JPH0449823Y2 - - Google Patents

Info

Publication number
JPH0449823Y2
JPH0449823Y2 JP1985027961U JP2796185U JPH0449823Y2 JP H0449823 Y2 JPH0449823 Y2 JP H0449823Y2 JP 1985027961 U JP1985027961 U JP 1985027961U JP 2796185 U JP2796185 U JP 2796185U JP H0449823 Y2 JPH0449823 Y2 JP H0449823Y2
Authority
JP
Japan
Prior art keywords
electrode side
positive electrode
reaction tank
storage tank
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985027961U
Other languages
Japanese (ja)
Other versions
JPS61144573U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985027961U priority Critical patent/JPH0449823Y2/ja
Publication of JPS61144573U publication Critical patent/JPS61144573U/ja
Application granted granted Critical
Publication of JPH0449823Y2 publication Critical patent/JPH0449823Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【考案の詳細な説明】 [産業上の利用分野] この考案は金属−臭素電池、特に電解液貯蔵槽
を有する電解液循環型の金属−臭素電池の改良に
関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to an improvement of a metal-bromine battery, particularly an electrolyte circulation type metal-bromine battery having an electrolyte storage tank.

[従来の技術] 金属−ハロゲン電池は新型電池の一つとして知
られている(例えば、電気学界誌第103巻8号−
昭58年8月)。このような金属−ハロゲン電池の
うち、例えば電解液として金属臭化物水溶液を用
いる金属−臭素電池は、コストが安く反応物も入
手し易いことや、セル電圧が高く電極反応の可逆
性が非常に高いこと等から、近年、特に関心が持
たれている。
[Prior Art] A metal-halogen battery is known as one of the new types of batteries (for example, Electrical Science Journal Vol. 103, No. 8).
(August 1982). Among these metal-halogen batteries, for example, metal-bromine batteries that use an aqueous metal bromide solution as the electrolyte are cheap and reactants are easily available, have a high cell voltage, and have extremely high reversibility of electrode reactions. For this reason, there has been particular interest in it in recent years.

前記従来の金属−臭素電池は、第4図に示され
るような構造を有していた(特開昭52−122835、
特開昭57−199167、米国特許第4105829)。
The conventional metal-bromine battery had a structure as shown in FIG.
JP 57-199167, U.S. Patent No. 4105829).

同図において、この金属−臭素電池は反応槽1
0内の両側に正極12及び負極14が設けられ、
該反応槽10はセエパレータ16により正極側反
応槽10a及び負極側反応槽10bに仕切られて
いる。これらの正極側反応槽10a及び負極側反
応槽10bは、配管18a,18bを介してそれ
ぞれ電解液循環経路を形成する正極側電解液貯蔵
槽20a及び負極側電解液貯蔵槽20bに接続さ
れており、前記各配管18a,18bにはそれぞ
れポンプ22a,22bが設けられている。ま
た、前記正極側電解液貯蔵槽20aには錯体化合
物28を貯蔵する錯体貯蔵部24を有しており、
この錯体貯蔵部24はバルブ26を介して正極側
配管18aと接続されている。
In the figure, this metal-bromine battery is shown in reaction tank 1.
A positive electrode 12 and a negative electrode 14 are provided on both sides of 0,
The reaction tank 10 is partitioned by a separator 16 into a positive electrode side reaction tank 10a and a negative electrode side reaction tank 10b. These positive electrode side reaction tank 10a and negative electrode side reaction tank 10b are connected to a positive electrode side electrolyte storage tank 20a and a negative electrode side electrolyte storage tank 20b, respectively, which form an electrolyte circulation path through pipes 18a and 18b. , pumps 22a and 22b are provided in each of the pipes 18a and 18b, respectively. Further, the positive electrode side electrolyte storage tank 20a has a complex storage section 24 that stores a complex compound 28,
This complex storage section 24 is connected to the positive electrode side pipe 18a via a valve 26.

このような金属−臭素電池は反応槽10内にお
いて次式に示す所定の電気科学反応が行われる。
In such a metal-bromine battery, a predetermined electrochemical reaction shown by the following equation is performed in the reaction tank 10.

