JP2008084803A - Manufacturing method of gastight battery - Google Patents

Manufacturing method of gastight battery Download PDF

Info

Publication number
JP2008084803A
JP2008084803A JP2006266750A JP2006266750A JP2008084803A JP 2008084803 A JP2008084803 A JP 2008084803A JP 2006266750 A JP2006266750 A JP 2006266750A JP 2006266750 A JP2006266750 A JP 2006266750A JP 2008084803 A JP2008084803 A JP 2008084803A
Authority
JP
Japan
Prior art keywords
laser
welding
battery
manufacturing
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006266750A
Other languages
Japanese (ja)
Inventor
Hiroshi Hosokawa
弘 細川
Haruhiko Yamamoto
晴彦 山本
Kenji Inagaki
健次 稲垣
Yasuhiro Yamauchi
康弘 山内
Yasutomo Taniguchi
恭朋 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006266750A priority Critical patent/JP2008084803A/en
Publication of JP2008084803A publication Critical patent/JP2008084803A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a gastight battery, in which an outer can made of an aluminum group metal can be sealed with a cover at a speed of 100 mm/s or higher by using a CW (continuous wave) type laser welding machine. <P>SOLUTION: In the manufacturing method of the sealed battery, in which an outer can made of an aluminum group metal is welded and sealed with a cover arranged at the opening of the outer can by irradiating a laser beam, the laser beam is of a CW type and the theoretical spot diameter of the beam is 0.1 mm or larger and 0.6 mm or smaller, and an output density is set to 5 kW/mm<SP>2</SP>or higher and 33 kW/mm<SP>2</SP>or lower. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続発振(CW:continuous wave)型レーザ溶接装置を用いて溶接した密閉型電池の製造方法に関し、特にCW型レーザ溶接装置を用いて100mm/s以上の高速でアルミニウム系金属製の外装缶と蓋板とを封じることができるようにした密閉型電池の製造方法に関する。   The present invention relates to a method for manufacturing a sealed battery welded using a continuous wave (CW) laser welding apparatus, and more particularly, an aluminum-based metal made at a high speed of 100 mm / s or more using a CW laser welding apparatus. The present invention relates to a method for manufacturing a sealed battery capable of sealing an outer can and a cover plate.

携帯型の電子機器の急速な普及に伴い、それに使用される電池への要求仕様は、年々厳しくなり、特に小型・薄型化、高容量でサイクル特性が優れ、性能の安定したものが要求されている。そして、二次電池分野では他の電池に比べて高エネルギー密度であるリチウム非水電解質二次電池が注目され、このリチウム非水電解質二次電池の占める割合は二次電池市場において大きな伸びを示している。   With the rapid spread of portable electronic devices, the required specifications for the batteries used for them are becoming stricter year by year, and in particular, small and thin, high capacity, excellent cycle characteristics, and stable performance are required. Yes. In the field of secondary batteries, lithium non-aqueous electrolyte secondary batteries, which have a higher energy density than other batteries, are attracting attention, and the proportion of lithium non-aqueous electrolyte secondary batteries shows a significant increase in the secondary battery market. ing.

このリチウム非水電解質二次電池は、主としてリチウムイオンの吸蔵放出が可能な黒鉛等の炭素質物を負極活物質とし、リチウム含有コバルト酸化物(LiCoO)、リチウム含有マンガン酸化物(LiMnO2、LiMn)等のリチウム含有遷移金属酸化物を正極活物質とするものが、小型軽量でかつ高容量な電池として広く使用されている。 This lithium non-aqueous electrolyte secondary battery mainly uses a carbonaceous material such as graphite capable of occluding and releasing lithium ions as a negative electrode active material, and includes lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing manganese oxide (LiMnO 2, LiMn). Those using lithium-containing transition metal oxides such as 2 O 4 ) as the positive electrode active material are widely used as small, light and high capacity batteries.

ところで、この種の非水電解質二次電池が使用される機器においては、電池を収容するスペースが角形(偏平な箱形)であることが多いことから、発電要素を角形外装缶に収容した角形の非水電解質二次電池が使用されることが多い。このような角形の密閉型非水電解質二次電池の一例を図面を用いて説明する。   By the way, in a device in which this type of non-aqueous electrolyte secondary battery is used, the space for storing the battery is often a rectangular shape (flat box shape). Non-aqueous electrolyte secondary batteries are often used. An example of such a square sealed nonaqueous electrolyte secondary battery will be described with reference to the drawings.

図5は、従来から作製されている角形の密閉型非水電解質二次電池を縦方向に切断して示す斜視図である。この非水電解質二次電池10は、正極板11と負極板12とがセパレータ13を介して巻回された偏平状の渦巻状電極体14を、角形の電池外装缶15の内部に収容し、蓋板16によって角形の電池外装缶15を密閉したものである。   FIG. 5 is a perspective view showing a conventional rectangular non-aqueous electrolyte secondary battery produced by cutting in the vertical direction. This nonaqueous electrolyte secondary battery 10 accommodates a flat spiral electrode body 14 in which a positive electrode plate 11 and a negative electrode plate 12 are wound via a separator 13 inside a rectangular battery outer can 15, A rectangular battery outer can 15 is sealed with a cover plate 16.

偏平状の渦巻状電極体14は、正極板11が最外周に位置して露出するように巻回されており、露出した最外周の正極板11は、正極端子を兼ねる角形の電池外装缶15の内面に直接接触し、電気的に接続されている。また、負極板12は、蓋板16の中央に形成され、絶縁体17を介して取り付けられた負極端子18に対して集電体19を介して電気的に接続されている。   The flat spiral electrode body 14 is wound so that the positive electrode plate 11 is exposed at the outermost periphery, and the exposed outermost positive electrode plate 11 is a rectangular battery outer can 15 that also serves as a positive electrode terminal. It is in direct contact with and electrically connected to the inner surface. The negative electrode plate 12 is electrically connected via a current collector 19 to a negative electrode terminal 18 formed at the center of the lid plate 16 and attached via an insulator 17.

そして、角形の電池外装缶15は、正極板11と電気的に接続されているので、負極板12と角形の電池外装缶15との短絡を防止するために、偏平状の渦巻状電極体14の上端と蓋板16との間に絶縁スペーサ20を挿入することにより、負極板12と角形の電池外装缶15とを電気的に絶縁状態にしている。   Since the rectangular battery outer can 15 is electrically connected to the positive electrode plate 11, in order to prevent a short circuit between the negative electrode plate 12 and the rectangular battery outer can 15, the flat spiral electrode body 14. By inserting the insulating spacer 20 between the upper end of the battery and the lid plate 16, the negative electrode plate 12 and the rectangular battery outer can 15 are electrically insulated.

