JPS62271373A - Electrolyte circulation type metal-halogen battery - Google Patents

Electrolyte circulation type metal-halogen battery

Info

Publication number
JPS62271373A
JPS62271373A JP61113267A JP11326786A JPS62271373A JP S62271373 A JPS62271373 A JP S62271373A JP 61113267 A JP61113267 A JP 61113267A JP 11326786 A JP11326786 A JP 11326786A JP S62271373 A JPS62271373 A JP S62271373A
Authority
JP
Japan
Prior art keywords
electrolyte
storage tank
negative electrode
electrode side
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61113267A
Other languages
Japanese (ja)
Inventor
Kyoichi Tange
恭一 丹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61113267A priority Critical patent/JPS62271373A/en
Publication of JPS62271373A publication Critical patent/JPS62271373A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To decrease electrolyte resistance to increase the energy density of a battery by arranging partition plates which divides an electrolyte storage tank between an outlet installed in the upper part of an electrolyte storage tank and an inlet installed in its lower part. CONSTITUTION:Partition plates 42-1, 42-2, and 42-3 are arranged between an inlet 38 and an outlet 40. When a battery is assembled, concentrated electrolyte A and dilute electrolyte B ere filled in the lower part and the upper part of a negative electrode side electrolyte storage tank 36 respectively. In the early stage of charge, the dilute electrolyte B is supplied to a negative reaction cell from the outlet 40. After reaction in the reaction cell, the electrolyte is returned to the lower part of the storage tank 36. The concentrated electrolyte A in the lower part gradually diffuses upward through a passage 44, and the concentration of the electrolyte in the upper part is increased. In the discharge in which decrease in electrolyte concentration cause disadvantage, the dilute electrolyte B is supplied to the anode side reaction cell from the outlet 40 to accelerates the reaction, and after the concentration is increased, the electrolyte is returned from the inlet 38.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] この発明は電解液循環式金属−ハロゲン電池、特に電解
液貯蔵槽の内部構造に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an electrolyte circulating metal-halogen battery, particularly to the internal structure of an electrolyte storage tank.

[従来の技術] 金属−ハロゲン電池としては、従来から亜鉛−臭素二次
電池や亜鉛−塩素二次電池が知られている。このような
二次電池は、単電池を必要に応じ直列・並列に接続して
実用的な電圧と電流を得る。
[Prior Art] As metal-halogen batteries, zinc-bromine secondary batteries and zinc-chlorine secondary batteries are conventionally known. Such secondary batteries obtain practical voltage and current by connecting single cells in series or parallel as necessary.

また、バイポーラ型積層電池として使用されることも多
い。
It is also often used as a bipolar stacked battery.

前記金属−ハロゲン電池の原理を第5図により説明する
The principle of the metal-halogen battery will be explained with reference to FIG.

同図において、反応槽10内では正極12と負極14と
がセパレータ16により正極室10aと負極室10bと
して仕切られ、この反応槽10と正極液貯R槽18と負
極液貯蔵)曹20との間で配管22を介し電解液循環経
路が形成されている。
In the figure, in a reaction tank 10, a positive electrode 12 and a negative electrode 14 are partitioned by a separator 16 into a positive electrode chamber 10a and a negative electrode chamber 10b. An electrolyte circulation path is formed between them via piping 22.

このとぎ配管22を流れる電解液は、ポンプ24a、 
24bより反応1910へ圧送される。
The electrolyte flowing through this sprinkling pipe 22 is pumped by a pump 24a,
24b to reaction 1910.

そして、反応槽内において、充電時には正極側にハロゲ
ンが生成され、負極側に金属が析出される。
In the reaction tank, during charging, halogen is generated on the positive electrode side, and metal is deposited on the negative electrode side.

また、放電時には負極板上に析出された金属が酸化され
て金属イオンとなって電解液中に溶解し、電解液中のハ
ロゲンは還元されてハロゲンイオンとなって電解液中に
溶解する。
Further, during discharge, the metal deposited on the negative electrode plate is oxidized to become metal ions and dissolved in the electrolytic solution, and the halogen in the electrolytic solution is reduced to become halogen ions and dissolved in the electrolytic solution.

