JPS63291482A - Manufacture of superconducting composite material - Google Patents

Manufacture of superconducting composite material

Info

Publication number
JPS63291482A
JPS63291482A JP62127336A JP12733687A JPS63291482A JP S63291482 A JPS63291482 A JP S63291482A JP 62127336 A JP62127336 A JP 62127336A JP 12733687 A JP12733687 A JP 12733687A JP S63291482 A JPS63291482 A JP S63291482A
Authority
JP
Japan
Prior art keywords
superconducting
substrate
superlattice layer
layer
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62127336A
Other languages
Japanese (ja)
Inventor
Takao Shioda
塩田 孝夫
Hiromi Hidaka
日高 啓視
Koichi Takahashi
浩一 高橋
Masahiro Sato
正博 佐藤
Takeru Fukuda
福田 長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP62127336A priority Critical patent/JPS63291482A/en
Publication of JPS63291482A publication Critical patent/JPS63291482A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To easily form a superconducting circuit made of an oxide superconducting material on a substrate by forming a superlattice layer by alternately laminating a plurality of material layers which contain different components including component elements of the oxide superconducting material on the substrate, and then heat treating the superlattice layer. CONSTITUTION:A superlattice layer 2 made by alternately laminating a plurality of material layers which contain different components including at least one or more types of the component elements of an oxide superconducting material to be used is formed on a substrate 1. Then, the layer 2 on the substrate 1 is partly heated along a circuit pattern to be formed to react among the component elements of the layer 2 to generate a superconductor 12 having superconducting characteristic at the heated part of the surface of the substrate 1, thereby forming a superconducting circuit made of the superconductor 12. Thus, even if the superconducting material of oxide having inferior workability is used, the superconducting circuit can be easily formed without trouble, such as a disconnection or the like.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、基体の表面に酸化物系超電導材料からなる
超電導層を形成してなりジョセフソンコンピュータ、三
端子トランジスタ等の超電導デバイスなどに用いられる
超電導体の製造方法に関する。
[Detailed Description of the Invention] "Industrial Application Field" This invention forms a superconducting layer made of an oxide-based superconducting material on the surface of a substrate, and is used in superconducting devices such as Josephson computers and three-terminal transistors. The present invention relates to a method for manufacturing a superconductor.

「従来の技術」 近来、常電導状態から超電導状態へ遷移する臨界温度(
T c)が30に以上のY −B a−Cu−0系など
の一般式A −B −Cu−0系(ただし、AはLa、
Y、Yb。
"Conventional technology" Recently, the critical temperature (
General formula A -B -Cu-0 system such as Y -B a-Cu-0 system with T c) of 30 or more (however, A is La,
Y, Yb.

Sc等のIIIa族金属元素を示し、BはBa、Sr、
Ca等のアルカリ土類金属元素を示す)で表される酸化
物系の超電導材料が種々発見されつつある。これら超電
導体は、従来の超電導体に比べて臨界温度が高く、液体
窒素温度以上で超電導性を示すものもあることから実用
上極めて有望な素材とされている。そして、このような
超電導材料を、例えばジョセフソンコンピュータなどの
超電導デバイスに適用させるべく、基体の表面に形成す
べき回路パターンに沿って超電導材料からなる超電導回
路を形成する試みもなされている。
Represents a group IIIa metal element such as Sc, B represents Ba, Sr,
Various oxide-based superconducting materials represented by alkaline earth metal elements such as Ca are being discovered. These superconductors have higher critical temperatures than conventional superconductors, and some exhibit superconductivity above the temperature of liquid nitrogen, making them extremely promising materials for practical use. In order to apply such superconducting materials to superconducting devices such as Josephson computers, attempts have also been made to form superconducting circuits made of superconducting materials along circuit patterns to be formed on the surface of a substrate.

「発明が解決しようとする問題点」 ところが、上記A −B −Cu−0系超電導材料など
の酸化物系超電導材料は、極めて加工性が悪く、そのた
め、基体の表面に酸化物系超電導材料からなる回路を形
成しようとしても、断線等のトラブルを生じ易く、基体
の表面に超電導回路を形成するのが困難な問題があった
"Problems to be Solved by the Invention" However, oxide-based superconducting materials such as the A-B-Cu-0-based superconducting materials have extremely poor workability, and therefore, the surface of the substrate is coated with oxide-based superconducting materials. Even if an attempt was made to form a superconducting circuit, troubles such as wire breakage were likely to occur, making it difficult to form a superconducting circuit on the surface of the substrate.

