチウム負
極、15は封口ガスケット、16は端子板である。この
第2図に示した例では、リード端子9の表面のやや手前
でレーザ光10がその焦点を結ぶようにしてレーザ溶接
による電池内部への熱影響を最小限に抑え、電池性能の
低下を防ぐようにしである。そして、このレーザ光10
により、リード端子9及び端子板16の溶接部は瞬時に
加熱溶融して溶着し、レーザ光10の照射後は冷却・固
化して両者は溶接される。第3図はこのようなレーザ溶
接により作製したリード端子付き電池を示したもので、
この例ではリード端子9はその長手方向に2ケ所で端子
板16にレーザ溶接されている。
In FIG. 1, 1 is a discharge tube, 2 is a YAG crystal, and 3 is a mirror, which constitute a laser oscillation section. The laser beam output from this laser oscillation section reaches a half mirror 5 after passing through a double harmonic element 4 made of Ba2 NaNb3 o15 (green element). In this half mirror 5, the wavelength of the laser beam is 1
.. The wavelength of 0.06 μm is reflected and removed, and the wavelength becomes 0.5 μm.
Only 3 μm laser light passes through. Next, this wavelength 0.
The 53 μm laser beam is directed downward in the figure by a reflector 6 and guided to an objective lens 7 located above a flat lithium battery 8 with a lead terminal 9 in close contact with its normal surface. The objective lens 7 focuses the light near the surface of the lead terminal 9. FIG. 2 shows the state in which the lead terminal 9 is welded to the negative terminal surface of the battery by this focused laser beam 10. In the figure, 11 is a battery can;
12 is a positive electrode mixture, 13 is a separator, 14 is a lithium negative electrode, 15 is a sealing gasket, and 16 is a terminal plate. In the example shown in FIG. 2, the laser beam 10 is focused slightly in front of the surface of the lead terminal 9 to minimize the thermal effect on the inside of the battery due to laser welding and to prevent a decrease in battery performance. This is to prevent it. And this laser beam 10
As a result, the welded portions of the lead terminals 9 and the terminal plate 16 are instantaneously heated and melted and welded together, and after irradiation with the laser beam 10, they are cooled and solidified to weld the two. Figure 3 shows a battery with lead terminals fabricated by such laser welding.
In this example, the lead terminal 9 is laser welded to the terminal plate 16 at two locations in its longitudinal direction.

このような構成において、リード端子9が0、2mm厚
のニッケル板製で、また端子板16が0、25mm厚の
ステンレス製であり、更に上記の対物レンズ7としてそ
の焦点距離が200mmのものを用いた場合における図
中上下方向での最適溶接範囲は±0.4mmであった。
In such a configuration, the lead terminal 9 is made of a nickel plate with a thickness of 0.2 mm, the terminal plate 16 is made of stainless steel with a thickness of 0.25 mm, and the objective lens 7 has a focal length of 200 mm. The optimum welding range in the vertical direction in the figure when using this method was ±0.4 mm.

一方、従来のように波長1.06μmのレーザ光により
同様なスポット径で溶接を行なう場合は、焦点距離が1
00mmの対物レンズを用いる必要があり、その場合の
上下方向の最適溶接範囲は±0.2mmであるから、本
発明の構成とすることで上下方向における最適溶接範囲
が2倍となり、その分位置決めがし易く、また溶接強度
のバラつきが小さくなることは明らかである。
On the other hand, when performing welding with a similar spot diameter using a laser beam with a wavelength of 1.06 μm as in the past, the focal length is 1.
It is necessary to use a 0.00 mm objective lens, and in that case, the optimal welding range in the vertical direction is ±0.2 mm, so by adopting the configuration of the present invention, the optimal welding range in the vertical direction is doubled, and the positioning It is clear that the welding is easier to remove and the variation in welding strength is reduced.

〈発明の効果〉 以上のようにこの発明の製造方法によれば、レーザ溶接
時の最適溶接範囲が大きくなるため、溶接時の位置決め
がずっと楽になり、作業が容易化し、また作業の信頼性
が高まる。また、溶接強度のバラつきが小さくなるので
、製品自体の信頼性向上にも寄与する等の効果がある。
<Effects of the Invention> As described above, according to the manufacturing method of the present invention, the optimal welding range during laser welding becomes larger, making positioning during welding much easier, making the work easier, and improving the reliability of the work. It increases. Furthermore, since variations in welding strength are reduced, there are effects such as contributing to improving the reliability of the product itself.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の製造方法の説明図、第2図
はリード端子を電池端子面に溶接した状態の説明図、第
3図は実施例の方法により作製したリード端子付き電池
の斜視図である。 2・・・YAG結晶、4・・・2倍高調波素子、7・・
・対物レンズ、8・・・偏平形リチウム電池、9・・・
リード端子、10・・・レーザ光。
Fig. 1 is an explanatory diagram of the manufacturing method according to the embodiment of this invention, Fig. 2 is an explanatory diagram of the state in which the lead terminal is welded to the battery terminal surface, and Fig. 3 is an explanatory diagram of the battery with lead terminal manufactured by the method of the embodiment. FIG. 2...YAG crystal, 4...2nd harmonic element, 7...
・Objective lens, 8...Flat type lithium battery, 9...
Lead terminal, 10...laser light.