この角形の非水電解質二次電池は、偏平状の渦巻状電極体14を角形の電池外装缶15内に挿入した後、蓋板16を角形の電池外装缶15の開口部にレーザ溶接し、その後電解液注入孔21から非水電解液を注液してこの電解液注入孔21を密閉することにより作製される。このような角形の密閉型非水電解質二次電池は、使用時のスペースの無駄が少なく、しかも電池性能や電池の信頼性が高いという優れた効果を奏するものである。   In this rectangular nonaqueous electrolyte secondary battery, after the flat spiral electrode body 14 is inserted into the rectangular battery outer can 15, the cover plate 16 is laser welded to the opening of the rectangular battery outer can 15. Thereafter, a non-aqueous electrolyte is injected from the electrolyte injection hole 21 to seal the electrolyte injection hole 21. Such a rectangular sealed non-aqueous electrolyte secondary battery has an excellent effect that there is little wasted space during use, and battery performance and battery reliability are high.

ここで下記特許文献1に開示されている密閉型非水電解質二次電池の蓋板を角形の電池外装缶の開口部にレーザ溶接する工程を図6を用いて説明する。なお、図6においては図5に示した非水電解質二次電池と同一の構成部分には同一の参照符号を付与して説明することとする。下記特許文献1に開示されている密閉型非水電解質二次電池の蓋板16は略長方形状をしており、中央部に絶縁体17を介して取り付けられた負極端子18が設けられているとともに、周縁部に電解液注入孔21を備えている。この蓋板16は外装缶15の開口内縁に取り付けられた後、蓋板16と電池外装缶15の接合部にパルス的に発振するレーザ光を周方向へ順序よく送りながら断続的に照射することによって溶接ビード列22を形成し、レーザ光照射開始側の溶接ビード列23と照射終了側の溶接ビード列24とを重ね合わせてラップ25を形成することにより、これらのラップ25を判別のための照射痕(マーキング)として利用できるようにしている。   Here, the process of laser welding the lid plate of the sealed nonaqueous electrolyte secondary battery disclosed in Patent Document 1 to the opening of the rectangular battery outer can will be described with reference to FIG. In FIG. 6, the same components as those of the nonaqueous electrolyte secondary battery shown in FIG. The cover plate 16 of the sealed nonaqueous electrolyte secondary battery disclosed in the following Patent Document 1 has a substantially rectangular shape, and a negative electrode terminal 18 attached via an insulator 17 is provided at the center. In addition, an electrolyte injection hole 21 is provided at the peripheral edge. After this cover plate 16 is attached to the inner edge of the opening of the outer can 15, the laser beam oscillated in a pulsed manner is radiated intermittently while being sent in order in the circumferential direction to the joint between the cover plate 16 and the battery outer can 15. A weld bead array 22 is formed, and a weld bead array 23 on the laser beam irradiation start side and a weld bead array 24 on the irradiation end side are overlapped to form a lap 25, whereby irradiation of these wraps 25 for discrimination is performed. It can be used as a mark.

特開2003− 31186号公報(特許請求の範囲、段落[0013]〜[0018]、図1〜図3)Japanese Patent Laying-Open No. 2003-31186 (Claims, paragraphs [0013] to [0018], FIGS. 1 to 3) 特開平10−156565号公報(特許請求の範囲、段落[0016]〜[0017]、[0038]、図7)JP-A-10-156565 (claims, paragraphs [0016] to [0017], [0038], FIG. 7) 特開平10−230379号公報(特許請求の範囲、段落[0016]、[0026]〜[0035])JP-A-10-230379 (claims, paragraphs [0016], [0026] to [0035])

上記特許文献1に開示されている発明で採用されているレーザ溶接は、パルス的に発振するパルスレーザで溶接する方法が採用されている。このとき、パルス的に発振するレーザでは散発的に溶融部が形成されるため、溶接部を密封するためにレーザを1パルス照射したときに得られる溶融スポット径の約1/3をピッチにレーザを走査してシーム溶接を行っている。そのため、溶融スポット径の約2/3の部分は、溶融して一旦凝固した後に再度加熱されて溶融することとなり、溶接速度を上げることは困難である。   The laser welding employed in the invention disclosed in Patent Document 1 employs a method of welding with a pulsed laser that oscillates in a pulsed manner. At this time, a laser that oscillates in a pulse form sporadically forms a melted portion. Therefore, about 1/3 of the melt spot diameter obtained when one pulse of laser is irradiated to seal the welded portion is used as a pitch. Seam welding is performed by scanning. Therefore, a portion of about 2/3 of the melting spot diameter is melted and once solidified and then heated again to be melted, so that it is difficult to increase the welding speed.

すなわち、溶接用パルス発振型レーザのパルス繰り返し数は、最大毎秒200〜500回程度である。この場合、仮にパルスの繰り返し数を毎秒500回としても、溶融スポット径0.7mmとして70%オーバーラップさせるとすると溶接速度は毎秒105mmが限界となる。しかも、密閉型電池のレーザ溶接に用いる条件下ではレーザ発振器の能力からしてパルス繰り返し数は毎秒100〜200回程度が限界となることが多い。したがって、パルス的に発振するパルスレーザ溶接装置を用いて溶接する場合、毎秒100mm以上の高速で溶接することは現実的には実現困難である。   That is, the pulse repetition number of the welding pulsed laser is about 200 to 500 times per second at the maximum. In this case, even if the number of repetitions of the pulse is 500 times per second, if the melting spot diameter is 0.7 mm and the overlap is 70%, the welding speed is limited to 105 mm per second. Moreover, under the conditions used for laser welding of sealed batteries, the number of pulse repetitions is often limited to about 100 to 200 times per second due to the capability of the laser oscillator. Therefore, when welding is performed using a pulsed laser welding apparatus that oscillates in a pulsed manner, it is practically difficult to perform welding at a high speed of 100 mm or more per second.

例えば、アルミニウム合金製の厚み0.4mmの外装缶に厚み2mmの蓋板を嵌合させ、この嵌合部に高エネルギーレーザパルスを照射して溶接する場合、1パルス当たりのエネルギー量は約20J必要である。密閉型電池等の小型の機器に対して微細な溶接が可能なパルスレーザ装置は溶接部の出力が約500W程度であるので、500(W=J/s)/20(J)=25(1/s)であるから、1秒間に約25回のレーザ照射が可能となる。この場合、パルスピッチを0.28mmとすると、溶接速度は25(1/s)×0.28(mm)=7(mm/s)となり、毎秒7mm程度の溶接速度しか得られないことになる。   For example, when a cover plate having a thickness of 2 mm is fitted to an outer can made of aluminum alloy and having a thickness of 2 mm, and welding is performed by irradiating the fitting portion with a high energy laser pulse, the energy amount per pulse is about 20 J. is necessary. Since the output of the welded portion of a pulse laser device capable of fine welding to a small device such as a sealed battery is about 500 W, 500 (W = J / s) / 20 (J) = 25 (1 / S), laser irradiation can be performed about 25 times per second. In this case, if the pulse pitch is 0.28 mm, the welding speed is 25 (1 / s) × 0.28 (mm) = 7 (mm / s), and only a welding speed of about 7 mm per second can be obtained. .

