JPS63291365A - Redox flow type battery - Google Patents

Redox flow type battery

Info

Publication number
JPS63291365A
JPS63291365A JP62124033A JP12403387A JPS63291365A JP S63291365 A JPS63291365 A JP S63291365A JP 62124033 A JP62124033 A JP 62124033A JP 12403387 A JP12403387 A JP 12403387A JP S63291365 A JPS63291365 A JP S63291365A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
electrode
redox flow
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62124033A
Other languages
Japanese (ja)
Inventor
Yoshio Nakamura
芳男 中村
Hiroshi Takaku
洋 高久
Tomonori Horikawa
堀川 偕範
Yoshiki Fujisawa
藤沢 良樹
Shigeki Yamazaki
茂樹 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62124033A priority Critical patent/JPS63291365A/en
Publication of JPS63291365A publication Critical patent/JPS63291365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To make it possible to eliminate bad effects on the battery performance by providing electrolyte reversing devices in piping systems for supplying electrolyte to an electrolytic cell. CONSTITUTION:For normal operation, electromagnetic valves 21a, 22a, 21b, 22b of electrolyte reversing devices 25a and 25b are opened, whole the other electromagnetic valves are all closed, and pumps 9 and 10 are actuated for circulating electrolyte. The electrolyte goes from a piping system 1 to an electrolytic cell part 6 in the direction shown by an arrow of a continuous line for both of the positive and negative pole sides, and gets out of a piping system 2 in the direction of an arrow of a dot line to return to each electrolyte tank 7 and 9. As a result, electrolyte does not go through piping systems 3 or 4. If a phenomenon which seems to give bad effects on the battery performance in the middle of charge and discharge, the electrolyte reversing devices 25a and 25b are actuated for reversing electrolyte so as to eliminate fluff in carbon deposited in a liquid discharge side slit, not illustrated, or the like.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レドックスフロー型電池に関し、さらに詳
しくは、電解液に混入する炭素繊維電極から脱離したケ
バによって発生する電解液流路の目づまりの除去手段を
電解液配管に付設したレドックスフロー型電池に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a redox flow battery, and more specifically, the present invention relates to a redox flow battery, and more specifically, the present invention relates to a redox flow type battery, and more specifically, to a redox flow type battery, and more specifically, to prevent the formation of an electrolyte flow path caused by fluff detached from a carbon fiber electrode mixed in an electrolyte. The present invention relates to a redox flow battery in which a clogging removal means is attached to the electrolyte piping.

[従来の技術] レドックスフロー型電池はオフビーク時の余剰電力を貯
蔵し、ピーク時にこれを放出することにより、昼夜間、
週間、早開における電力需要の負荷変動をなくすロード
レベリングを達成することを目的とし、活物質である電
解液貯蔵タンクの容量を変えることにより、出力の調整
を特徴とする特長を有している。
[Conventional technology] Redox flow batteries store surplus power during off-peak periods and release it during peak periods, thereby providing power throughout the day and night.
The aim is to achieve load leveling that eliminates load fluctuations in power demand during early opening hours during the week, and has the feature of adjusting output by changing the capacity of the electrolyte storage tank, which is the active material. .

レドックスフロー型電池は現在開発中であり実用電池で
はない。しかし、例えば実験用の積層形の電解液流通型
電池としては、特願昭62−42791号として出願済
みのものがある。第4図はこの電池の基本構成である単
セルで形成されるレドックスフロー型電池の模式説明図
である。
The redox flow battery is currently under development and is not a practical battery. However, for example, as a stacked electrolyte flow type battery for experimental use, there is one that has been filed as Japanese Patent Application No. 42791/1983. FIG. 4 is a schematic illustration of a redox flow type battery formed from a single cell, which is the basic configuration of this battery.