このような原理に繕づく電解液循環式積層二次電池とし
て、特開昭57−199167号公報や特1m昭59−
96671号公報記載の技術が周知である。
As an electrolyte circulating type laminated secondary battery based on this principle, Japanese Patent Laid-Open No. 57-199167 and Japanese Patent Application Laid-open No. 1983-1999
The technique described in Japanese Patent No. 96671 is well known.

すなわち、第6図には積層型亜鉛−臭素電池の分解斜視
図が示されており、同図において、電極12(14)は
絶縁部26と導電部13とにより構成され、その対角線
上にマニホールド28が設けられている。また、セパレ
ータ16は、セパレータ膜16aの周囲にセパレータ枠
30を有し、該セパレータ枠30には電解液を正極室と
負極至とに供給するマニホールド29、チャンネル32
が形成され、更にチャンネル32とセパレータ膜16a
との間には、メ応槽内における電解液の流れを均一化す
る整流334.34が設けられている。
That is, FIG. 6 shows an exploded perspective view of a stacked zinc-bromine battery, and in the same figure, the electrode 12 (14) is composed of an insulating part 26 and a conductive part 13, and a manifold is arranged on the diagonal of the electrode 12 (14). 28 are provided. The separator 16 also has a separator frame 30 around the separator membrane 16a, and the separator frame 30 includes a manifold 29 and channels 32 for supplying electrolyte to the positive electrode chamber and the negative electrode.
are formed, and further a channel 32 and a separator film 16a are formed.
A rectifier 334, 34 is provided between the electrolyte and the electrolyte to uniformize the flow of the electrolyte in the reaction tank.

以上において、電池を充電すると前述した第5図に示さ
れた負極14に相当する側に亜鉛が析出し、正極12に
相当する側において臭素が発生する。
In the above, when the battery is charged, zinc is deposited on the side corresponding to the negative electrode 14 shown in FIG. 5 described above, and bromine is generated on the side corresponding to the positive electrode 12.

[発明が解決しようとする問題点] 更薇の皿■ゑ この場合、亜鉛の電析に関与する因子としては、例えば
電解液組成、電解液P H、電解液温度、電極If4造
、電解液循環速度等の多くの要素が影響を及ぼしてあり
、これらの中で?l!解液粗液組成りわけ当該電池の主
材であるハロゲン化物(臭化亜鉛あるいは塩化亜鉛)の
温度が電析に及ぼす影響は非常に大ぎい。
[Problems to be solved by the invention] In this case, the factors involved in the electrodeposition of zinc include, for example, the composition of the electrolyte, the pH of the electrolyte, the temperature of the electrolyte, the structure of the electrode If4, and the electrolyte. Many factors have an influence, such as circulation speed, and among these? l! Composition of crude solution The temperature of the halide (zinc bromide or zinc chloride), which is the main material of the battery, has a very large effect on electrodeposition.

一例として、臭化亜鉛水溶液を用いて正極に亜%)、負
極にカーボンプラスチック電極を使用したヒルにて調査
した電析状態の結果が第7図に示されている。
As an example, FIG. 7 shows the results of the electrodeposition state investigated using a hill using an aqueous solution of zinc bromide for the positive electrode and a carbon plastic electrode for the negative electrode.

同図で明らかなように、繰返し充放電を行うことにより
電析厚は増大し悪化することとなるが、4M−ZnBr
2水溶液の電析亜鉛厚は、初回充電時において3M−Z
nB、2水溶液での亜鉛厚の2倍以上の結果となり、亜
鉛の電析という面からは電解液濃度は低いほうが望まし
いことが解る。
As is clear from the figure, the deposited thickness increases and deteriorates with repeated charging and discharging, but 4M-ZnBr
2 The thickness of the deposited zinc in the aqueous solution was 3M-Z at the time of initial charging.
The result is that the zinc thickness is more than twice that of the nB,2 aqueous solution, and it can be seen that a lower electrolyte concentration is desirable from the standpoint of zinc electrodeposition.