溶接速度を上げるためには、パルス発振型レーザを使用した溶接法に換えてCWレーザを使用した溶接法の適用が考えられる。最近では、出力3kW〜5kW程度の高出力CW型レーザ発振器が実用化されだしたことから、鉄系の板材についてCWレーザでビームを高速に走査させて照射し、溶接する方法が用いられ始めているが、鉄系金属に比べて熱伝導率が高いアルミニウム系金属については、溶接部に加えた熱が広範囲に広がるため、接合したい部分のみを安定して溶かすことができず、CWレーザでの溶接は困難であった。   In order to increase the welding speed, it is conceivable to apply a welding method using a CW laser instead of a welding method using a pulsed laser. Recently, since a high-power CW type laser oscillator with an output of about 3 kW to about 5 kW has been put into practical use, a method of irradiating an iron-based plate material by scanning a beam with a CW laser at high speed and starting welding is being used. However, for aluminum-based metals, which have a higher thermal conductivity than iron-based metals, the heat applied to the welds spreads over a wide range, so that only the parts to be joined cannot be melted stably and welding with a CW laser is possible. Was difficult.

また、電池の蓋板を封じる溶接では、電池のコーナー部分に沿った小さな曲率半径でレーザを操作しなければならないが、レーザ加工ヘッド又は電池をX−Yテーブルで動かしてレーザビームを走査するのではコーナー部分を高速のまま走査させることが困難であり、コーナー部分の曲率半径が小さい部分で溶接速度が落ちてしまう。その結果、コーナー部分では直線部分に比べてレーザによって加熱される時間が長くなり、入熱過多となって溶けすぎて不良になるものが多くなる。   In welding to seal the battery cover plate, the laser must be operated with a small radius of curvature along the corner of the battery, but the laser beam is scanned by moving the laser processing head or battery on the XY table. Then, it is difficult to scan the corner portion at a high speed, and the welding speed is lowered at a portion where the radius of curvature of the corner portion is small. As a result, the corner is heated by the laser for a longer time than the straight part, and excessive heat input causes excessive melting and defects.

一方、上記特許文献2には、図7(a)及び図7(b)に示したように、レーザ溶接部分の溶融深さが比較的浅い浅溶け込み溶接の場合であってもレーザ溶接部分に凝固割れが発生することを抑制する目的で、一端面が開口された箱状の容器本体52とこの容器本体52の開口部を閉塞する蓋体54との接合部58に照射されるレーザ光により容器本体52と蓋体54とを溶接する工程を有する電池容器51の製造方法において、蓋体54における平板部に対して略垂直方向に屈曲されるとともに、容器本体52の開口部の周縁部位に当接される立設部56の板厚をt、容器本体52の開口部の周縁部位の板厚をt、前記平板部に対する立設部56の屈曲部から立設部56の端面までの長さをtとした場合に、1.0mm>t+t、t≧t+tの関係を満たすように形成された立設部56と、この立設部56と容器本体52の開口部の周縁部位との接合部58に照射されるレーザ光の照射部位の前記板厚方向での長さをdとおくと、t+t≧d≧(t+t)/2の関係を満たすように、レーザ光を照射する工程を有する電池容器の製造方法が開示されている。なお、図7(a)はレーザ溶接装置を示す概略構成図であり、図7(b)は電池容器のレーザ溶接部位を説明するための要部の縦断面図である。 On the other hand, in Patent Document 2, as shown in FIGS. 7A and 7B, even in the case of shallow penetration welding where the melting depth of the laser welding portion is relatively shallow, For the purpose of suppressing the occurrence of solidification cracking, the laser beam applied to the joint 58 between the box-shaped container body 52 having one end face opened and the lid 54 closing the opening of the container body 52 is used. In the method for manufacturing the battery container 51 including the step of welding the container body 52 and the lid body 54, the battery body 51 is bent in a substantially vertical direction with respect to the flat plate portion of the lid body 54, and at the peripheral portion of the opening of the container body 52. The plate thickness of the standing portion 56 to be abutted is t 1 , the plate thickness of the peripheral portion of the opening of the container main body 52 is t 2 , and the bent portion of the standing portion 56 with respect to the flat plate portion to the end surface of the standing portion 56. of length when the t 3, 1.0mm> t 1 + 2, t 3 and ≧ t 1 + t standing portion 56 formed so as to satisfy the relation of 2, the laser beam irradiated to the joining portion 58 of the peripheral portion of the opening portion of the standing portion 56 and the container body 52 Battery container having a step of irradiating a laser beam so as to satisfy the relationship of t 1 + t 2 ≧ d ≧ (t 1 + t 2 ) / 2 where d is the length in the plate thickness direction of A manufacturing method is disclosed. 7A is a schematic configuration diagram showing a laser welding apparatus, and FIG. 7B is a longitudinal sectional view of a main part for explaining a laser welding portion of the battery container.

そして、上記特許文献2には、パルスレーザ装置59のレーザ発振器60にコントローラ62を接続し、このコントローラ62によりパルスレーザ装置59からのビームスポット径dを任意の値に調整すること、容器本体52がアルミニウム合金材料の場合にも適用できること、パルスレーザ装置59だけでなくCWレーザを用いて溶接することができることも示されている。しかしながら、上記引用文献2に開示されている電池容器の製造方法では、上記t〜tの関係式から明らかなように、容器本体52の開口部の周縁部位の板厚tと蓋体54の立設部56の板厚tの合計の厚さは1.0mm未満であることが必須であり、このような薄い容器本体及び蓋体では高強度のアルミニウム系金属からなる電池容器が得られず、しかも、上記特許文献2にはレーザビームの走査速度をどの程度となすかを示唆する記載はない。 In Patent Document 2, a controller 62 is connected to the laser oscillator 60 of the pulse laser device 59, and the controller 62 adjusts the beam spot diameter d from the pulse laser device 59 to an arbitrary value. It is also shown that the method can be applied to the case of an aluminum alloy material and can be welded using not only the pulse laser device 59 but also a CW laser. However, in the method for manufacturing the battery container disclosed in the above cited document 2, the plate thickness t 2 of the peripheral portion of the opening of the container body 52 and the lid, as is apparent from the relational expression of t 1 to t 3. standing total thickness of the thickness t 1 of the portion 56 of 54 is required to be less than 1.0 mm, in such a thin container body and lid battery container made of high-strength aluminum-based metal In addition, the above-mentioned patent document 2 has no description that suggests how much the scanning speed of the laser beam should be.