この発明は、前記問題に鑑みてなされたもので、基体の
表面に酸化物系超電導材料からなる超電導回路を容易に
形成できる方法の提供を目的とする「問題点を解決する
ための手段」 この発明は、基体の表面に、酸化物系超電導材料の成分
元素の少なくとも一種類を含みかつ各々成分の異なる複
数の原料層を交互に多数積層して超格子層を形成し、次
いでこの超格子層に熱処理を施すことを問題解決の手段
とした。
This invention has been made in view of the above problems, and aims to provide a method for easily forming a superconducting circuit made of an oxide-based superconducting material on the surface of a substrate. The invention involves forming a superlattice layer by alternately stacking a plurality of raw material layers containing at least one component element of an oxide-based superconducting material and each having a different composition on the surface of a substrate, and then The solution to the problem was to apply heat treatment to the material.

「作用 」 基体表面に上記超格子層を形成し、この超格子層に熱処
理を施すことによって、超格子を形成する多数の層が一
体化されて超電導材料となり、基体表面に超電導回路が
形成される。
"Operation" By forming the above superlattice layer on the surface of the substrate and subjecting this superlattice layer to heat treatment, the many layers forming the superlattice are integrated into a superconducting material, and a superconducting circuit is formed on the surface of the substrate. Ru.

以下、この発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

この発明において使用される基体は、例えば、Si等の
単結晶半導体、GaAs、InP等の単結晶化合物半導
体、Sing、A 1.03、L i N bo 3等
の酸化物など、金属製基体および非金属製基体のいずれ
も使用可能であり、超電導体の使用目的によって適宜選
択して使用することができる。
Substrates used in this invention include, for example, single crystal semiconductors such as Si, single crystal compound semiconductors such as GaAs and InP, oxides such as Sing, A 1.03, LiN bo 3, etc., metal substrates, and Any non-metallic substrate can be used, and can be appropriately selected and used depending on the purpose of use of the superconductor.

また、この発明において使用される超電導材料としては
、Y −B a−Cu−0系などのA −B −Cu−
0系(ただし、AはY、La、Ce、Sc、Yb、Pr
、Nd。
In addition, superconducting materials used in this invention include A-B-Cu- such as Y-B a-Cu-0 series.
0 series (However, A is Y, La, Ce, Sc, Yb, Pr
, Nd.

P m、 S m、E u、G d、T b、D y、
Ho、E r、T m、L、 u等のma族金属元素の
中から選択されるli以上の金属元素、BはBa、Sr
、Ca、Be、Ra、Mg等のアルカリ土類金属元素の
中から選択される1種以上の金属元素)などの酸化物系
超電導材料が使用される。
P m, S m, E u, G d, T b, D y,
A metal element of li or more selected from the ma group metal elements such as Ho, E r, T m, L, u, etc., B is Ba, Sr
, one or more metal elements selected from alkaline earth metal elements such as Ca, Be, Ra, and Mg).

第1図ないし第4図はこの発明による超電導体の製造方
法の一例を説明するための図である。この例の製造方法
では、まず、基体1表面に、使用する酸化物系超電導材
料の成分元素の少なくとら一種類以上を含みかつ各々成
分の異なる複数の原料層を交互に多数積層してなる超格
子層2を形成する。基体1表面に超格子層2を形成する
方法としては、MOCVD法(Metalorgani
cCheIllical  V  apor −P h
aseDeposition)法やMBE(M o 1
 e cul a r  B e a m  E  p
 i t a x y)法などの薄膜形成方法を用いる
ことができるが、−例として、MOCVD法を用いた薄
膜形成操作を説明する。
1 to 4 are diagrams for explaining an example of the method for manufacturing a superconductor according to the present invention. In the manufacturing method of this example, first, on the surface of the substrate 1, a superconductor formed by alternately laminating a plurality of raw material layers containing at least one kind of the component elements of the oxide-based superconducting material to be used and each having a different composition. A lattice layer 2 is formed. As a method for forming the superlattice layer 2 on the surface of the substrate 1, MOCVD method (Metalorgan
cCheIllical V apor -P h
aseDeposition) method and MBE (Mo 1
e cul a r B e a m E p
Although a thin film forming method such as the ITAXY) method can be used, a thin film forming operation using the MOCVD method will be described as an example.