第4図において、1は正電極、2は負電極でこの電極1
及び2で電解槽を形成し、イオン交換膜3を隔壁として
正極室4及び負極室5が形成され、単セルをなす電解槽
部6を構成している。また、7及び8はそれぞれ正極電
解液タンク及び負極電解液タンクであり、それぞれの電
池活物質を溶解した電解液が充填されている。正φ負極
電解液タンク7及び8はそれぞれ正電極室4及び負電極
室5に配管によって接続されるとともに、この配管に設
けられたポンプ9.lOによって電池運転時、すなわち
、充放電中に各電解液の循環が行われる。
In Figure 4, 1 is a positive electrode, 2 is a negative electrode, and this electrode 1
and 2 form an electrolytic cell, and a positive electrode chamber 4 and a negative electrode chamber 5 are formed with the ion exchange membrane 3 as a partition wall, and constitute an electrolytic cell section 6 forming a single cell. Moreover, 7 and 8 are a positive electrode electrolyte tank and a negative electrode electrolyte tank, respectively, and are filled with electrolyte solutions in which respective battery active materials are dissolved. The positive φ negative electrode electrolyte tanks 7 and 8 are connected to the positive electrode chamber 4 and the negative electrode chamber 5 by piping, respectively, and a pump 9. Each electrolytic solution is circulated by lO during battery operation, that is, during charging and discharging.

以上のような構成によってレドックスフロー型電池の出
力は、電池電圧を交流化する変換器11で交流出力され
、この交流出力が変電設備12を介して発電所13及び
需要家14に電力を供給し、電力貯蔵用電池としての機
能を果たすようになっている。
With the above configuration, the output of the redox flow battery is outputted as AC by the converter 11 that converts the battery voltage into AC, and this AC output supplies power to the power plant 13 and the customer 14 via the substation equipment 12. , which functions as a power storage battery.

ところで、上記電池の電解槽を形成する単位セルは、第
5図に示すような複数個の部材から構成されている。す
なわち、積層型電解槽に用いられるバイポーラ電極は、
バイポーラ板15を挾む正電極1と負電極2とから構成
されており、正電極1及び負電極2はいずれも同質の炭
素布で形成されている。そして、積層型の電解槽はバイ
ポーラ板15、正負電極1,2、イオン交換膜3及び電
極支持枠1a、2a及びバイポーラ板15の支持枠15
aを構成部材として、イオン交換膜3及びバイポーラ板
15を介して電極1.2を交互に積層し、正極電極室4
及び負極電極室5を構成している。なお、1B、 16
aは正極電解液用マニホールド、17.17aは負極電
解液用マニホールドである。
Incidentally, the unit cell forming the electrolytic cell of the above battery is composed of a plurality of members as shown in FIG. In other words, the bipolar electrode used in the stacked electrolytic cell is
It is composed of a positive electrode 1 and a negative electrode 2 sandwiching a bipolar plate 15, and both the positive electrode 1 and the negative electrode 2 are made of the same carbon cloth. The stacked electrolytic cell includes a bipolar plate 15, positive and negative electrodes 1 and 2, an ion exchange membrane 3, electrode support frames 1a and 2a, and a support frame 15 for the bipolar plate 15.
Using a as a component, electrodes 1.2 are alternately stacked via an ion exchange membrane 3 and a bipolar plate 15, and a positive electrode chamber 4 is formed.
and constitutes a negative electrode chamber 5. In addition, 1B, 16
17.17a is a manifold for positive electrode electrolyte, and 17.17a is a manifold for negative electrode electrolyte.

正・負極用の各電解液は電極支持枠1 a、  2 a
Each electrolyte for positive and negative electrodes is provided in electrode support frames 1a and 2a.
.

15aとイオン交換膜3に設けられたマニホールド16
、16a及び17.17aを通して各電極室に供給され
る。この様子を単セルの場合につき負電極2の場合につ
いて第6図の正面説明図で示し、通常の電解液の流れを
第7図の模式説明図で示す。
15a and a manifold 16 provided on the ion exchange membrane 3
, 16a and 17.17a to each electrode chamber. This situation is shown in the front explanatory view of FIG. 6 for the case of the negative electrode 2 in the case of a single cell, and the typical flow of the electrolytic solution is shown in the schematic explanatory view of FIG. 7.

第6図において、液入側マニホールド17を流れる電解
液は、この液入側マニホールド17と、このマニホール
ド17の近傍の電極室5側に設けた切り欠き部19との
間に設けられた液入側スリット孔20を通って電極室の
液入側だまり部18に入り、負電極2の部分を通って液
出側液だまり部18aと液出側切り欠き部19a及び液
出側スリット孔20aを経て液出側マニホールド17a
に至り、次の負電極室に移送されるようになっている。
In FIG. 6, the electrolytic solution flowing through the liquid inlet manifold 17 is transferred to the liquid inlet provided between the liquid inlet manifold 17 and a notch 19 provided on the electrode chamber 5 side near this manifold 17. It passes through the side slit hole 20 and enters the liquid inlet side pool part 18 of the electrode chamber, passes through the negative electrode 2 part and enters the liquid outlet side liquid pool part 18a, the liquid outlet side notch part 19a, and the liquid outlet side slit hole 20a. through the liquid outlet side manifold 17a
It is then transferred to the next negative electrode chamber.