そして、従来の電池において、完全放電を行わずに充電
しようとすると、負極に析出する亜鉛の状態が前回充電
時より悪化するため、その充放電を繰返し行なうことに
より亜鉛はセパレータを通過しデンドライト(樹脂状結
晶)として正極室中に析出する。このため、正極にてハ
ロゲンとの自己放電反応が起こりクーロン効率の低下を
起こすばかりでなく、セパレータの劣化及び破1員すな
わちTi池の劣化の原因となっていた。
In conventional batteries, when attempting to charge without completely discharging, the state of the zinc deposited on the negative electrode becomes worse than the previous charge, so by repeating charging and discharging, the zinc passes through the separator and forms a dendrite. It precipitates in the positive electrode chamber as resinous crystals). For this reason, a self-discharge reaction with halogen occurs at the positive electrode, which not only causes a decrease in Coulombic efficiency, but also causes deterioration of the separator and deterioration of the Ti pond.

これを解消するためには、毎回充電の前に電池を完全t
Jll電する必要があるが、その度にエネルギの損失を
起こしていた。
To solve this problem, completely drain the battery before each charge.
It was necessary to turn on the electricity, but each time I did so, I was losing energy.

尺肛例旦狛 この発明は係る問題点を解決するためになされたもので
、充放電を通じ低比徂のl−液を反応(θへ送り込むこ
とにより、エネルギ効率の向上を図りjりる電解液循環
式全屈−ハロゲン電池の提供を目的とする。
This invention was made in order to solve this problem, and it is an electrolytic method that improves energy efficiency by sending l-liquid of low specificity to reaction (θ) through charging and discharging. The purpose of the present invention is to provide a liquid circulation type fully bending halogen battery.

[問題点を解決するための手段及び作用]この発明に係
る電解液循環式金属−ハロゲン電池は、自己放電防止用
のセパレータ膜を用いて互いに仕切られ電解液を介して
所定の充放電反応を行う正極側反応槽及び負極側反応槽
と、各反応槽に対応して配置された電解液貯蔵槽との間
で1憧側電解液及び負惜側電解液をそれぞれ独立して循
環させるものであって、前記電解液貯蔵槽における少な
くとも1つの電解液流出口は流入口よりも上部に設けら
れているとともに、上部に設けられた流出口と下部に設
けられた流入口との間に電解液貯′ia槽を分割するご
とく仕切り板を配置している。
[Means and effects for solving the problem] The electrolyte circulating type metal-halogen battery according to the present invention is separated from each other using a separator film for self-discharge prevention, and a predetermined charge/discharge reaction is carried out via the electrolyte. The electrolyte on the positive side and the electrolyte on the negative side are circulated independently between the positive electrode side reaction tank and negative electrode side reaction tank and the electrolyte storage tank arranged corresponding to each reaction tank. At least one electrolyte outlet in the electrolyte storage tank is provided above the inlet, and the electrolyte is disposed between the outlet provided in the upper part and the inlet provided in the lower part. Partition plates are arranged to divide the storage tank.

この仕切り板により、T1wI液貯蔵槽内の電W?液は
仕切り板と電解液貯蔵(aの側壁との間に形成される流
路を介して連通されることとなるが、貯蔵槽内の上下部
の電解液濃度には差が生じる。このため、充放電状態を
通じハロゲン化金属の濃度の薄い電解液が負極側反応槽
に送られ、平均して電解液抵抗を下げることができると
ともに、電池のエネルギ効率を向上させることが可能と
なる。
This partition plate allows the electricity W in the T1wI liquid storage tank to be The liquid will be communicated through the flow path formed between the partition plate and the side wall of the electrolyte storage (a), but there will be a difference in the electrolyte concentration between the upper and lower parts of the storage tank. During charging and discharging, an electrolytic solution with a low concentration of metal halide is sent to the negative electrode side reaction tank, making it possible to lower the electrolytic solution resistance on average and improve the energy efficiency of the battery.