第2図はMOCVD法を実施するに好適な装置の1例を
示すものであって、この図に示される装置は、内部にホ
ルダー3が配置された真空チャンバー4と、複数のバブ
ラー5と、真空チャンバー4内を加熱する加熱手段6と
から構成されている。
FIG. 2 shows an example of an apparatus suitable for carrying out the MOCVD method, and the apparatus shown in this figure includes a vacuum chamber 4 in which a holder 3 is disposed, a plurality of bubblers 5, It is composed of a heating means 6 for heating the inside of the vacuum chamber 4.

真空チャンバー4内は、図示しない排気装置、例えばロ
ータリーポンプと拡散ポンプとの組み合わせたものなど
によって高度な真空状態を得られるようになっている。
A high degree of vacuum can be achieved within the vacuum chamber 4 by means of an exhaust device (not shown), such as a combination of a rotary pump and a diffusion pump.

この装置を用いて、基体1表面に、例えばA −B −
Cu−0系超電導材料の原料からなる超格子層2を形成
するには、各バブラー5内に超電導材料の原料となる複
数の成分元素の有機金属化合物を入れ、各バブラー5を
加熱するととらに、バブラー5内に水素ガスなどを導入
し、このガスと共に成分元素の有機金属化合物を真空チ
ャンバー4内に導入し、ホルダー3に保持された基体l
に付着させ、この基体1表面において有機金属化合物か
熱分解を起こし、これによって超電導材料の成分元素を
含む薄膜状の原料層が形成される。次に、各バブラー5
の吐出側に設けられた複数の切換弁7を切換えて、先の
有機金属化合物とは異なる有機金属化合物を真空チャン
バー4内に導入し、基体1表面に形成された先の眉の上
に、先の層とはことなる原料層を積層する。以上の積層
操作を繰り返し行なうことにより、第1図に示すように
、基体1表面に酸化物系超電導材料の成分元素の少なく
とも一種類を含みかつ各々成分の異なる複数の原料層を
交互に多数積層してなる超格子2が形成される。このよ
うなM OCV D法において使用される超電導材料の
成分元素の有機金属化合物としては、各成分元素のアル
コキシド、オキシケトン、シクロペンタジェニル化合物
が使用される。例えば、超電導材料をA −B −Cu
〜0系超電導材料とする場合、好適に使用される有機金
属化合物を例示すれば、アルカリ土類金属元素の有機金
属化合物として、アセチルアセトンカルシウム、アセチ
ルアセトンストロンチウム、アセチルアセトンバリウム
などであり、[[a族金属元素の有機金属化合物として
、トリスメチルシクロペンタジェニルランタン、トリス
シクロペンタジェニルセリウム、トリスシクロペンタジ
ェニルイツトリウム、トリスメチルシクロペンタジェニ
ルエルビウムなどであり、銅の有機金属化合物としてジ
メトキシ銅、アセチルアセトン銅、シクロペンタジェニ
ル銅トリエチル燐などである。
Using this device, for example, A-B-
In order to form the superlattice layer 2 made of the raw material of the Cu-0-based superconducting material, an organometallic compound of a plurality of constituent elements, which is the raw material of the superconducting material, is placed in each bubbler 5 and heated. , hydrogen gas or the like is introduced into the bubbler 5, and together with this gas, an organometallic compound as a component element is introduced into the vacuum chamber 4, and the substrate l held in the holder 3 is
The organic metal compound undergoes thermal decomposition on the surface of the substrate 1, thereby forming a thin film-like raw material layer containing the component elements of the superconducting material. Next, each bubbler 5
A plurality of switching valves 7 provided on the discharge side of the substrate 1 are switched to introduce an organometallic compound different from the previous organometallic compound into the vacuum chamber 4 onto the eyebrows formed on the surface of the substrate 1. A raw material layer different from the previous layer is stacked. By repeating the above lamination operation, as shown in FIG. 1, a large number of raw material layers containing at least one kind of component element of the oxide-based superconducting material and each having a different composition are alternately laminated on the surface of the substrate 1. A superlattice 2 is formed. As the organometallic compounds of the component elements of the superconducting material used in such MOCVD method, alkoxides, oxyketones, and cyclopentadienyl compounds of each component element are used. For example, superconducting material is A-B-Cu
-0 series superconducting material, examples of organometallic compounds suitably used include acetylacetone calcium, acetylacetone strontium, acetylacetone barium, etc. as organometallic compounds of alkaline earth metal elements, [[Group a metal Organometallic compounds of the element include trismethylcyclopentadienyl lanthanum, triscyclopentadienylcerium, triscyclopentagenyl yttrium, trismethylcyclopentadienyl erbium, etc., and organometallic compounds of copper include dimethoxycopper and acetylacetone. Copper, cyclopentadienyl copper triethyl phosphorus, etc.