また、上記特許文献3には、Mgを2.2重量%以上含有するアルミニウム合金材からなる容器本体と蓋との突き合わせ部分をレーザ溶接する際に、レーザ出力が0となる時間を1.0ms以下としてレーザ溶接するアルミニウム合金製の容器の製造方法が示されており、レーザ光としてCWレーザを用いることも示されているが、レーザビームの走査速度をどの程度となすかを示唆する記載はない。   In Patent Document 3, the time when the laser output becomes 0 is 1.0 ms when laser welding is performed on the butt portion between the container body made of an aluminum alloy material containing 2.2 wt% or more of Mg and the lid. A method for manufacturing a container made of aluminum alloy to be laser welded is shown below, and it is also shown that a CW laser is used as the laser beam, but a description suggesting how much the scanning speed of the laser beam will be Absent.

このように、従来、アルミニウム系金属からなる外装缶及び蓋板との間をCWレーザを用いて溶接することが知られてはいたが、このCWレーザを用いて高速で溶接できるようにするとともに、良好な溶接部が得られるようにするための条件については何も知られていなかった。   As described above, it has been known that welding is performed between an outer can made of an aluminum-based metal and a lid plate using a CW laser. However, it is possible to perform welding at a high speed using the CW laser. Nothing was known about the conditions for obtaining a good weld.

本発明は上記従来例の問題点を解決すべくなされたものであって、その目的は、CWレーザを使用してアルミニウム系金属からなる外装缶と蓋板との間の溶接を行うに際し、直線部分だけでなく曲線部分においても高速で溶接を行うことができるようにして加工速度を向上させ、しかも、溶接不良が生じないようにした密閉型電池の製造方法を提供することにある。   The present invention has been made to solve the above-mentioned problems of the conventional example. The purpose of the present invention is to provide a straight line when welding between an aluminum-based outer can and a cover plate using a CW laser. It is an object of the present invention to provide a method for manufacturing a sealed battery in which not only a portion but also a curved portion can be welded at a high speed to improve a processing speed and to prevent welding failure.

上記目的を達成するため、本発明の密閉型電池の製造方法は、アルミニウム系金属製の外装缶と前記外装缶の開口に配置されるアルミニウム系金属製の蓋板とをレーザビームを照射して溶接することにより封止する密閉型電池の製造方法において、前記レーザビームは、CW型であり、ビームの理論スポット径0.1mm以上0.6mm以下で、出力密度5kW/mm以上33kW/mm以下としたことを特徴とする。なお、本発明におけるアルミニウム系金属とは、純アルミニウム金属だけでなく、密閉型電池に普通に採用されているアルミニウム合金も含むものである。 In order to achieve the above object, a method for producing a sealed battery according to the present invention includes irradiating a laser beam to an aluminum metal outer can and an aluminum metal cover plate disposed in an opening of the outer can. In the method for manufacturing a sealed battery sealed by welding, the laser beam is CW type, the beam has a theoretical spot diameter of 0.1 mm to 0.6 mm, and an output density of 5 kW / mm 2 to 33 kW / mm. It is characterized by being 2 or less. The aluminum metal in the present invention includes not only a pure aluminum metal but also an aluminum alloy that is usually employed in a sealed battery.

また、本発明は、上記密閉型電池の製造方法において、前記レーザビームは、走査速度が毎秒100mm以上であり、スキャン装置を用いて走査することを特徴とする。   Further, the present invention is characterized in that, in the above sealed battery manufacturing method, the laser beam has a scanning speed of 100 mm / second or more, and is scanned using a scanning device.

また、本発明は、上記密閉型電池の製造方法において、前記蓋板の溶接部に沿った位置に溝部を設け、前記外装缶よりも前記蓋板を多く溶融させたことを特徴とする。   Further, the present invention is characterized in that, in the above-described sealed battery manufacturing method, a groove is provided at a position along the welded portion of the lid plate, and the lid plate is melted more than the outer can.

また、本発明は、上記密閉型電池の製造方法において、前記レーザビームの発生装置として出力1.2kW以上のCW型レーザ発生装置を使用したことを特徴とする。   Further, the present invention is characterized in that, in the above sealed battery manufacturing method, a CW type laser generator having an output of 1.2 kW or more is used as the laser beam generator.

本発明は上記製造方法を採用することにより以下に述べるような優れた効果を奏する。すなわち、本発明によれば、CW型のレーザビームを用いて高速でアルミニウム系金属製の外装缶と前記外装缶の開口に配置される蓋板とを溶接することができ、密閉型電池の製造効率が向上する。   The present invention has the following excellent effects by adopting the above manufacturing method. That is, according to the present invention, a CW type laser beam can be used to weld an aluminum-based metal outer can and a lid plate disposed in the opening of the outer can at a high speed. Efficiency is improved.

また、レーザビームの理論集光径(スポット径)は、0.6mm以下であれば小さい方が熱が周囲に広がらない短時間のうちに必要な溶接深度が得られるので好ましいが、あまり小さくても溶接点のずれが生じた場合に溶接不良品の生成割合が上昇するので、外装缶の厚さの1/2程度までが好ましい。外装缶の厚さは一般的に0.2mm〜1mmの範囲のものが使用されているから、レーザビームの理論集光径は0.1mm以上とすることが好ましい。   In addition, if the theoretical condensing diameter (spot diameter) of the laser beam is 0.6 mm or less, a smaller one is preferable because the necessary welding depth can be obtained within a short time in which heat does not spread to the surroundings. However, when the welding point shift occurs, the production ratio of defective welds increases, so it is preferably up to about ½ of the thickness of the outer can. Since the thickness of the outer can is generally in the range of 0.2 mm to 1 mm, the theoretical focused diameter of the laser beam is preferably 0.1 mm or more.

更に、レーザビームの出力密度は、5kW/mm以上であればアルミニウム系金属製の外装缶と前記外装缶の開口に配置される蓋板とを溶接することができるが、あまり出力密度が大きすぎても溶けすぎるために好ましくない。アルミニウム合金製の厚み0.4mmの外装缶に厚み2mmの蓋板を嵌合させ、この嵌合部に高エネルギーレーザパルスを照射して溶接する場合、出力密度は5kW/mm〜33kW/mmの範囲で溶接できることが確認できたが、溶接面の状態がばらついても良好に溶接できるようにするためには6.5kW/mm以上11kW/mm以下が好ましい。なお、出力密度は、照射光学系を調整して焦点をずらすことによって、低下させることが可能である。 Furthermore, if the output density of the laser beam is 5 kW / mm 2 or more, the aluminum-based metal outer can and the lid plate arranged at the opening of the outer can can be welded, but the output density is too high. Too much is not preferable because it is too soluble. When a cover plate with a thickness of 2 mm is fitted to an outer can made of aluminum alloy with a thickness of 0.4 mm and the fitting part is irradiated with a high energy laser pulse and welded, the output density is 5 kW / mm 2 to 33 kW / mm. Although it was confirmed to be able to weld in a second range, in order to be welded to better vary the state of the welding surface is preferably 6.5 kW / mm 2 or more 11kW / mm 2 or less. The power density can be lowered by adjusting the irradiation optical system and shifting the focus.