なお、電解液は第7図の矢印に示すように、通常運転時
は正負極用の各電解液とも、液入側配管系31a  (
負極側)及び31b(正極側)から電解槽部6に入り、
液出側配管系32a(負極側)及び32b(正極側)を
通って、電解槽部6からの液流路にしたがい、ポンプ9
及び10によってそれぞれ循環されるようになっている
As shown by the arrows in Fig. 7, during normal operation, the electrolytes for both the positive and negative electrodes are connected to the liquid inlet side piping system 31a (
It enters the electrolytic cell section 6 from the negative electrode side) and 31b (positive electrode side),
The pump 9 follows the liquid flow path from the electrolytic cell section 6 through the liquid outlet piping system 32a (negative electrode side) and 32b (positive electrode side).
and 10, respectively.

以上、レドックスフロー型電池の電解槽に関して主とし
てその構造について説明したが、この動作原理はすでに
周知の技術であるのでその説明は割愛することとし、後
記のこの発明の説明に必要な電解槽部及び配管系の構成
説明のみに止めた。
Above, we have mainly explained the structure of the electrolytic cell of the redox flow battery, but since the principle of operation is already a well-known technology, we will omit the explanation. I limited myself to only explaining the configuration of the piping system.

電解液を上記マニホールド部、スリット孔を通してセル
内に送りこむ際、この電解液には導電性があるため、電
池に電流が流れる際、これらの液通路を通して流れる電
流が損失電流(シャントカレントロス)となり、電流効
率を低下させる原因となる。この損失電流量はスリット
孔径に比例し、スリット長に反比例する。なお、現在、
一般的に実施されているスリット孔径は0.5〜2.0
ms程度である。
When the electrolyte is sent into the cell through the manifold section and slit holes, this electrolyte has conductivity, so when current flows through the battery, the current flowing through these liquid paths becomes a loss current (shunt current loss). , which causes a decrease in current efficiency. The amount of current loss is proportional to the slit diameter and inversely proportional to the slit length. Furthermore, currently,
The commonly used slit hole diameter is 0.5 to 2.0
It is about ms.

また、電極として用いられる炭素布は、電池性能を向上
させるために活性化処理が施こされており、この処理に
より電解液が電極内を流れるときに、炭素繊維のケバが
発生しやすい性質を持っている。
In addition, the carbon cloth used as the electrode is activated to improve battery performance, and this treatment reduces the tendency for carbon fibers to fluff when the electrolyte flows through the electrode. have.

[発明が解決しようとする問題点] 上記のような従来のレドックスフロー型電池の電極構造
は電池性能を向上させるため、すなわち、上記のスリッ
ト部を設けることによりシャントカレントロスを低減す
る方策を採用しているので、上記のように電極を形成す
る炭素布から発生した繊維の微粒片状のケバがとくに電
解液出側スリット部に堆積しやすい状況にある。このた
め、上記ケバによって電極室内の液流路(と(にスリッ
ト部)が目づまりして所定量の電解液が供給できなかっ
たり、圧損が大きくなる問題がある。
[Problems to be solved by the invention] In order to improve battery performance, the electrode structure of the conventional redox flow battery as described above adopts a measure to reduce shunt current loss by providing the above-mentioned slit portion. Therefore, as mentioned above, the fiber particles generated from the carbon cloth forming the electrode are likely to accumulate particularly in the electrolyte outlet side slit. For this reason, there is a problem that the liquid flow path (and the slit portion) in the electrode chamber is clogged by the fluff, making it impossible to supply a predetermined amount of electrolytic solution or increasing pressure loss.

また、積層された電極室のうち、その一部にだけ目づま
りが生じた時には各電極室への電解液の等配が行えなく
なり、電池性能に悪影響を与える。
Furthermore, if only a portion of the stacked electrode chambers becomes clogged, the electrolyte cannot be distributed evenly to each electrode chamber, which adversely affects battery performance.