また、超電導材料の原料層を多数積層する方法としては
、例えばA −B −Cu−0系超電導材料を作成する
場合、第3図に示すように、Cao 、 B ao 1
SrOなどアルカリ土類金属元素の酸化物層8と、Y、
O,、La01Ss+0、Nd1OsなどのIIIa族
金属元素の酸化物層9と、Cuo 、 Cu*0などの
銅の酸化物層lOの各層を交互に積層する方法や、第4
図に示すように、アルカリ土類金属元素とn[a族金属
元素の2つの成分元素の混合酸化物層11と銅の酸化物
層10の各層を交互に積層する方法などの積層方法が使
用される。また、超格子層2を構成する各層の厚さおよ
び積層数は、形成する超格子層2の厚さなどによって適
宜設定されるが、通常、1眉の厚さが20〜200人、
積層数はlO〜200程度に設定される。
Further, as a method of laminating many raw material layers of superconducting material, for example, when creating an A-B-Cu-0 based superconducting material, as shown in FIG. 3, Cao, Bao 1
An oxide layer 8 of an alkaline earth metal element such as SrO, Y,
A method of alternately laminating oxide layers 9 of group IIIa metal elements such as O, La01Ss+0, Nd1Os, and copper oxide layers 10 such as Cuo, Cu*0, and a fourth method.
As shown in the figure, a lamination method is used, such as a method of alternately laminating each layer of a mixed oxide layer 11 of two component elements, an alkaline earth metal element and an n[a group metal element, and a copper oxide layer 10. be done. In addition, the thickness of each layer and the number of layers constituting the superlattice layer 2 are appropriately set depending on the thickness of the superlattice layer 2 to be formed, etc., but usually, the thickness of one eyebrow is 20 to 200,
The number of laminated layers is set to about 10 to 200.

次に、形成すべき回路パターンに沿って、基体1表面の
超格子層2を部分的に加熱し、超格子層2の各成分元素
間に反応を起こさせて、基体1表面の加熱部分に超電導
性を有する超電導導体12が生成され、基体1表面にこ
の超電導導体12からなる超電導回路が形成される。こ
の加熱操作により、例えばA −B −Cu−0系の超
電導材料の原料から構成したものでは、層状ペロブスカ
イト構造の超電導物質が生成される。超格子層2を部分
的に加熱して超電導回路を形成するための加熱手段とし
ては、炭酸ガスレーザ、Arレーザ、エキシマレーザ、
YAGレーザなどのレーザビームによる加熱が好適であ
る。このレーザによる加熱では、加熱の浸透深さおよび
超電導導体12の巾が精密に設定できる利点がある。
Next, the superlattice layer 2 on the surface of the substrate 1 is partially heated along the circuit pattern to be formed, causing a reaction between each component element of the superlattice layer 2, and the heated portion on the surface of the substrate 1 is heated. A superconducting conductor 12 having superconductivity is generated, and a superconducting circuit made of this superconducting conductor 12 is formed on the surface of the base 1. By this heating operation, a superconducting material having a layered perovskite structure is produced, for example, in the case of a superconducting material made from an A-B-Cu-0-based superconducting material raw material. As a heating means for partially heating the superlattice layer 2 to form a superconducting circuit, carbon dioxide laser, Ar laser, excimer laser,
Heating by a laser beam such as a YAG laser is preferred. This laser heating has the advantage that the penetration depth of the heating and the width of the superconducting conductor 12 can be precisely set.