(正極)2Br-Br2+2e- (負極)M2++2e-M すなわち、充電時には第4図中の正極12に臭
素(Br2)が生成され、負極14に金属M(例え
ばZn,Cd等)が析出される。そして、負極14
に析出される金属は電極板上に電着(メツキ)さ
れ、正極12に生成された臭素(Br2)は電解液
中の錯化剤QBrと反応して以下の式に示されるよ
うに錯体化合物28を形成し、この錯体化合物2
8は錯体貯蔵部24に分離貯蔵される。
(Positive electrode) 2Br - Br 2 +2e - (Negative electrode) M 2+ +2e - M That is, during charging, bromine (Br2) is generated at the positive electrode 12 in FIG. 4, and metal M (for example, Zn, Cd, etc.) is generated at the negative electrode 14. is precipitated. And the negative electrode 14
The metal deposited on the electrode plate is electrodeposited (plated) on the electrode plate, and the bromine (Br2) generated on the positive electrode 12 reacts with the complexing agent QBr in the electrolyte to form a complex compound as shown in the following formula. 28 and this complex compound 2
8 is separately stored in the complex storage section 24.

nBr2+QBr→QBr2o+1 ところで、このような金属−臭素電池において
は、正極側反応槽及び負極側反応槽の双方におい
て水素ガスが発生する。
nBr 2 +QBr→QBr 2o+1 By the way, in such a metal-bromine battery, hydrogen gas is generated in both the positive electrode side reaction tank and the negative electrode side reaction tank.

すなわち、負極に折出した金属Mは以下に示し
た反応式(1)に従つて充放電中を問わず電解液中へ
自然溶解し、同時にH2ガスの発生を伴う。
That is, the metal M deposited at the negative electrode spontaneously dissolves into the electrolytic solution, regardless of whether it is being charged or discharged, according to reaction formula (1) shown below, and at the same time, H2 gas is generated.

M+H2O+H+→M2++OH-+H2↑ …(1) また、一方、正極12側では電極反応としての
ガスの発生は負極14側に比べると非常に微量で
ある。
M+H 2 O+H + →M 2+ +OH +H 2 ↑ (1) On the other hand, on the positive electrode 12 side, the amount of gas generated as an electrode reaction is very small compared to the negative electrode 14 side.

しかしながら、負極側反応槽10bからセパレ
ータ16を介して正極側反応槽10aへのガスの
移動が起り、正極側反応槽10a内にもガスが発
生していた。また、充放電サイクルに伴う反応槽
10でのシール性の劣化等に起因して正極側反応
槽10aには該反応槽10aの外部からガスが侵
入し、両者を合わせると無視できない状態であ
る。
However, gas moved from the negative electrode side reaction tank 10b to the positive electrode side reaction tank 10a via the separator 16, and gas was also generated in the positive electrode side reaction tank 10a. Further, gas enters the positive electrode side reaction tank 10a from the outside of the reaction tank 10a due to deterioration of the sealing property of the reaction tank 10 due to charging/discharging cycles, and when the two are taken together, the situation cannot be ignored.

[考案が解決しようとする問題点] 従来の問題点 以上説明したことから、従来の電池では、この
ように発生したガスが反応槽の電解液中に泡とな
つて混在することとなり、電解液の流れはこの泡
による影響を受けて乱され、反応槽内に円滑に流
れることができなかつた。このため、特に電解液
の流れは気泡の多い電極面で特に不均一となり、
金属の電着不良や電桁不均一等の問題が生じてい
た。この現象は反応槽において電解液が上部から
下部(第4図)に向けて流れる場合には、ガスの
移動方向と電解液の流れる方向とが逆になるため
特に顕著であつた。
[Problems that the invention aims to solve] Conventional problems As explained above, in conventional batteries, the gas generated in this way becomes mixed in the electrolyte in the reaction tank as bubbles, and the electrolyte The flow of water was disturbed by the influence of these bubbles, and could not flow smoothly into the reaction tank. For this reason, the flow of the electrolyte becomes particularly uneven on the electrode surface where there are many bubbles.
Problems such as poor electrodeposition of metal and uneven electric wires occurred. This phenomenon was particularly noticeable when the electrolytic solution flowed from the top to the bottom (FIG. 4) in the reaction tank, since the direction of gas movement and the direction of flow of the electrolytic solution were opposite.