Claims (1)

【特許請求の範囲】 1、電流取出し用のリード端子の一端部を電池端子面に
レーザ溶接してなるリード端子付き電池の製造方法にお
いて、前記レーザ溶接を波長0.53μmのYAG2倍
高調波レーザで行なったことを特徴とするリード端子付
き電池の製造方法。 2、前記YAG2倍高調波レーザで使用する2倍高調波
素子としてBa_2NaNb_5O_1_5を用いるこ
とを特徴とする特許請求の範囲第1項記載の方法。 3、前記レーザ溶接される電池端子の板厚が0.3mm
以下であることを特徴とする特許請求の範囲第1項記載
の方法。 4、前記リード端子の板厚が0.3mm以下であること
を特徴とする特許請求の範囲第1項または第3項記載の
方法。 5、前記レーザ溶接がパルスレーザ溶接であることを特
徴とする特許請求の範囲第1項、第3項または第4項記
載の方法。
[Claims] 1. In a method for manufacturing a battery with a lead terminal in which one end of a lead terminal for taking out current is laser welded to a battery terminal surface, the laser welding is performed using a YAG double harmonic laser with a wavelength of 0.53 μm. A method for manufacturing a battery with lead terminals characterized by the method carried out in . 2. The method according to claim 1, characterized in that Ba_2NaNb_5O_1_5 is used as the double harmonic element used in the YAG double harmonic laser. 3. The thickness of the battery terminal to be laser welded is 0.3 mm.
A method according to claim 1, characterized in that: 4. The method according to claim 1 or 3, wherein the lead terminal has a thickness of 0.3 mm or less. 5. The method according to claim 1, 3 or 4, wherein the laser welding is pulsed laser welding.
JP62127671A 1987-05-25 1987-05-25 Manufacture of cell with lead terminal Pending JPS63292567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127671A JPS63292567A (en) 1987-05-25 1987-05-25 Manufacture of cell with lead terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127671A JPS63292567A (en) 1987-05-25 1987-05-25 Manufacture of cell with lead terminal

Publications (1)

Publication Number Publication Date
JPS63292567A true JPS63292567A (en) 1988-11-29

Family

ID=14965836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127671A Pending JPS63292567A (en) 1987-05-25 1987-05-25 Manufacture of cell with lead terminal

Country Status (1)

Country Link
JP (1) JPS63292567A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291846A (en) * 1990-04-06 1991-12-24 Matsushita Electric Ind Co Ltd Manufacture of battery with lead terminal
JP2004214674A (en) * 2003-01-06 2004-07-29 Unitek Miyachi Internatl Ltd Optical harmonics generation apparatus and method
JP2005347415A (en) * 2004-06-01 2005-12-15 Miyachi Technos Corp Electric part mounting method
JP2010086899A (en) * 2008-10-02 2010-04-15 Nippon Avionics Co Ltd Laser welding method of electrode terminal of coin type battery, and device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291846A (en) * 1990-04-06 1991-12-24 Matsushita Electric Ind Co Ltd Manufacture of battery with lead terminal
JP2004214674A (en) * 2003-01-06 2004-07-29 Unitek Miyachi Internatl Ltd Optical harmonics generation apparatus and method
JP2005347415A (en) * 2004-06-01 2005-12-15 Miyachi Technos Corp Electric part mounting method
JP2010086899A (en) * 2008-10-02 2010-04-15 Nippon Avionics Co Ltd Laser welding method of electrode terminal of coin type battery, and device therefor

Similar Documents

Publication Publication Date Title
CN102427909B (en) Method of manufacturig battery
JP5570396B2 (en) Welding method and welding apparatus
JP5105944B2 (en) Laser equipment
US4879450A (en) Laser welding technique
WO2001031719A1 (en) Method of producing lead storage batteries and jig for production thereof
JP2015144095A (en) Secondary battery manufacturing method
KR20110098672A (en) Method and arrangement for a firm bonding of materials
KR20040063806A (en) Green welding laser
US20200176749A1 (en) Producing a rechargeable battery
KR100471169B1 (en) Method of manufacturing a rectangular battery
JP2000133211A (en) Manufacture of square battery
JP2007167936A (en) Gold plating peeling method and gold plating peeling device
JPS63292567A (en) Manufacture of cell with lead terminal
JP4547855B2 (en) Method for manufacturing cylindrical battery
JP2008084803A (en) Manufacturing method of gastight battery
JP2014057986A (en) Laser welding method
KR20120051163A (en) Apparatus and method for welding of electrode of secondary battery
JP2019129126A (en) Method for manufacturing battery
JPH01143783A (en) Coaxial multi-focal point type laser beam converging device
JP6468175B2 (en) Manufacturing method of sealed container
JP2009071123A (en) Chip resistor manufacturing method
JP2000343254A (en) Laser beam line patterning method
Kancharla et al. Recent advances in fiber laser welding
CN219561844U (en) Slat crystal stress monitoring device
JPS6284889A (en) Method and device for laser welding