すなわち、積層された電極室の一部の液出側スリットに
若干のケバが堆積した場合、電極室内の液圧はバイポー
ラ板、イオン交換膜を介して隣り合う他の電極室内の液
圧より若干高めになり、その結果ケバの堆積した電極室
では電極とイオン交換膜の間にわずかな空げきを生じる
。このとき、この電極室内では電解液がこの空げきを優
先して流れ、電極内の電解液によどみを生じる。この電
解液の電極室内でのよどみはレドックスフロー型電池の
特性上、その電池性能に最も悪影響を与えるものの一つ
である。
In other words, if some fluff accumulates in the liquid outlet side slits of some of the stacked electrode chambers, the liquid pressure in the electrode chamber will be slightly lower than the liquid pressure in other adjacent electrode chambers through the bipolar plate and ion exchange membrane. As a result, in the electrode chamber where the fluff has accumulated, a slight gap is created between the electrode and the ion exchange membrane. At this time, the electrolytic solution flows within this electrode chamber preferentially through this gap, causing stagnation in the electrolytic solution within the electrode. This stagnation of the electrolyte within the electrode chamber is one of the things that most adversely affects the battery performance due to the characteristics of the redox flow battery.

さらに、セル内で発生した電極ケバが液出側スリット孔
部に堆積し、液流路を閉塞した場合、特にそれが負極部
の場合は水素発生の原因となる。
Furthermore, if the electrode fuzz generated in the cell accumulates in the liquid outlet side slit hole and blocks the liquid flow path, especially if it is in the negative electrode part, it becomes a cause of hydrogen generation.

この発明は上記の問題点を解決するためになされたもの
で、上記のように、電極材から発生した微粒片状のケバ
がスリットなどに堆積して液流路を閉塞した場合に、流
路方向を逆転してケバの堆積を除去するような目づまり
除去手段を付加することにより、電池性能に及ぼす悪影
響を排除することのできる配管系を備えたレドックスフ
ロー型電池を得ることを目的とするものである。
This invention was made in order to solve the above problem, and as mentioned above, when fine particle fluff generated from the electrode material accumulates in the slit etc. and blocks the liquid flow path, The purpose is to obtain a redox flow battery with a piping system that can eliminate the negative effects on battery performance by adding a clogging removal means that removes the accumulation of fluff by reversing the direction. It is something.

[問題点を解決するための手段] この発明に係るレドックスフロー型電池は、電解槽へ電
解液を供給する配管系に電解液逆流装置を付設したもの
である。
[Means for Solving the Problems] The redox flow battery according to the present invention has an electrolyte backflow device attached to the piping system that supplies electrolyte to the electrolytic cell.

[作用] この発明においては、電解槽へ電解液を供給する配管系
に付加して電解液逆流装置を設け、圧損の増大、セル抵
抗の増加や所定の充電率に達しないうちに水素が発生す
るなど電極からのケバの目づまりに起因すると思われる
現象が確認された場合にマニホールド、スリット孔の液
入側及び液出側を逆にし、電解液の流れを逆向きにする
構成としたから、この液逆流によってスリット孔に堆積
したケバを除去する。したがって上記の目づまり除去作
業を行った後は、再び電池の正常運転に復帰することが
可能となる。
[Function] In this invention, an electrolyte backflow device is provided in addition to the piping system that supplies electrolyte to the electrolytic cell, and this prevents an increase in pressure loss, an increase in cell resistance, and generation of hydrogen before a predetermined charging rate is reached. If a phenomenon that is thought to be caused by clogging of fluff from the electrode is confirmed, the liquid inlet and outlet sides of the manifold and slit holes are reversed, and the flow of the electrolyte is reversed. The fluff accumulated in the slit holes is removed by this liquid backflow. Therefore, after performing the above-mentioned clogging removal work, it is possible to restore the battery to normal operation again.

[実施例] 第1図はこの発明の一実施例を示すレドックスフロー型
電池の模式説明図である。図において、符号1〜11及
び31a、31b、32a及び32bは第4図及び第7
図の説明に用いた部分と同一部分である。
[Example] FIG. 1 is a schematic illustration of a redox flow battery showing an example of the present invention. In the figures, the numbers 1 to 11 and 31a, 31b, 32a and 32b are the same as those in Figures 4 and 7.
This is the same part as the part used to explain the figure.

なお、この実施例においては、正極側、負極側とも同一
構成であるので、おもに負極側について説明する。
In this example, since both the positive electrode side and the negative electrode side have the same configuration, the negative electrode side will be mainly described.