[実施例] 以下、図面に基づき本発明の好適な実施例を説明する。[Example] Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第1図には本発明の電池に適用される負極側電解液貯蔵
槽の断正面図が示されている。そして、この負極側電解
液貯蔵槽36と図示しない負極側反応槽との間にて配管
を介し電解液循環経路が形成されている。前記負極側電
解液貯蔵槽36には負極側反応槽からポンプにより流入
口38を介して負極液が送り込まれ、また、負極側電解
液貯蔵4936からは流出口40を介して負極側反応槽
に電解液が送り込まれる。以上の構成は前述したものと
同様であるので、ここではその説明を省略する。
FIG. 1 shows a sectional front view of a negative electrode side electrolyte storage tank applied to the battery of the present invention. An electrolyte circulation path is formed via piping between this negative electrode side electrolyte storage tank 36 and a negative electrode side reaction tank (not shown). The negative electrode solution is fed into the negative electrode side electrolyte storage tank 36 from the negative electrode side reaction tank via the inlet 38 by a pump, and from the negative electrode side electrolyte storage tank 4936 is sent to the negative electrode side reaction tank via the outlet 40. Electrolyte is pumped. Since the above configuration is the same as that described above, the explanation thereof will be omitted here.

ここで本発明の特徴的なことは、電解液貯蔵槽における
少なくとも1つの電解液流出口は流入口よりも上部に設
けられているとともに、上部に護けられた流出口と下部
に設けられた流入口との間に電解液貯蔵槽を分割するご
とく仕切り板を配置し、電解液はこれら仕切り板と側壁
との間に形成される流路により連通されるようになって
いることである。
Here, the characteristic feature of the present invention is that at least one electrolyte outflow port in the electrolyte storage tank is provided above the inflow port, and the outflow port is protected at the top and the outflow port is provided at the bottom. Partition plates are arranged between the inlet and the electrolyte storage tank to divide the electrolyte storage tank, and the electrolyte is communicated through channels formed between the partition plates and the side walls.

本実施例において、負極側電解液の流入口38は流出口
40よりも下方に設けられており、このため、負極側電
解液は電解液貯蔵槽36の下部に設けられた流入口38
から流入し、上部に設けられた流出口40から負極側反
応槽に向は送り出される。
In this embodiment, the inlet 38 for the negative electrolyte is provided below the outlet 40, and therefore the negative electrolyte is supplied to the inlet 38 provided at the bottom of the electrolyte storage tank 36.
It flows into the tank and is sent out to the negative electrode side reaction tank from the outlet 40 provided at the top.

すなわち、前記これら流入口38と流出口40との間に
は、仕切り板42−1.42−2.42−3が設けられ
ており、これらの仕切り板42は電解液貯蔵槽36の内
側の一側壁から他側壁に向は交互に張設され、該他側壁
との間にそれぞれ流路44−1.44−2.44−3が
形成されるように取り付けられている。そして、前記仕
切り板42により負極側電解液貯蔵槽36は上下に二分
されるとともに、流路44により電解液は相互に連通さ
れている。
That is, partition plates 42-1, 42-2, 42-3 are provided between the inlet 38 and the outlet 40, and these partition plates 42 are connected to the inside of the electrolyte storage tank 36. They are stretched alternately from one side wall to the other side wall, and are attached so that flow paths 44-1, 44-2, and 44-3 are formed between each side wall and the other side wall. The negative electrode electrolyte storage tank 36 is divided into upper and lower halves by the partition plate 42, and the electrolyte is communicated with each other by a flow path 44.

以上の構成に係る本発明の詳細な説明する。The present invention having the above configuration will be explained in detail.

まず、電池組み付は時に負極側電解液貯蔵槽36の下部
と上部にそれぞれ高濃度液Aと低濃度液Bとが注入され
る。この高濃度液Aと低濃度液Bとは、混合すると所定
の電解液濃度となるように調合されている。このため、
充電初期には負極側反応槽へは流出口40から低濃度液
Bが送り込まれ、電解液は前記負極側反応槽にて反応を
行った後、流入口38から電解液貯R136の下部に戻
される。
First, during battery assembly, high concentration liquid A and low concentration liquid B are injected into the lower and upper parts of the negative electrode side electrolyte storage tank 36, respectively. The high-concentration liquid A and the low-concentration liquid B are mixed so as to have a predetermined electrolyte concentration. For this reason,
At the beginning of charging, the low concentration solution B is sent to the negative electrode side reaction tank from the outlet 40, and after the electrolyte undergoes a reaction in the negative electrode side reaction tank, it is returned to the lower part of the electrolyte storage R136 from the inlet 38. It will be done.