また、本発明によれば、従来は高速で溶接することが困難であったアルミニウム系金属製の外装缶と前記外装缶の開口に配置される蓋板との間の溶接を、レーザビームをスキャン装置を用いて走査することにより、密閉型電池の直線部分だけでなく曲線部分でも、更には角部でも、走査速度100mm/sという高速でレーザ溶接することができるようになる。   In addition, according to the present invention, laser beam scanning is used for welding between an aluminum-based metal outer can and a lid plate disposed at the opening of the outer can, which has conventionally been difficult to weld at high speed. By scanning using the apparatus, laser welding can be performed at a high scanning speed of 100 mm / s not only on the straight line portion but also on the curved portion or even the corner portion of the sealed battery.

また、本発明によれば、蓋板の溶接部に沿った位置に溝部を設けたため、溶接部に加えられた熱が広範囲に広がることがなくなり、外装缶よりも蓋板を多く溶融するようになるため、外装缶の溶融した部分が外側に垂れることがなくなり、寸法精度の良好な密閉型電池を製造することができるようになる。   Further, according to the present invention, since the groove portion is provided at a position along the welded portion of the lid plate, the heat applied to the welded portion does not spread over a wide range, and the lid plate is melted more than the outer can. Therefore, the melted portion of the outer can does not sag outside, and a sealed battery with good dimensional accuracy can be manufactured.

また、本発明によれば、CWレーザは出力1kW程度あれば一応100mm/s以上の走査速度で溶接することができるが、CWレーザの出力密度を5kW/mm以上とするには出力1.2kW以上望ましい。なお、レーザ装置の出力は大きい方がよいが、あまり大きすぎると高価となりすぎるので、経済性を考慮して適宜選択すればよい。 Further, according to the present invention, if the CW laser has an output of about 1 kW, it can be welded at a scanning speed of 100 mm / s or more. However, in order to increase the output density of the CW laser to 5 kW / mm 2 or more, output 1. 2 kW or more is desirable. The output of the laser device should be large, but if it is too large, it will be too expensive, so it may be selected as appropriate in consideration of economy.

以下、本願発明を実施するための最良の形態を角形の密閉型電池に対してCW型のレーザビームを使用して溶接した場合を例にとり、各種実験例により詳細に説明する。ただし、以下に示す実験例は、本発明の技術思想を理解するために例示するものであって、本発明をこの実験例に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。   Hereinafter, the best mode for carrying out the present invention will be described in detail by various experimental examples, taking as an example the case of welding a square sealed battery using a CW type laser beam. However, the following experimental examples are given for the purpose of understanding the technical idea of the present invention, and are not intended to specify the present invention as the experimental examples. The present invention can equally be applied to those in which various modifications are made without departing from the technical idea shown in.

[予備実験1]
予備実験1として、アルミニウム合金製の厚み0.4mmの外装缶に厚み2mmの蓋板を嵌合させ、出力1.6kWのCW型レーザ溶接装置を使用し、これを理論集光径が0.4mmとなるように集光してスキャナで集光点を毎秒120mmの速度で走査した場合のシミュレーション解析を行うとともに実際に同条件で溶接して測定用試料を作製した。その結果を図1に示す。なお、図1(a)は予備実験1における溶接点近傍の縦断面の溶融範囲を示すシミュレーション結果を表し、図1(b)は溶接後の試料の縦断面図である。また、CWレーザの走査は、市販のCWレーザ発振器とレーザスキャンヘッドを組み合わせて使用し、PC制御によってスキャンヘッドのミラーの回転を制御してCWレーザを所定速度で走査した(以下においても同様である)。
[Preliminary experiment 1]
As a preliminary experiment 1, a cover plate having a thickness of 2 mm was fitted into an outer can made of aluminum alloy and having a thickness of 0.4 mm, and a CW type laser welding apparatus having an output of 1.6 kW was used. A sample for measurement was prepared by condensing to 4 mm and performing a simulation analysis when the condensing point was scanned with a scanner at a speed of 120 mm per second and actually welding under the same conditions. The result is shown in FIG. 1A shows a simulation result showing the melting range of the longitudinal section in the vicinity of the welding point in the preliminary experiment 1, and FIG. 1B is a longitudinal sectional view of the sample after welding. The CW laser scan uses a combination of a commercially available CW laser oscillator and a laser scan head, and scans the CW laser at a predetermined speed by controlling the rotation of the mirror of the scan head by PC control. is there).

図1(a)に示した結果から以下のことが分かる。すなわち、外装缶の外側方向は、金属が繋がっておらず、空気となっている。ところが、空気の熱伝導率は低いため、照射されたレーザによって発生した外装缶側の熱は、熱伝導によって外に逃げる量が少ないため、溶融部分がある程度外側に向かって広がっている。これに対し、蓋板側は金属が繋がっており、この金属の熱伝導率は非常に良好なため、照射されたレーザによって蓋板側に発生した熱は蓋板の内部に急速に伝導されるので温度が下がりやすく、蓋板の横方向の溶融部分は広がっていない。なお、このときの溶接深度は0.24mmであり、溶接部の断面形状は図1(b)に示したとおり、外装缶側の溶融量が多いために外装缶側の高さが蓋板側よりも低くなっていた。   The following can be understood from the result shown in FIG. That is, the outer direction of the outer can is not connected to metal but is air. However, since the thermal conductivity of air is low, the amount of heat on the outer can generated by the irradiated laser is less likely to escape to the outside due to thermal conduction, so the melted portion spreads outward to some extent. On the other hand, metal is connected to the lid plate side, and the heat conductivity of this metal is very good, so the heat generated on the lid plate side by the irradiated laser is rapidly conducted inside the lid plate. As a result, the temperature tends to decrease and the melted portion in the lateral direction of the cover plate does not spread. In addition, the welding depth at this time is 0.24 mm, and the cross-sectional shape of the welded portion has a large amount of melting on the outer can side, as shown in FIG. It was lower than.