以上の問題を解決するため、従来、負極側で
は、負極側反応槽10bの下部から上部(第4
図)に向けて電解液を流し、これによりガスの上
方への流出を促進させていた。
In order to solve the above problems, conventionally, on the negative electrode side, from the lower part to the upper part (fourth
The electrolytic solution was flowed toward the gas chamber (Figure), thereby promoting the upward flow of gas.

これに対し、正極側では、正極側反応槽10a
内で生じた臭素が錯体化して錯体化合物28が析
出し、電解液全体の比重が負極側電解液に比較し
て著しく大きくなるため、負極側と同様に反応槽
の下部から上部に向けて電解液を流そうとする
と、ポンプにかかる負荷が著しく大きくなり、大
容量のポンプを使用しなければならなかつた。そ
して、このような大容量のポンプを採用すること
は事実上困難であつた。
On the other hand, on the positive electrode side, the positive electrode side reaction tank 10a
The bromine generated in the reactor is complexed and complex compound 28 is precipitated, and the specific gravity of the entire electrolyte becomes significantly larger than that of the electrolyte on the negative electrode side. When attempting to flow liquid, the load on the pump becomes significantly large, necessitating the use of a large-capacity pump. In fact, it has been difficult to employ such a large-capacity pump.

以上の理由から、正極側においてガスを除去す
ることは極めて困難であつた。更に、正極側では
電池反応を促進するために活性槽が備えられてお
り、より一層ガスが滞留され易い構造となつてい
た。
For the above reasons, it has been extremely difficult to remove gas from the positive electrode side. Furthermore, an activation tank was provided on the positive electrode side to promote the battery reaction, and the structure was such that gas was more easily retained.

考案の目的 この考案は、係る問題点を解決するためになさ
れたもので、電池反応槽内に滞留したガスを有効
に除去し、これにより電極面における電解液の流
れの不均一により生ずる過電圧や金属の電着不良
等の問題を解決することを目的とする。
Purpose of the invention This invention was made to solve the above problem, and it effectively removes the gas accumulated in the battery reaction tank, thereby reducing the overvoltage caused by the non-uniform flow of the electrolyte on the electrode surface. The purpose is to solve problems such as poor electrodeposition of metal.

[問題点を解決するための手段及び作用] 前記金属−臭素電池は、正極側又は負極側の少
なくとも一方の極の貯蔵槽と反応槽との間に反応
槽内における電解液の流れを二つのモードに切替
接続可能な切替装置を備えている。すなわち、第
1のモードは貯蔵槽の送出口と反応槽の一方の流
出入口とを接続しかつ貯蔵槽の還流口と反応槽の
他方の流出入口とを接続するものであり、第2の
モードは貯蔵槽の送出口と反応槽の前記他方の流
出入口とを接続しかつ貯蔵槽の還流口と反応槽の
前記一方の流出入口とを接続するものである。
[Means and effects for solving the problem] The metal-bromine battery has two channels for controlling the flow of electrolyte in the reaction tank between the storage tank of at least one of the positive electrode side and the negative electrode side and the reaction tank. Equipped with a switching device that can be connected to different modes. That is, the first mode connects the delivery port of the storage tank and one outflow inlet of the reaction tank, and connects the reflux port of the storage tank and the other outflow inlet of the reaction tank. connects the outlet of the storage tank and the other outflow inlet of the reaction tank, and connects the reflux port of the storage tank with the one outflow inlet of the reaction tank.

前記切替装置を適宜に切替えることにより通常
の充放電時においては、小さなポンプ出力で電解
液を循環可能な構成とし、一方反応槽内で発生し
滞留されているガスを抜く時には反応槽内におけ
る電解液の流れを反転させることで確実にガス抜
きを行うことができる。
By appropriately switching the switching device, it is possible to circulate the electrolyte with a small pump output during normal charging and discharging, and on the other hand, when removing gas generated and retained in the reaction tank, the electrolyte in the reaction tank can be circulated. By reversing the flow of the liquid, gas can be removed reliably.