第1図に示したように、この発明のレドックスフロー型
電池の電解液用配管系は、負極液タンク8と負極室5と
を接続する系1の液入側配管31aと系2の液出側配管
32aに、点線枠で示した電解液逆流装置25aを付設
して液路が自在に開閉できるようにしたものである。
As shown in FIG. 1, the electrolyte piping system of the redox flow battery of the present invention consists of a liquid inlet pipe 31a of system 1 that connects the negative electrode liquid tank 8 and the negative electrode chamber 5, and a liquid outlet pipe 31a of system 2. An electrolyte backflow device 25a indicated by a dotted frame is attached to the side pipe 32a so that the liquid path can be opened and closed freely.

すなわち、この電解液逆流装置25aは、系1で示した
配管31aに分岐管26a%Va工電磁弁21a及び分
岐管27aを、系2で示した配管32aに分岐管28a
Sva2電磁弁22a及び分岐管29aをそれぞれ接続
し、かつ分岐管26aと分岐管29aを結ぶ系3で示し
た配管33aにva3電磁弁23aを、分岐管27aと
分岐管28aを結ぶ系4で示す配管34aにva4電磁
弁24aをそれぞれ接続した配管系で構成されたもので
ある。
That is, this electrolyte backflow device 25a includes a branch pipe 26a%Va electromagnetic valve 21a and a branch pipe 27a in the pipe 31a shown in system 1, and a branch pipe 28a in the pipe 32a shown in system 2.
The VA3 solenoid valve 23a is connected to the piping 33a shown in System 3, which connects the Sva2 solenoid valve 22a and the branch pipe 29a, and connects the branch pipe 26a and the branch pipe 29a, and the system 4 connects the branch pipe 27a and the branch pipe 28a. It is composed of a piping system in which VA4 electromagnetic valves 24a are connected to piping 34a, respectively.

同様にして、正極側の配管31bと32bに、分岐管2
Bb、27b、28b及び29bと電磁弁21b  (
V5.) 。
Similarly, a branch pipe 2 is connected to the positive electrode side pipes 31b and 32b.
Bb, 27b, 28b and 29b and solenoid valve 21b (
V5. ).

22b  (V  ) 、 23b  (V  )及び
24b  (V 、4)とb2       b3 が負極側の場合と同一の組立てによって構成された電解
液逆流装置25bが接続される。
22b (V), 23b (V), and 24b (V, 4) are connected to an electrolytic solution backflow device 25b configured by the same assembly as in the case where b2 and b3 are on the negative electrode side.

以下、上記のように従来の配管系に付設した電解液逆流
装置の動作を説明する。
The operation of the conventional electrolyte backflow device attached to the piping system as described above will be described below.

第2図は通常の充放電時における電解液流の動作を示す
説明図である。通常運転時は、電解液逆流装置25a及
び25bの電磁弁21a  (Val) 、 22a(
V  ) 、 21b  (V、、)及び22b(v、
2)を開き、残りの電磁弁はすべて閉じた状態でポンプ
9及びlOを作動して電解液を循環する。電解液は正・
負極側とも実線の矢印で示す方向で配管系1より電解槽
部6に入り、点線矢印の方向に配管系2を経て出て各電
解液タンク7及び8に戻るから、電解液は配管系3及び
系4は通らないようになっている。
FIG. 2 is an explanatory diagram showing the operation of the electrolyte flow during normal charging and discharging. During normal operation, the solenoid valves 21a (Val) and 22a (
V ), 21b (V, ) and 22b (v,
2) is opened, and the remaining electromagnetic valves are all closed, and the pump 9 and IO are operated to circulate the electrolyte. The electrolyte is positive
Both negative electrode sides enter the electrolytic cell section 6 from the piping system 1 in the direction shown by the solid arrow, exit through the piping system 2 in the direction of the dotted arrow, and return to each electrolyte tank 7 and 8, so the electrolyte flows into the piping system 3. and system 4 are not allowed to pass.

第3図は、充放電の途中で、圧損の増加、セル抵抗の増
大等電池性能に悪影響を及ぼすと思われる現象が出た場
合に、前記のよに液出側スリット孔20aなどに堆積し
た炭素布のケバを除去するために、電解液逆流装置25
a及び25bを作動させて電解液を逆流する場合の動作
説明図である。
Figure 3 shows that when phenomena that appear to have a negative impact on battery performance, such as an increase in pressure loss or an increase in cell resistance, occur during charging and discharging, deposits are deposited on the liquid outlet side slit hole 20a, etc., as described above. Electrolyte backflow device 25 is used to remove fluff from the carbon cloth.
It is an explanatory diagram of operation when actuating a and 25b to reverse flow the electrolyte.