[予備実験2]
図1(b)に示した溶接部は一応良好な結果が得られていたが、外装缶と蓋板との間にレーザを照射しても、外装缶側と蓋板側とで溶け方に相違があるため、レーザ照射位置が僅かに外側にずれただけでも蓋板が外装缶と接合しなくなったり、外装缶が溶けすぎて溶接部が外側にまでダレるといった不良を起こしやすくなる。また、蓋板の内側に急激に熱が伝わるため、蓋板の端子部に設けられた樹脂部品が高温に曝され易いので、樹脂部品が熱影響に起因する不良を起こしやすくなる。
[Preliminary experiment 2]
The welded part shown in FIG. 1 (b) had a good result, but even if the laser was irradiated between the outer can and the lid plate, it melted on the outer can side and the lid plate side. Since there is a difference, even if the laser irradiation position is slightly shifted outward, the lid plate is not easily joined to the outer can, or the outer can can be melted too much and the welded portion is likely to be bent outward. In addition, since heat is rapidly transmitted to the inside of the lid plate, the resin component provided on the terminal portion of the lid plate is easily exposed to high temperatures, so that the resin component is liable to be defective due to thermal effects.

そこで、予備実験2として、図2に示したように、蓋板の溶接部近傍に溝部を設け、蓋板の横方向の熱伝導を低下させた場合のシミュレーション解析及び実際に同条件で溶接して測定用試料を作製した。この溝部は、蓋板の端から0.4mm内側に深さ0.25mm、幅0.5mmの大きさに設けたものである。なお、蓋体に溝部を設けた場合の密閉型電池の平面図を図2に示し、溶接点近傍の縦断面の溶融範囲を示すシミュレーション結果を図3(a)に、溶接後の試料の縦断面図を図3(b)に示す。   Therefore, as preliminary experiment 2, as shown in FIG. 2, a groove is provided in the vicinity of the welded portion of the cover plate, and the simulation analysis and actual welding are performed under the same conditions when the heat conduction in the lateral direction of the cover plate is reduced. Thus, a measurement sample was prepared. The groove is provided in a size of 0.25 mm deep and 0.5 mm wide inside 0.4 mm from the end of the cover plate. FIG. 2 shows a plan view of the sealed battery in the case where a groove is provided in the lid, and FIG. 3A shows a simulation result showing a melting range of a longitudinal section in the vicinity of the welding point. A surface view is shown in FIG.

図3(a)に示したシミュレーション結果によれば、溝部を設けたことによって蓋体の内側に逃げる熱量が減ったために蓋体側の溶融量が増加していることが分かる。このように、溝部を設けることによって外装缶よりも蓋体の方を溶けやすくすることができる。実際の溶接部の形状は、図3(b)に示したとおり、実質的に外装缶側も蓋体側も同様の形状をしていた。   According to the simulation result shown in FIG. 3A, it can be seen that the amount of heat on the inside of the lid body is reduced by providing the groove portion, so that the melting amount on the lid side is increased. Thus, by providing the groove portion, the lid can be more easily melted than the outer can. The actual shape of the welded portion was substantially the same on both the outer can side and the lid side as shown in FIG.

[実験例1〜22]
次に、予備実験1の場合と同様の外装缶及び蓋板を用い、CWレーザの理論集光径を0.28mm〜0.6mmの範囲で変化させるとともに、出力密度を3.53kW/mm〜32.48kW/mmの範囲で変化させ、更にCWレーザの走査速度を133mm/s〜250mm/sの範囲で変化させて溶接を行った。実験例1〜22のそれぞれの測定条件及び測定結果を表1にまとめて示し、また、出力密度と走査速度との関係を測定結果とともに図4に示した。
[Experimental Examples 1 to 22]
Next, using the same outer can and lid as in the preliminary experiment 1, the theoretical condensing diameter of the CW laser is changed in the range of 0.28 mm to 0.6 mm, and the output density is 3.53 kW / mm 2. Welding was performed by changing the speed in the range of ˜32.48 kW / mm 2 and further changing the scanning speed of the CW laser in the range of 133 mm / s to 250 mm / s. The measurement conditions and measurement results of Experimental Examples 1 to 22 are collectively shown in Table 1, and the relationship between the output density and the scanning speed is shown in FIG. 4 together with the measurement results.

なお、測定結果は、
○ : 溶接面の状態が良好でなくても良好に溶接できたもの
● : 出力密度が強すぎて部分的に溶けすぎるところが存在したもの
(○): ●のものについてデフォーカスすると良好に溶接できたもの
△ : 溶接面の状態が良好であれば良好に溶接できたもの
▲ : 出力密度が弱く、溶接面の状態が良好であれば一応溶接できたもの
× : 溶接できなかったもの
の6段階で評価した。なお、「溶接面の状態」とは、外装缶と蓋体との間の接合面の状態を示し、実際の製造工程ではこの接合面に対して精密加工を行わないため、僅かであるが隙間ができる場合がある。この隙間が少ないものを溶接面の状態が良好なものと表現した。
The measurement result is
○: Welded well even if the welding surface was not good ●: Somewhere the power density was too strong and partly melted (○): Good welding when defocused on ● △: Good welding if the welding surface is good ▲: If the power density is weak and the welding surface is good, welding was possible. ×: We could not weld. evaluated. The “weld surface state” means the state of the joint surface between the outer can and the lid, and since the precision processing is not performed on the joint surface in the actual manufacturing process, there is a slight gap. May be possible. A material having a small gap was expressed as a good welded surface.

Figure 2008084803
Figure 2008084803

表1及び図4に示した結果から、少なくともCWレーザの理論集光径が0.6mm以下の場合、出力密度が5kW/mm以上33kW/mm以下であれば一応133mm/s以上の走査速度で溶接できることが確認できた。しかしながら、溶接面の状態がバラついていても良好に溶接できる出力密度の範囲は6.5kW/mm〜11kW/mmと考えられる。なお、予備実験2と実験例の結果を鑑みると、蓋体に溝を設けることにより、良好に溶接できる出力密度の範囲は広くなり、溝部がなくても良好に溶接できる範囲に合っては、溶接状態が更に安定することは明らかである。 From the results shown in Table 1 and FIG. 4, at least when the theoretical condensing diameter of the CW laser is 0.6 mm or less, if the output density is 5 kW / mm 2 or more and 33 kW / mm 2 or less, the scanning is 133 mm / s or more. It was confirmed that welding was possible at a speed. However, the range of the power density that can be favorably welded even if the state of the welding surface varies is considered to be 6.5 kW / mm 2 to 11 kW / mm 2 . In view of the results of Preliminary Experiment 2 and Experimental Example, by providing a groove in the lid, the range of power density that can be favorably welded is widened, and in accordance with the range that can be favorably welded without a groove, It is clear that the welding state is further stabilized.