以上の操作によって、第5図に示すように、基体1表面
に超電導導体12からなる超電導回路が形成された構造
の超電導体13が作成される。
By the above operations, as shown in FIG. 5, a superconductor 13 having a structure in which a superconducting circuit made of the superconducting conductor 12 is formed on the surface of the base 1 is created.

この例による超電導体【3の製造方法では、基体1の表
面に、酸化物系超電導材料の成分元素の少なくとも一種
類を含みかつ各々成分の異なる複数の原料層を交互に多
数積層してなる超格子層2を形成し、次いでこの超格子
層2を形成すべき回路パターンに沿って部分的に加熱し
て、基体1表面に超電導導体12からなる超電導回路を
形成するので、加工性の悪い酸化物系超電導材料を用い
ても、断線等のトラブルを生じることなく、容易に超電
導回路を形成することができる。
In the manufacturing method of superconductor [3] according to this example, a superconductor is formed by alternately laminating, on the surface of a substrate 1, a plurality of raw material layers containing at least one kind of component element of an oxide-based superconducting material and each having a different composition. The lattice layer 2 is formed, and then this superlattice layer 2 is heated partially along the circuit pattern to be formed to form a superconducting circuit made of the superconducting conductor 12 on the surface of the base 1. Even if a physical superconducting material is used, a superconducting circuit can be easily formed without causing troubles such as disconnection.

また、超格子層2を加熱する手段として、レーザビーム
を用いた場合には、極めて微細な超電導回路であっても
、容易に形成できる効果がある。
Further, when a laser beam is used as a means for heating the superlattice layer 2, even extremely fine superconducting circuits can be easily formed.

また、面記A −H−Cu−0系の超電導材料は液体窒
素温度以上の極めて高い臨界温度を示し、酸化物系超電
導材料としてA −B −Cu−0系超電導材料を使用
したものでは、冷却媒体として液体ヘリウムが必要であ
った従来の超電導材料(NbaSnやNb−Ti合金な
どの超電導材料)の冷却条件より格段に有利な冷却条件
で使用できるために、このような超電導材料を用いた超
電導体13は冷却設備を簡略化できて低コストとなり、
取り扱いも容易になる。
In addition, the A-H-Cu-0-based superconducting material has an extremely high critical temperature higher than the liquid nitrogen temperature, and the A-B-Cu-0-based superconducting material used as the oxide superconducting material has The use of such superconducting materials is possible because they can be used under much more advantageous cooling conditions than conventional superconducting materials (superconducting materials such as NbaSn and Nb-Ti alloys) that require liquid helium as a cooling medium. Superconductor 13 can simplify the cooling equipment and is low cost.
It also becomes easier to handle.