すなわち、電解液の逆流操作時には、電磁弁23a(V
a3)、24a(Va4)、23b(vb3)及び24
b(vb4)を開き、残りの電磁弁はすべて閉じた状態
でポンプ9及び10を作動して電解液を循環する。電解
液は正負極液とも配管系1から系3を通り系2の配管系
を通って電解槽に実線矢印のように入り、系1から系4
を通り系2を経て点線矢印のように出て逆流するように
なっている。
That is, during the electrolyte backflow operation, the solenoid valve 23a (V
a3), 24a (Va4), 23b (vb3) and 24
b (vb4) is opened, and the remaining electromagnetic valves are all closed, and the pumps 9 and 10 are operated to circulate the electrolyte. The electrolytic solution for both the positive and negative electrodes passes from piping system 1 to system 3, passes through the piping system of system 2, and enters the electrolytic cell as shown by the solid line arrow, and then from system 1 to system 4.
It passes through system 2, exits as shown by the dotted arrow, and flows backwards.

以上第2図及び第3図における液流れモードと電磁弁操
作の要領を第1表にまとめて示した。
The liquid flow modes and solenoid valve operation procedures shown in FIGS. 2 and 3 are summarized in Table 1.

第1表 なお、上記実施例においては開閉弁として電磁弁を使用
した場合について説明したが、同一の機能をもつ他のバ
ルブ等を使用しても同様の効果をもつことは言うまでも
ない。
Table 1 Note that in the above embodiment, a case has been described in which a solenoid valve is used as an on-off valve, but it goes without saying that the same effect can be obtained even if other valves having the same function are used.

[発明の効果] この発明は以上説明したとおり、レドックスフロー型電
池の電解液供給プラント系に液の流れを切り替える電解
液逆流装置を取り入れることにより、液出側スリット孔
に電極ケバが堆積した場合、液の流れを逆にし、堆積し
たケバを除去し、容易に通常流れに戻すことが可能とな
る。
[Effects of the Invention] As explained above, the present invention incorporates an electrolyte backflow device that switches the flow of the electrolyte into the electrolyte supply plant system of a redox flow battery, thereby eliminating the problem in the case where electrode fluff accumulates in the slit hole on the liquid outlet side. , it becomes possible to reverse the flow of the liquid, remove the accumulated fluff, and easily return to normal flow.

したがって、従来のレドックスフロー型電池に不可避の
電極ケバの発生によって生じたスリット部の目づまりに
よる圧損の増加、所定量の電解液が供給できないこと及
び各セルへの電解液の等配が行えない等の電池性能に悪
影響を及ぼすと思われる諸問題点が解消され、良好な電
池性能の維持に効果がある。
Therefore, the pressure drop increases due to clogging of the slits caused by the inevitable occurrence of electrode fluff in conventional redox flow batteries, the inability to supply a predetermined amount of electrolyte, and the inability to equally distribute electrolyte to each cell. Problems that are considered to have an adverse effect on battery performance, such as the following, are resolved, and this is effective in maintaining good battery performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示すレドックスフロー型
電池の模式説明図、第2図は第1図の電池の通常運転時
の電解液流動作説明図、第3図は第1図の電池の電解液
逆流運転時の電解液流動作説明図、第4図は従来のレド
ックスフロー型電池の括本模式図、第5図は従来の積層
形電池の電解槽を形成する単セル構成説明図、第6図は
負電極室における電極支持枠と電解液の流れ説明図、第
7図は通常の電解液配管の電解液流れ説明図である。 図において、21a、22a、23a及び24aは負極
側配管の電磁弁、21b、22b、23b及び24bは
正極側配管の電磁弁、26a、 27a、 28a及び
29aは負極側配管の分岐管、26b、27b、28b
及び29bは正極側配管の分岐管、25aは正極側の電
解液逆流装置、25bは正極側の電解液逆流装置である
。 なお、図中同一符号は同−又は相当部分を示す。
Fig. 1 is a schematic explanatory diagram of a redox flow type battery showing an embodiment of the present invention, Fig. 2 is an explanatory diagram of electrolyte flow operation during normal operation of the battery of Fig. An explanatory diagram of the electrolyte flow operation during electrolyte backflow operation of the battery, Figure 4 is a schematic diagram of a conventional redox flow type battery, and Figure 5 is an explanation of the single cell configuration forming the electrolytic cell of a conventional stacked battery. FIG. 6 is an explanatory diagram of the electrode support frame and the flow of electrolyte in the negative electrode chamber, and FIG. 7 is an explanatory diagram of the flow of electrolyte in normal electrolyte piping. In the figure, 21a, 22a, 23a and 24a are solenoid valves on the negative side piping, 21b, 22b, 23b and 24b are solenoid valves on the positive side piping, 26a, 27a, 28a and 29a are branch pipes on the negative side piping, 26b, 27b, 28b
29b is a branch pipe of the positive electrode side piping, 25a is an electrolyte backflow device on the positive electrode side, and 25b is an electrolyte backflow device on the positive electrode side. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 電解槽と電解液タンクを継合する配管系を備えた電解液
循環形積層構造のレドックスフロー型電池において、 上記配管系に電解液逆流装置を付設したことを特徴とす
るレドックスフロー型電池。
[Claims] A redox flow battery having an electrolyte circulation layered structure and having a piping system connecting an electrolytic cell and an electrolyte tank, characterized in that an electrolyte backflow device is attached to the piping system. Redox flow battery.
JP62124033A 1987-05-22 1987-05-22 Redox flow type battery Pending JPS63291365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124033A JPS63291365A (en) 1987-05-22 1987-05-22 Redox flow type battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124033A JPS63291365A (en) 1987-05-22 1987-05-22 Redox flow type battery