また、CWレーザは理論集光径を小さくすれば出力1kW程度あれば一応100mm/s以上の走査速度で溶接することができる。しかしながら、実験例15の結果から明らかなように、理論集光径を0.6mm程度とした場合には、出力密度が小さいために溶接不良となる。理論集光径が0.6mm程度の場合でもCWレーザの出力密度を5kW/mm以上とするには出力1.2kW以上が望ましい。 In addition, if the theoretical condensing diameter is reduced, the CW laser can be welded at a scanning speed of 100 mm / s or more if the output is about 1 kW. However, as is clear from the results of Experimental Example 15, when the theoretical light collection diameter is about 0.6 mm, the output density is small, resulting in poor welding. Even when the theoretical focused diameter is about 0.6 mm, an output of 1.2 kW or more is desirable in order to make the output density of the CW laser 5 kW / mm 2 or more.

なお、ここでは、外装缶としてアルミニウム合金製の厚み0.4mmのもの、蓋板として同じくアルミニウム合金製の厚み2mmのものを使用し、溝部として蓋板の端から0.4mm内側に深さ0.25mm、幅0.5mmの大きさに設けたものについての測定結果を示したが、外装缶の厚みとしては0.2mm〜1mm、蓋板の厚みとしては0.8mm〜2mm、溝部の深さは0.2mm〜0.5mm、溝部の幅は0.3〜1mm、蓋板の端から溝部までの距離は0.3〜0.6mmに変えてもよく、この範囲内であれば100m/s以上の走査速度でCW溶接を行うことができる。   Here, an aluminum can made of aluminum alloy having a thickness of 0.4 mm and a lid plate having the same thickness made of aluminum alloy having a thickness of 2 mm are used, and the groove portion has a depth of 0 mm inside 0.4 mm from the end of the lid plate. Although the measurement results for those provided with a size of .25 mm and a width of 0.5 mm are shown, the thickness of the outer can is 0.2 mm to 1 mm, the thickness of the cover plate is 0.8 mm to 2 mm, and the depth of the groove portion. The length may be 0.2 mm to 0.5 mm, the width of the groove is 0.3 to 1 mm, and the distance from the end of the cover plate to the groove may be 0.3 to 0.6 mm. CW welding can be performed at a scanning speed of / s or more.

図1(a)は予備実験1における溶接点近傍の縦断面の溶融範囲を示すシミュレーション結果を表し、図1(b)は溶接後の試料の縦断面図である。FIG. 1A shows a simulation result showing a melting range of a longitudinal section in the vicinity of a welding point in the preliminary experiment 1, and FIG. 1B is a longitudinal sectional view of a sample after welding. 蓋体に溝部を設けた場合の密閉型電池の平面図である。It is a top view of a closed type battery at the time of providing a slot in a lid. 図3(a)は予備実験2における溶接点近傍の縦断面の溶融範囲を示すシミュレーション結果を表し、図3(b)は溶接後の試料の縦断面図である。FIG. 3A shows a simulation result showing the melting range of the longitudinal section in the vicinity of the welding point in the preliminary experiment 2, and FIG. 3B is a longitudinal sectional view of the sample after welding. 出力密度と走査速度との関係を測定結果とともに示したグラフである。It is the graph which showed the relationship between a power density and a scanning speed with the measurement result. 従来例の角形の密閉型非水電解質二次電池を縦方向に切断して示す斜視図である。It is a perspective view which cut | disconnects the square sealed nonaqueous electrolyte secondary battery of a prior art example in the vertical direction. 従来例の蓋板を角形の電池外装缶の開口部にレーザ溶接する工程を示す図である。It is a figure which shows the process of laser welding the lid plate of a prior art example to the opening part of a square battery exterior can. 図7(a)は従来例のレーザ溶接装置を示す概略構成図であり、図7(b)は電池容器のレーザ溶接部位を説明するための要部の縦断面図である。FIG. 7A is a schematic configuration diagram showing a conventional laser welding apparatus, and FIG. 7B is a longitudinal sectional view of a main part for explaining a laser welding portion of the battery container.

符号の説明Explanation of symbols

10 非水電解質二次電池
11 正極板
12 負極板
13 セパレータ
14 渦巻状電極体
15 外装缶
16 蓋板
18 負極端子
21 電解液注入孔
22 溶接ビード列
DESCRIPTION OF SYMBOLS 10 Nonaqueous electrolyte secondary battery 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Spiral electrode body 15 Outer can 16 Cover plate 18 Negative electrode terminal 21 Electrolyte injection hole 22 Weld bead row

Claims (4)

アルミニウム系金属製の外装缶と前記外装缶の開口に配置されるアルミニウム系金属製の蓋板とをレーザビームを照射して溶接することにより封止する密閉型電池の製造方法において、前記レーザビームが、連続発振型であり、ビームの理論スポット径0.1mm以上0.6mm以下で、出力密度5kW/mm以上33kW/mm以下としたことを特徴とする密閉型電池の製造方法。 In the manufacturing method of a sealed battery in which an aluminum-based metal outer can and an aluminum-based metal lid plate disposed in an opening of the outer can are sealed by irradiation with a laser beam, the laser beam Is a continuous oscillation type beam beam having a theoretical spot diameter of 0.1 mm to 0.6 mm and an output density of 5 kW / mm 2 to 33 kW / mm 2 . 前記レーザビームは、走査速度が毎秒100mm以上であり、スキャン装置を用いて走査することを特徴とする請求項1に記載の密閉型電池の製造方法。   The method for manufacturing a sealed battery according to claim 1, wherein the laser beam has a scanning speed of 100 mm / second or more and is scanned using a scanning device. 前記蓋板の溶接部に沿った位置に溝部を設け、前記外装缶よりも前記蓋板を多く溶融させたことを特徴とする請求項1又は2に記載の密閉型電池の製造方法。   The method for manufacturing a sealed battery according to claim 1, wherein a groove is provided at a position along the welded portion of the lid plate, and the lid plate is melted more than the outer can. 前記レーザビームの発生装置として出力1.2kW以上の連続発振型レーザ発生装置を使用したことを特徴とする請求項1〜3のいずれかに記載の密閉型電池の製造方法。   The method for manufacturing a sealed battery according to any one of claims 1 to 3, wherein a continuous wave laser generator with an output of 1.2 kW or more is used as the laser beam generator.
JP2006266750A 2006-09-29 2006-09-29 Manufacturing method of gastight battery Pending JP2008084803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006266750A JP2008084803A (en) 2006-09-29 2006-09-29 Manufacturing method of gastight battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006266750A JP2008084803A (en) 2006-09-29 2006-09-29 Manufacturing method of gastight battery

Publications (1)

Publication Number Publication Date
JP2008084803A true JP2008084803A (en) 2008-04-10

Family

ID=39355423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006266750A Pending JP2008084803A (en) 2006-09-29 2006-09-29 Manufacturing method of gastight battery

Country Status (1)