一方、貯蔵槽下部に注入された高温度液へは流路44を
介して少しづつ上部に拡散して行くため、貯蔵槽上部の
電解液濃度がこれに伴い上昇し、電解液濃度が低下し過
ぎることによる電池反応に及ぼす不具合を防止すること
ができる。更に、充電末期には、電解液貯蔵槽における
上部と下部との濃度差がほとんどなくなり、負極側反応
(曹へ送り込まれる電解液濃度が均一化される。
On the other hand, since the high-temperature liquid injected into the lower part of the storage tank gradually diffuses to the upper part via the flow path 44, the electrolyte concentration at the upper part of the storage tank increases accordingly, and the electrolyte concentration decreases. It is possible to prevent problems caused by overheating on the battery reaction. Furthermore, at the end of charging, the difference in concentration between the upper and lower parts of the electrolyte storage tank is almost eliminated, and the concentration of the electrolyte sent to the negative electrode side reaction (soda) is made uniform.

また、放電時においては、負極側電解液貯蔵槽36の上
部流出口40から低濃度の電解液Bが負極側反応槽へ送
り込まれ、放電反応を促し、少し濃度の高い状態となっ
て流入口38から電解液下部に送り込まれる。これが繰
り返されることにより、放電未明には貯蔵槽の上部と下
部とでは大きな濃度差が生じ充電初期の状態とほぼ等し
くなる。
In addition, during discharging, low concentration electrolyte B is sent from the upper outlet 40 of the negative electrode side electrolyte storage tank 36 to the negative electrode side reaction tank, promotes the discharge reaction, becomes slightly concentrated, and then enters the inlet. 38 to the lower part of the electrolyte. By repeating this, there is a large concentration difference between the upper and lower parts of the storage tank in the early hours of discharge, which becomes almost the same as the state at the beginning of charging.

第2図には本発明の第2の実施例が示されている。A second embodiment of the invention is shown in FIG.

この実施例においては、負極側電解液貯蔵槽136の内
部に、更に仕切り板142−L・・・142−6の枚数
が増力0されて電解液貯蔵槽136は3つの部屋に分υ
Iされており、これによって放電時の貯蔵槽136内で
の上部と下部との電解液の濃度差をより効果的に保持し
つつ段階的に拡散できるようにされている。
In this embodiment, the number of partition plates 142-L...142-6 is further increased to zero inside the negative electrode side electrolyte storage tank 136, and the electrolyte storage tank 136 is divided into three rooms
This makes it possible to more effectively maintain the difference in the concentration of the electrolytic solution between the upper and lower parts of the storage tank 136 during discharge, and to diffuse it in stages.

第3図には本発明の第3の実施例が示されている。こ°
の実施例では、電解液貯蔵槽236の上部の電解液流出
口240のほか、下部に他の流出口242が設けられて
あり、これら両流出口24Q。
FIG. 3 shows a third embodiment of the invention. This °
In this embodiment, in addition to the electrolyte outlet 240 at the upper part of the electrolyte storage tank 236, another outlet 242 is provided at the lower part, and both of these outlets 24Q.

242から引き出された導管48が一個所に合流され、
バルブ50を介して配管52に連絡されている。前記バ
ルブ50は通常は上部流出口240と配管52とが連絡
されるように設定されるが、充電末期には電解液貯蔵槽
236の下部電解液が上部に拡散され難くなるので、こ
のような場合にはバルブ50を切り替えて電解液貯蔵槽
236の上部電解液及び下部電解液を同時に負極側反応
槽に送り込むようにし、充電時における電解液の有効活
用を図っている。
The conduits 48 drawn out from 242 are merged into one place,
It is connected to piping 52 via a valve 50. The valve 50 is normally set so that the upper outlet 240 and the pipe 52 are connected, but at the end of charging, it becomes difficult for the lower electrolyte in the electrolyte storage tank 236 to diffuse to the upper part. In this case, the valve 50 is switched to simultaneously send the upper electrolyte and the lower electrolyte from the electrolyte storage tank 236 to the negative electrode side reaction tank, thereby making effective use of the electrolyte during charging.