これにより反応槽内における電解液の流れが均
一化され、電池効率果が高められるという利点を
有する。
This has the advantage of equalizing the flow of the electrolyte within the reaction tank and improving battery efficiency.

[実施例] 以下図面に基づき本考案の好適な実施例を説明
する。
[Embodiments] Preferred embodiments of the present invention will be described below based on the drawings.

第1図は本考案に係る金属−臭素電池の原理説
明図である。この電池は正極側電解液貯蔵槽34
及び負極側電解液貯蔵槽36を備えており、反応
槽38内の両側に正極40及び負極42が設けら
れ、該反応槽38は自己放電防止用のセパレータ
44により正極側反応槽38a及び負極側反応槽
38bに仕切られている。
FIG. 1 is a diagram illustrating the principle of a metal-bromine battery according to the present invention. This battery has a positive electrode side electrolyte storage tank 34
and a negative electrode side electrolyte storage tank 36, and a positive electrode 40 and a negative electrode 42 are provided on both sides of the reaction tank 38, and the reaction tank 38 is separated from the positive electrode side reaction tank 38a and the negative electrode side by a separator 44 for preventing self-discharge. It is partitioned into a reaction tank 38b.

これらの正極側反応槽38aは配管46−1,
46−2及び48−1,48−2を介して正極側
電解液貯蔵槽34に接続され、負極側反応槽38
bは配管50−1,50−2を介して負極側電解
液貯蔵槽36に接続されている。また、前記各配
管46,50にはそれぞれ電解液を圧送するポン
プ52a,52bが設けられている。
These positive electrode side reaction tanks 38a are connected to piping 46-1,
It is connected to the positive electrode side electrolyte storage tank 34 via 46-2 and 48-1, 48-2, and the negative electrode side reaction tank 38
b is connected to the negative electrode side electrolyte storage tank 36 via piping 50-1, 50-2. Further, each of the pipes 46 and 50 is provided with pumps 52a and 52b for pumping the electrolyte, respectively.

更に、前記正極側電解液貯蔵槽34には、錯化
剤により正極側電解液中に溶解した臭素(Br2)
を電解液に解け難いようにした錯体化合物54を
貯蔵する錯体貯蔵部56を有している。この錯体
貯蔵部56は、バルブ58を介して正極側配管4
6−1と接続されている。
Furthermore, the positive electrode side electrolyte storage tank 34 contains bromine (Br2) dissolved in the positive electrode side electrolyte by a complexing agent.
It has a complex storage section 56 that stores a complex compound 54 that is made difficult to dissolve in an electrolytic solution. This complex storage section 56 is connected to the positive electrode side pipe 4 via a valve 58.
6-1.

ここで、本考案の特徴的なことは、少なくとも
一方の極の貯蔵槽と反応槽との間に、反応槽内に
おける電解液の流れを第1と第2の二つのモード
に切替接続可能な切替装置を備えていることであ
る。
Here, the characteristic feature of the present invention is that the flow of the electrolyte in the reaction tank can be switched between two modes, a first mode and a second mode, between the storage tank of at least one pole and the reaction tank. It is equipped with a switching device.

すなわち、本実施例においては、正極側反応槽
38aと正極側貯蔵槽34aとの間に4ウエイ切
替バルブ66を設けてあり、内部の弁66aを第
2図及び第3図のように回動操作することによ
り、反応槽38a内の電解液の流れが2方向に切
替えられる。
That is, in this embodiment, a 4-way switching valve 66 is provided between the positive electrode side reaction tank 38a and the positive electrode side storage tank 34a, and the internal valve 66a can be rotated as shown in FIGS. 2 and 3. By operating, the flow of the electrolyte in the reaction tank 38a is switched between two directions.