なお、先の例では、MOCVD法を用いて超格子層2を
形成したが、これ以外の薄膜形成方法、例えばMBE法
によっても、同様の超格子層2を形成することができる
。第6図はMBE法による超格子層2の形成操作に好適
な装置の一例を示す図である。このMBE装置は、真空
チャンバー14内にホルダー15が配置され、真空チャ
ンバー14の壁部に先端部をホルダー側へ向けた複数の
ドーパント16が互いに離間して配置されてなるもので
あって、真空チャンバー14内をlo−1T orr程
度という超真空状態とし、ドーパント16に設けられた
超格子層2の材料を加熱するとともにこれを分子線とし
て発射し、これをホルダー15に保持された基体lに付
着させて薄層を構成するようになされている。なお、図
中符号17は、薄層の形成状態を観測するための計測機
器(RHEED  GUN)である。また符号18は液
体窒素シュラウド、19はシャッターであり、これらは
各ドーパント16から発射される分子線が互いに干渉し
ないようにその進行方向を規制するものである。また、
この装置において使用される超格子層2の原料としては
、使用する超電導材料を構成する成分元素の塩化物、酸
化物、有機金属化合物などが使用される。このMBE装
置によって、基体1表面に各々成分の異なる原料からな
る層を交互に多数積層することによって、第1図に示す
ものと同様の超格子層2が形成される。
In the previous example, the superlattice layer 2 was formed using the MOCVD method, but a similar superlattice layer 2 can also be formed by other thin film forming methods, such as the MBE method. FIG. 6 is a diagram showing an example of an apparatus suitable for forming the superlattice layer 2 by the MBE method. This MBE apparatus includes a holder 15 disposed within a vacuum chamber 14, and a plurality of dopants 16 with their tips facing the holder on the wall of the vacuum chamber 14, spaced apart from each other. The inside of the chamber 14 is brought into an ultra-vacuum state of approximately lo-1T orr, and the material of the superlattice layer 2 provided on the dopant 16 is heated and emitted as a molecular beam, which is then directed onto the substrate l held in the holder 15. It is adapted to be deposited to form a thin layer. Note that the reference numeral 17 in the figure is a measuring device (RHEED GUN) for observing the formation state of the thin layer. Further, reference numeral 18 is a liquid nitrogen shroud, and 19 is a shutter, which regulates the traveling direction of the molecular beams emitted from each dopant 16 so that they do not interfere with each other. Also,
As raw materials for the superlattice layer 2 used in this device, chlorides, oxides, organometallic compounds, etc. of component elements constituting the superconducting material used are used. With this MBE apparatus, a superlattice layer 2 similar to that shown in FIG. 1 is formed by alternately stacking a large number of layers made of raw materials with different components on the surface of a substrate 1.

また、先の例では、超格子層2をレーザビームによって
部分的に加熱して、基体1表面に所望の平面形状の超電
導回路を形成する方法であったが、超格子層2の加熱方
法はこれに限定されることなく、例えば基体1表面に超
格子層2を形成した後、この基体!全体を熱処理する加
熱方法を用いても良い。このような加熱方法では、基体
1表面に、超電導材料が薄層状に形成された超電導体を
作成することができる。また、このような加熱方法を用
いる場合、基体1表面に超格子層2を形成する際に、基
体1表面に予めマスクを施して、形成すべき回路パター
ンに沿う部分のみに超格子層2を形成し、次いで熱処理
を施すことにより、基体lの表面に超電導回路を形成す
ることも可能である。
Furthermore, in the previous example, the superlattice layer 2 was partially heated with a laser beam to form a superconducting circuit in the desired planar shape on the surface of the substrate 1, but the heating method for the superlattice layer 2 is Without being limited to this, for example, after forming the superlattice layer 2 on the surface of the base 1, this base! A heating method in which the entire structure is heat-treated may also be used. With such a heating method, a superconductor in which a superconducting material is formed in a thin layer on the surface of the base 1 can be created. In addition, when using such a heating method, when forming the superlattice layer 2 on the surface of the substrate 1, the surface of the substrate 1 is masked in advance so that the superlattice layer 2 is applied only to the portion along the circuit pattern to be formed. It is also possible to form a superconducting circuit on the surface of the base 1 by forming it and then subjecting it to heat treatment.

「実施例」 本発明方法に基づいて、基体表面に Y −8r−Cu
−0系超電導材料からなる超電導回路を形成した。基体
としてはA1!03を材料とした基体を用い、この基体
表面にMOCVD法で各原料層を多数積層し、超格子層
を形成した。なお、MOCVD装置とし・ては、第2図
に示すものとほぼ同様構成の装置を使用し゛た。また超
電導材料の原料となる有機金属化合物としては、アセチ
ルアセトンストロンチウム、トリスシクロペンタジェニ
ルイツトリウム、アセチルアセトン銅を使用した。これ
らの有機金属化合物を各々バブラー内に入れ、バブラー
内にArガスを送入して各金属有機化合物蒸気を順次真
空チャンバー内に導入させた。このときの操作条件は、 バブラーの温度・・・アセチルアセトンストロンチウム
が90℃、トリスシクロペンタジェニルイツトリウムが
200℃、アセチルアセトン銅が160℃に調整。
"Example" Based on the method of the present invention, Y-8r-Cu was formed on the surface of the substrate.
A superconducting circuit made of -0-based superconducting material was formed. A substrate made of A1!03 was used as the substrate, and a large number of layers of each raw material were laminated on the surface of this substrate by MOCVD to form a superlattice layer. As the MOCVD apparatus, an apparatus having almost the same configuration as that shown in FIG. 2 was used. Strontium acetylacetonate, triscyclopentagenyl yttrium, and copper acetylacetone were used as organometallic compounds serving as raw materials for the superconducting material. Each of these organometallic compounds was placed in a bubbler, and Ar gas was introduced into the bubbler to sequentially introduce each metal-organic compound vapor into the vacuum chamber. The operating conditions at this time were as follows: Bubbler temperature: Strontium acetylacetone was adjusted to 90°C, triscyclopentadienyl yttrium was adjusted to 200°C, and copper acetylacetone was adjusted to 160°C.