以上説明したように、本実施例によれば、例えば電解液
として4.0mol/!の臭化亜鉛水溶液を使用した場
合、第4図に示されるように使用電解液濃度域は3〜1
.2m01/I となり、本発明を適用しない場合(4
〜1.2mol/l)と比べて効果的に電解液抵抗を減
少させることが可能となる。
As explained above, according to this embodiment, for example, the electrolyte is 4.0 mol/! When using a zinc bromide aqueous solution of
.. 2m01/I, and if the present invention is not applied (4
~1.2 mol/l), it becomes possible to effectively reduce the electrolyte resistance.

また、充放電を通じ平均して比重の小ざい負極液を負極
側反応槽に送り込むこととなるため、ポンプ出力は小さ
いもので足り、電池の正味エネルギ効率を向上させるこ
とができる。
Furthermore, since a negative electrode liquid having a low specific gravity on average is sent to the negative electrode side reaction tank through charging and discharging, a small pump output is sufficient, and the net energy efficiency of the battery can be improved.

更に、亜鉛の電析状態はハロゲン化亜鉛の濃度に影響さ
れるため、スタックに送り込まれる電解液の最大′a度
を従来の電池と同じ濃度に設定した場合本発明を適用す
ることにより、平均のハロゲン化亜鉛の設定濃度(充電
面濃度)を高くすることが可能となり、電解液量の減少
すなわちエネルギ密度の向上を図ることができる。
Furthermore, since the state of zinc electrodeposition is affected by the concentration of zinc halide, by applying the present invention, when the maximum degree of electrolyte sent into the stack is set to the same concentration as that of conventional batteries, the average It becomes possible to increase the set concentration of zinc halide (charging surface concentration), and it is possible to reduce the amount of electrolyte, that is, to improve the energy density.

[発明の効果] この発明は以上説明したとおり、電解液貯蔵槽の上部に
設けられた流出口と下部に設けられた流入口との間に電
解液貯蔵槽を分割するごとく仕切り板を配置したことに
より、充放電を通じ平均してハロゲン化物の濃度の薄い
電解液を反応槽に送り込むことが可能となり、電解液抵
抗を下げて電池のエネルギ効率を向上させることができ
る。
[Effects of the Invention] As explained above, in this invention, a partition plate is arranged to divide the electrolyte storage tank between the outflow port provided at the top and the inflow port provided at the bottom of the electrolyte storage tank. This makes it possible to feed an electrolytic solution with a low concentration of halide on average into the reaction tank through charging and discharging, thereby lowering the electrolytic solution resistance and improving the energy efficiency of the battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電解液循環式金属−ハロゲン電池
に適用される負極側電解液貯蔵槽の断正面図、 第2図及び第3図はそれぞれ他の実施例を示す負極側電
解液貯蔵槽の断正面図、 第4図は臭化亜鉛温度と電解液抵抗との関係を示す図、 第5図は電解液循環式金属−ハロゲン電池の原理説明図
、 第6図は積層型亜鉛−臭素電池の分解斜視図、第7図は
臭化化銘水溶液を用い正極に亜鉛、負極にカーボンプラ
スチック電極を使用した場合の電析状態の変化を示した
図である。 36.136.236  ・・・ 負極側電解液貯蔵槽 38 ・・・ 流入口 40.240.242  ・・・ 流出口42 ・・・
 仕切り板 44 ・・・ 流路
FIG. 1 is a sectional front view of a negative electrode side electrolyte storage tank applied to a circulating electrolyte type metal-halogen battery according to the present invention, and FIGS. 2 and 3 are respectively showing other embodiments of the negative electrode side electrolyte solution. Figure 4 is a diagram showing the relationship between zinc bromide temperature and electrolyte resistance. Figure 5 is a diagram explaining the principle of a metal-halogen battery with electrolyte circulation. Figure 6 is a stacked zinc battery. - An exploded perspective view of a bromine battery, FIG. 7 is a diagram showing changes in the state of electrodeposition when a bromide aqueous solution is used, zinc is used as the positive electrode, and a carbon plastic electrode is used as the negative electrode. 36.136.236 ... Negative electrode side electrolyte storage tank 38 ... Inflow port 40.240.242 ... Outflow port 42 ...
Partition plate 44... Channel