Publications (1)

Publication Number Publication Date
JPS63291365A true JPS63291365A (en) 1988-11-29

Family

ID=14875362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124033A Pending JPS63291365A (en) 1987-05-22 1987-05-22 Redox flow type battery

Country Status (1)

Country Link
JP (1) JPS63291365A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044567A (en) * 1990-04-19 1992-01-09 Sumitomo Electric Ind Ltd Redox flow battery
WO2013051412A1 (en) * 2011-10-04 2013-04-11 住友電気工業株式会社 Cell frame, cell stack and redox flow battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH044567A (en) * 1990-04-19 1992-01-09 Sumitomo Electric Ind Ltd Redox flow battery
WO2013051412A1 (en) * 2011-10-04 2013-04-11 住友電気工業株式会社 Cell frame, cell stack and redox flow battery
US9640813B2 (en) 2011-10-04 2017-05-02 Sumitomo Electric Industries, Ltd. Cell frame, cell stack, and redox flow battery

Similar Documents

Publication Publication Date Title
JP3626096B2 (en) Redox flow battery system and cell connection structure
EP2514015A1 (en) Flow battery with interdigitated flow field
EP0165000A2 (en) Metal-halogen secondary battery
CN113270624B (en) Flow battery subsystem with catalyst management and electrolyte capacity rebalancing
WO2019131944A1 (en) Redox flow battery and operation method therefor
JPS63291365A (en) Redox flow type battery
JPS61156641A (en) Zinc-bromine battery
JPH10308232A (en) Electrolyte circulation type battery with internal resistance recovery mechanism
CN208460880U (en) A kind of flow battery and electrode structure improving electrolyte distributing homogeneity
CN112787003B (en) Metal-air fuel cell and railway vehicle using same
JP2006012425A (en) Operation method of redox flow battery
JP3494689B2 (en) Electrolyte flow battery
JPS63281362A (en) Redox flow type battery
US3522098A (en) Fuel cells with device for reducing electrolyte short-circuit currents
JPH0765871A (en) Electrolyte circulating type layer built secondary battery
US4677039A (en) Zinc-bromine battery
JPH02183968A (en) Cell stack for electrolyte circulation type secondary battery and cell stack fitting member
JPH01264178A (en) Self-discharge preventing method for electrolyte low type cell
GB2569360A (en) Redox flow battery and method of operation
JPH02109275A (en) Metal-bromine battery
JPS60253154A (en) Electrolyte supply type battery of self-discharge prevention ability
JP2003036880A (en) Redox flow battery
JPH0449823Y2 (en)
JPS62271373A (en) Electrolyte circulation type metal-halogen battery
KR20190063103A (en) Redox flow battery