バブラー蒸発部真空度・・・4 X 10 ”’ To
rr真空チャンバー内温度・・・850℃(成長部)真
空チャンバー内真空度・・弓0−’ Torr以上の操
作条件によって、真空チャンバー内に保持された基体表
面にCuO層、Y、00層、Sr0層の各層を各々20
人の厚さで交互に積層し、これら各層を100層づつ積
層して、厚さ6000人の超格子層を形成した。次に、
この超格子層を2μm巾に集束したYAGレーザにより
加熱して、2μmルールの超電導回路を形成した。以上
の操作によって、第5図に示すものと同様構成の超電導
体を得た。
Bubbler evaporation section vacuum degree...4 x 10'' To
rr Temperature inside the vacuum chamber: 850°C (growth section) Degree of vacuum inside the vacuum chamber: Under operating conditions of 0-' Torr or more, a CuO layer, Y, 00 layer, 20 each of the Sr0 layers
The layers were alternately laminated to a thickness of 6,000 people, and 100 of these layers were laminated to form a superlattice layer with a thickness of 6,000 people. next,
This superlattice layer was heated with a YAG laser focused to a width of 2 μm to form a superconducting circuit with a 2 μm rule. By the above operations, a superconductor having a structure similar to that shown in FIG. 5 was obtained.

この超電導体の超電導回路部の臨界温度を測定した結果
、臨界温度は95にであった。
As a result of measuring the critical temperature of the superconducting circuit portion of this superconductor, the critical temperature was found to be 95.

「発明の効果」 以上説明したように、この発明による超電導体の製造方
法は、基体の表面に、酸化物系超電導材料の成分元素の
少なくとも一種類を含みかつ各々成分の異なる複数の原
料層を交互に多数積層して超格子を形成した後、この超
格子層に熱処理を施すことにより、基体表面に超電導材
料からなる超電導回路を生成することができるので、加
工性の悪い酸化物系超電導材料を用いても、断線等のト
ラブルを生じることなく、容易に超電導回路を形成する
ことができる。
"Effects of the Invention" As explained above, the method for manufacturing a superconductor according to the present invention provides a plurality of raw material layers containing at least one type of component element of an oxide-based superconducting material and each having a different composition on the surface of a substrate. After forming a superlattice by laminating a large number of layers alternately, by heat-treating this superlattice layer, a superconducting circuit made of superconducting material can be generated on the surface of the substrate. Even when using this method, a superconducting circuit can be easily formed without causing troubles such as disconnection.

【図面の簡単な説明】 第1図はこの発明による超電導体の製造方法の一例を説
明するための図であって、基体表面に超格子層を形成し
た状態を示す側断面図、第2図は、第1図に示す超格子
層の形成操作に好適に使用される装置の一例を示す概略
構成図、第3図および第4図は第1図に示す超格子層の
形成方法の例を示す第1図のA部分の拡大側断面図、第
5図はこの発明による超電導体の製造方法の一例により
製造された超電導体を示す側断面図、第6図は第1図に
示す超格子層の形成操作に好適に使用される装置の他の
例を示す概略構成図である。 ■・・・基体、2・・・超格子層、12・・・超電導導
体、13・・・超電導体。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a side sectional view illustrating an example of the method for manufacturing a superconductor according to the present invention, showing a state in which a superlattice layer is formed on the surface of a substrate, and FIG. 1 is a schematic diagram showing an example of an apparatus suitable for forming the superlattice layer shown in FIG. 1, and FIGS. 3 and 4 show an example of the method for forming the superlattice layer shown in FIG. FIG. 5 is a side sectional view showing a superconductor manufactured by an example of the superconductor manufacturing method according to the present invention, and FIG. 6 is an enlarged side sectional view of part A in FIG. It is a schematic block diagram which shows another example of the apparatus suitably used for layer formation operation. ■...Substrate, 2...Superlattice layer, 12...Superconductor, 13...Superconductor.