Claims (1)

【特許請求の範囲】[Claims] 自己放電防止用のセパレータ膜を用いて互いに仕切られ
電解液を介して所定の充放電反応を行う正極側反応槽及
び負極側反応槽と、各反応槽に対応して配置された電解
液貯蔵槽との間で正極側電解液及び負極側電解液をそれ
ぞれ独立して循環させる電解液循環式金属−ハロゲン電
池において、前記電解液貯蔵槽における少なくとも1つ
の電解液流出口は流入口よりも上部に設けられていると
ともに、上部に設けられた流出口と下部に設けられた流
入口との間に電解液貯蔵槽を分割するごとく仕切り板を
配置し、電解液はこれら仕切り板と側壁との間に形成さ
れる流路により連通されるようにしたことを特徴とする
電解液循環式金属−ハロゲン電池。
A positive electrode side reaction tank and a negative electrode side reaction tank that are separated from each other using a separator film for self-discharge prevention and perform predetermined charging and discharging reactions via an electrolyte, and an electrolyte storage tank arranged corresponding to each reaction tank. In an electrolyte circulation type metal-halogen battery in which a positive electrode side electrolyte and a negative electrode side electrolyte are each independently circulated between At the same time, a partition plate is arranged to divide the electrolyte storage tank between an outlet provided at the top and an inlet provided at the bottom, and the electrolyte flows between the partition plate and the side wall. 1. An electrolyte circulation type metal-halogen battery, characterized in that the electrolyte circulation type metal-halogen battery is connected to each other by a flow path formed between the two.
JP61113267A 1986-05-16 1986-05-16 Electrolyte circulation type metal-halogen battery Pending JPS62271373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61113267A JPS62271373A (en) 1986-05-16 1986-05-16 Electrolyte circulation type metal-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61113267A JPS62271373A (en) 1986-05-16 1986-05-16 Electrolyte circulation type metal-halogen battery

Publications (1)

Publication Number Publication Date
JPS62271373A true JPS62271373A (en) 1987-11-25

Family

ID=14607837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61113267A Pending JPS62271373A (en) 1986-05-16 1986-05-16 Electrolyte circulation type metal-halogen battery

Country Status (1)

Country Link
JP (1) JPS62271373A (en)

Similar Documents

Publication Publication Date Title
US3666561A (en) Electrolyte circulating battery
JPH041657Y2 (en)
EP0130723B1 (en) Secondary battery having a separator
JPS5927461A (en) Electrode for layer-built secondary battery
JPH0574909B2 (en)
JP2002329523A (en) Cell frame for redox flow battery
JP2001043884A (en) Redox flow type secondary battery and its operation method
JPS62271373A (en) Electrolyte circulation type metal-halogen battery
JPH0765871A (en) Electrolyte circulating type layer built secondary battery
JP3494689B2 (en) Electrolyte flow battery
JP3574514B2 (en) Redox flow type secondary battery system
US4677039A (en) Zinc-bromine battery
JPS61143948A (en) Battery active material storage tank
JPH10334938A (en) Power storage secondary battery
JPH02183968A (en) Cell stack for electrolyte circulation type secondary battery and cell stack fitting member
JPH05166550A (en) Electrolyte circulation type layered secondary battery
EP0186204B1 (en) Zinc-bromine battery
CN219435925U (en) Flow battery pack
JP2853295B2 (en) Stacked secondary battery
JP2505007Y2 (en) Electrolyte circulation type laminated battery
JPH0629893Y2 (en) Secondary battery separator
JP2002252020A (en) Redox flow battery
JPH01102858A (en) Side reaction suppressing method for redox flow type battery
JPH0610635Y2 (en) Zinc-bromine battery
JP2003036880A (en) Redox flow battery