第2図は前記第1のモードにおける弁66aの
位置を示すものであり、通常の充放電時にはこの
状態に設定される。このモードにおいては、弁の
接続口であるAとC及びBとDが連絡されてい
る。
FIG. 2 shows the position of the valve 66a in the first mode, and is set in this state during normal charging and discharging. In this mode, valve connections A and C and B and D are in communication.

また、第3図は前記第2のモードにおける66
aの位置を示すものであり、ガス抜き時にはこの
状態に設定される。このモードにおいては、弁の
接続口であるAとB及びCとDが連絡されてい
る。前記方向Aは、配管46−1に接続され、接
続口Cは配管46−2に接続されている。また、
接続口Dは配管48−1に接続され、接続口Bは
配管48−2に接続されている。
Further, FIG. 3 shows 66 in the second mode.
This indicates the position a, and is set to this state when degassing. In this mode, valve connections A and B and C and D are in communication. The direction A is connected to the pipe 46-1, and the connection port C is connected to the pipe 46-2. Also,
Connection port D is connected to piping 48-1, and connection port B is connected to piping 48-2.

以上の構成により、通常の充放電時における第
1のモードにバルブ66が設定されると、正極側
電解液貯蔵槽34の配管46−1を介して正極側
電解液貯蔵槽34の電解液送出口60から送られ
てきた電解液は、切替バルブ66内をA→C(配
管46−1→46−2方向)に送られ、配管46
−2を介して反応槽38aの一方の流出入口62
−1に供給される。
With the above configuration, when the valve 66 is set to the first mode during normal charging and discharging, the electrolyte is sent to the positive electrolyte storage tank 34 via the piping 46-1 of the positive electrolyte storage tank 34. The electrolytic solution sent from the outlet 60 is sent from A to C (piping 46-1 → 46-2 direction) inside the switching valve 66, and is then sent to the piping 46.
-2 to one outlet 62 of the reaction tank 38a.
-1.

こうして反応槽38aに供給された電解液は、
反応槽38aの他方の流出入口62−2から配管
48−2を介して切替バルブ66に送り出され、
該切替バルブ66内をB→D方向(配管48−2
→48−1方向)に送られ、前記貯蔵槽34の電
解液還流口64に至る。すなわち、電解液は、第
1図において、貯蔵槽34→A→C→反応槽38
a→B→D→貯蔵槽34の経路で循環する。
The electrolytic solution thus supplied to the reaction tank 38a is
It is sent to the switching valve 66 from the other inlet/outlet 62-2 of the reaction tank 38a via the piping 48-2,
The inside of the switching valve 66 is directed from B to D (piping 48-2
→48-1 direction) and reaches the electrolyte reflux port 64 of the storage tank 34. That is, in FIG. 1, the electrolyte is stored in the storage tank 34 → A → C → reaction tank 38
It circulates along the route a→B→D→storage tank 34.

次に、ガス抜き作業を行う第2のモードにバル
ブ66が設定されると、前記と同様に正極側電解
槽貯蔵槽34の送出口から送られてきた電解液
は、切替バルブ66内をA→B方向(配管46−
1→48−2方向)に送られ、配管48−2を介
して反応槽38aの前記他方の流出入口62−2
に供給される。
Next, when the valve 66 is set to the second mode for degassing, the electrolyte sent from the outlet of the positive electrode side electrolyzer storage tank 34 flows through the switching valve 66 through the A →B direction (piping 46-
1 → 48-2 direction), and is sent to the other outflow inlet 62-2 of the reaction tank 38a via piping 48-2.
supplied to

こうして反応総38aに供給された電解液は、
反応槽38aの前記一方の流出入口62−1から
配管46−2を介して切替バルブ66に至り、該
切替バルブ66内をC→D方向(配管46−2→
48−1方向)に送り出され、配管48−1を介
して還流口64に至る。すなわち電解液は、第1
図において、貯蔵槽34a→A→B→反応槽38
a→C→D→貯蔵槽34の経路で循環する。
The electrolytic solution thus supplied to the reaction system 38a is
The switching valve 66 is reached from the one inlet/outlet 62-1 of the reaction tank 38a via the piping 46-2, and the inside of the switching valve 66 is routed in the direction C→D (piping 46-2→
48-1 direction) and reaches the reflux port 64 via the piping 48-1. That is, the electrolyte is the first
In the figure, storage tank 34a → A → B → reaction tank 38
It circulates along the route a→C→D→storage tank 34.