Claims (2)

【特許請求の範囲】[Claims] (1)基体の表面に、酸化物系超電導材料の成分元素の
少なくとも一種類を含みかつ各々成分の異なる複数の原
料層を交互に多数積層して超格子層を形成し、次いでこ
の超格子層に熱処理を施すことを特徴とする超電導体の
製造方法。
(1) A superlattice layer is formed by alternately stacking a plurality of raw material layers containing at least one kind of component element of the oxide-based superconducting material and each having a different composition on the surface of the substrate, and then this superlattice layer A method for producing a superconductor, characterized by subjecting it to heat treatment.
(2)上記超格子層に、形成すべき回路パターンに沿っ
て部分的に熱処理を施すことを特徴とする特許請求の範
囲第1項記載の超電導体の製造方法。
(2) The method for manufacturing a superconductor according to claim 1, characterized in that the superlattice layer is partially subjected to heat treatment along a circuit pattern to be formed.
JP62127336A 1987-05-25 1987-05-25 Manufacture of superconducting composite material Pending JPS63291482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62127336A JPS63291482A (en) 1987-05-25 1987-05-25 Manufacture of superconducting composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62127336A JPS63291482A (en) 1987-05-25 1987-05-25 Manufacture of superconducting composite material

Publications (1)

Publication Number Publication Date
JPS63291482A true JPS63291482A (en) 1988-11-29

Family

ID=14957401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62127336A Pending JPS63291482A (en) 1987-05-25 1987-05-25 Manufacture of superconducting composite material

Country Status (1)

Country Link
JP (1) JPS63291482A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450310A (en) * 1987-08-19 1989-02-27 Semiconductor Energy Lab Superconductive material
JPH02309684A (en) * 1989-05-25 1990-12-25 Nippon Steel Corp Manufacture of superconducting material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450310A (en) * 1987-08-19 1989-02-27 Semiconductor Energy Lab Superconductive material
JPH02309684A (en) * 1989-05-25 1990-12-25 Nippon Steel Corp Manufacture of superconducting material

Similar Documents

Publication Publication Date Title
US6159610A (en) Buffer layers on metal surfaces having biaxial texture as superconductor substrates
US6150034A (en) Buffer layers on rolled nickel or copper as superconductor substrates
US7463915B2 (en) Stacked filamentary coated superconductors
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
JPH0725640B2 (en) Superconductor device with epitaxial structure
JPH01104774A (en) Production of thin film of oxide superconductor
JPS63291482A (en) Manufacture of superconducting composite material
US7371586B2 (en) Superconductor and process for producing the same
JPS63242532A (en) Super conductor and its manufacture
US5340793A (en) Layer-by-layer process for forming Bi -containing oxide superconducting films
KR100764527B1 (en) Laminated film and method of forming film
JP3425422B2 (en) Superconducting element manufacturing method
JP2804102B2 (en) Oxide superlattice material
JP4065653B2 (en) Perovskite oxide laminated film and method for producing the same
KR100336940B1 (en) NiO thin film epixailly deposited on a cube-textured nickel substrate by chemical vapor deposition method and manufacturing method thereof
JP2781331B2 (en) Manufacturing method of thin film superconductor
JP4326634B2 (en) Mercury-based cuprate superconducting thin film and manufacturing method
EP1662514A1 (en) Process for producing oxide superconductive wire
JP3240686B2 (en) Method for producing high-quality oxide superconducting thin film and superconducting junction
JPH01303770A (en) Manufacture of superconductive base transistor
JPH04113683A (en) Manufacture of thin film device
JPS63301576A (en) Manufacture of superconducting circuit
JPH02137380A (en) Manufacture of superconducting device
JPH04330789A (en) Method of forming superconducting junction using oxide superconductor
JPH03223110A (en) Oxide superconductor thin film