Country Link
JP (1) JP2008084803A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049122A (en) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd Battery, battery pack, and method of manufacturing battery
JP2011212711A (en) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd Method for producing sealed battery
KR101086359B1 (en) 2008-12-10 2011-11-23 삼성에스디아이 주식회사 Cap Assembly for secondary battery and Secondary Battery using the same
US8399804B2 (en) 2008-09-30 2013-03-19 Sanyo Electric Co., Ltd. Method for manufacturing prismatic battery, and laser welding jig and laser welding device for manufacturing the same
JP2015133300A (en) * 2014-01-15 2015-07-23 株式会社豊田自動織機 power storage device
US20160151853A1 (en) * 2013-07-09 2016-06-02 Lg Chem Ltd. Method for welding dissimilar metals, dissimilar metallic busbar manufactured using same, and secondary battery comprising same
CN106552995A (en) * 2015-09-16 2017-04-05 丰田自动车株式会社 The manufacture method of enclosed-type battery
JP2020024913A (en) * 2018-07-30 2020-02-13 マクセルホールディングス株式会社 Battery case cover and battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177988A (en) * 1987-01-20 1988-07-22 Toyo Seikan Kaisha Ltd Production of laser welded can
JPH10156565A (en) * 1996-11-22 1998-06-16 Toshiba Corp Method for welding, manufacture of battery container and battery container
JPH10230379A (en) * 1997-02-20 1998-09-02 Kobe Steel Ltd Manufacture of aluminum alloy container
JPH11104866A (en) * 1997-09-30 1999-04-20 Showa Alum Corp Aluminum vessel and manufacture thereof
JP2000268781A (en) * 1999-03-17 2000-09-29 Sanyo Electric Co Ltd Sealing plate for sealed battery, sealed battery and manufacture thereof
JP2002304973A (en) * 2001-04-03 2002-10-18 Nec Tokin Tochigi Ltd Sealed battery
JP2004195490A (en) * 2002-12-17 2004-07-15 Toyota Motor Corp Weldment and method for manufacturing the same
JP2004361862A (en) * 2003-06-09 2004-12-24 Mitsubishi Electric Corp Condenser lens system, laser beam machining device, and method for adjusting condenser lens

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177988A (en) * 1987-01-20 1988-07-22 Toyo Seikan Kaisha Ltd Production of laser welded can
JPH10156565A (en) * 1996-11-22 1998-06-16 Toshiba Corp Method for welding, manufacture of battery container and battery container
JPH10230379A (en) * 1997-02-20 1998-09-02 Kobe Steel Ltd Manufacture of aluminum alloy container
JPH11104866A (en) * 1997-09-30 1999-04-20 Showa Alum Corp Aluminum vessel and manufacture thereof
JP2000268781A (en) * 1999-03-17 2000-09-29 Sanyo Electric Co Ltd Sealing plate for sealed battery, sealed battery and manufacture thereof
JP2002304973A (en) * 2001-04-03 2002-10-18 Nec Tokin Tochigi Ltd Sealed battery
JP2004195490A (en) * 2002-12-17 2004-07-15 Toyota Motor Corp Weldment and method for manufacturing the same
JP2004361862A (en) * 2003-06-09 2004-12-24 Mitsubishi Electric Corp Condenser lens system, laser beam machining device, and method for adjusting condenser lens

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8399804B2 (en) 2008-09-30 2013-03-19 Sanyo Electric Co., Ltd. Method for manufacturing prismatic battery, and laser welding jig and laser welding device for manufacturing the same
KR101086359B1 (en) 2008-12-10 2011-11-23 삼성에스디아이 주식회사 Cap Assembly for secondary battery and Secondary Battery using the same
US8663835B2 (en) 2008-12-10 2014-03-04 Samsung Sdi Co., Ltd. Cap assembly and secondary battery having the same
JP2011049122A (en) * 2009-08-28 2011-03-10 Sanyo Electric Co Ltd Battery, battery pack, and method of manufacturing battery
JP2011212711A (en) * 2010-03-31 2011-10-27 Sanyo Electric Co Ltd Method for producing sealed battery
US20160151853A1 (en) * 2013-07-09 2016-06-02 Lg Chem Ltd. Method for welding dissimilar metals, dissimilar metallic busbar manufactured using same, and secondary battery comprising same
US10350702B2 (en) * 2013-07-09 2019-07-16 Lg Chem, Ltd. Method for welding dissimilar metals, dissimilar metallic busbar manufactured using same, and secondary battery comprising same
EP3020500B1 (en) * 2013-07-09 2020-01-15 LG Chem, Ltd. Method for welding dissimilar metals, dissimilar metallic busbar manufactured using same, and secondary battery comprising same
JP2015133300A (en) * 2014-01-15 2015-07-23 株式会社豊田自動織機 power storage device
CN106552995A (en) * 2015-09-16 2017-04-05 丰田自动车株式会社 The manufacture method of enclosed-type battery
JP2020024913A (en) * 2018-07-30 2020-02-13 マクセルホールディングス株式会社 Battery case cover and battery
JP7373935B2 (en) 2018-07-30 2023-11-06 マクセル株式会社 Battery case lid and battery

Similar Documents

Publication Publication Date Title
JP3594555B2 (en) Manufacturing method of sealed battery and sealed battery
JP5425690B2 (en) Manufacturing method of sealed battery
WO2011016200A1 (en) Hermetically sealed battery and method for manufacturing the same
JP2008084803A (en) Manufacturing method of gastight battery
US8105712B2 (en) Sealed secondary battery, and method for manufacturing the battery
KR100300499B1 (en) Square-shaped seal battery and mehtod for manufacturing thereof
JP4278222B2 (en) Sealing plate for sealed battery, sealed battery and manufacturing method thereof
JP5246999B2 (en) Sealed battery manufacturing method and sealed battery
JP6331079B2 (en) Laser welding method and laser welding apparatus
JP4923313B2 (en) Sealed battery and manufacturing method thereof
US20120079713A1 (en) Manufacturing method of prismatic sealed cell
JP2011076776A (en) Welding method between core exposed part of electrode body and current collection member
JP5260990B2 (en) Sealed battery and method for manufacturing the same
WO2019177081A1 (en) Manufacturing method for sealed battery, and sealed battery
JPH1177347A (en) Laser welding method of aluminum sheet, manufacture of enclosed cell, and enclosed cell itself
JP2005040853A (en) Laser welding method
JP2006019089A (en) Sealed battery and its manufacturing method
JP2009245758A (en) Method for manufacturing sealed battery
JP3838764B2 (en) Square sealed battery and method for manufacturing the same
WO2007071121A1 (en) A welding method and a method of sealing opening of battery by laser
JP2003346742A (en) Square sealed secondary battery
JP2004235082A (en) Square sealed storage battery and its manufacturing method
JP3568387B2 (en) Manufacturing method of sealed battery
JP2000182576A (en) Battery
JP2000182576A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121225

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130301