このように、電解液が反応槽38aの下部から
上部(第1図)に向けて流されることで、反応槽
38a内部に滞留したガスが抜け易くなる。
In this way, the electrolytic solution flows from the lower part of the reaction tank 38a toward the upper part (FIG. 1), making it easier for the gas stagnant inside the reaction tank 38a to escape.

以上のように電解液の流れを反転させること
で、充放電中に電池の正極反応槽38a内で発生
したガスは配管46−2〜48−1を経由して正
極側貯蔵槽34内に送られ、該貯蔵槽34から自
然に外部に放出される。従つて、前記バルブ66
の切替操作を電池の充放電前に3〜4回行うこと
により、ガスは確実に除去される。また、このガ
ス抜き作業は充放電前に限らず、充放電中に行え
ばより効果的である。
By reversing the flow of the electrolyte as described above, the gas generated in the positive electrode reaction tank 38a of the battery during charging and discharging is sent into the positive electrode side storage tank 34 via the pipes 46-2 to 48-1. and is naturally released from the storage tank 34 to the outside. Therefore, the valve 66
Gas is reliably removed by performing this switching operation 3 to 4 times before charging and discharging the battery. Further, this degassing work is not limited to before charging and discharging, but is more effective if performed during charging and discharging.

以上の操作を繰り返すことにより、有効なガス
抜きができ、電解液がガスの気泡に妨げられこと
なく均一に流れることとなる。その結果、正極側
反応槽38aにおける電極40面では均一な流速
分布が得られ、不均一な電解液の流れにより生ず
る過電圧の発生を防止し、電池効率の向上を図る
ことができる。また、放電開始から放電末期に至
るまで高い電圧を維持することができ、クーロン
効率を高めることができる。
By repeating the above operations, effective degassing can be achieved, and the electrolytic solution will flow uniformly without being hindered by gas bubbles. As a result, a uniform flow velocity distribution is obtained on the surface of the electrode 40 in the positive electrode side reaction tank 38a, and it is possible to prevent generation of overvoltage caused by non-uniform electrolyte flow and improve battery efficiency. Further, a high voltage can be maintained from the start of discharge to the end of discharge, and coulombic efficiency can be increased.

また、本実施例における負極側においては、通
常の充放電時においても電解液は第1図における
反応槽の下部→上部の方向に流れるように設定す
ることで、負極側反応槽38bで発生したガスの
大部分は反応槽38b→配管50−2→貯蔵槽3
6へと移動されるようにしている。更に完全なガ
ス抜きを行うためには、前述の正極側と同様に、
通常時における電解液の流れを第1図の上部→下
部とし、ガス抜き時にその方向を反転させるよう
にしたほうが効果的である。
In addition, on the negative electrode side in this example, even during normal charging and discharging, the electrolyte is set to flow from the bottom to the top of the reaction tank in FIG. Most of the gas flows through reaction tank 38b → piping 50-2 → storage tank 3
I am trying to move it to 6. In order to perform more complete degassing, as with the positive electrode side described above,
It is more effective if the flow of the electrolytic solution during normal times is from the upper part to the lower part in FIG. 1, and the direction is reversed when degassing.

なお、本実施例においては、正極側にのみ切替
バルブ66を備えた場合について説明したが、こ
れに限ることなく負極側に備えても良く、また両
極側に備えても良い。
In this embodiment, a case has been described in which the switching valve 66 is provided only on the positive electrode side, but the switching valve 66 may be provided on the negative electrode side or both electrode sides without being limited to this.

[考案の効果] 以上説明したように、本考案によれば、少なく
とも一方の極の貯蔵槽と反応槽の間に反応槽にお
ける電解液の流れを切替える切替装置を備えたこ
とにより、反応槽で発生したガスを適宜除去する
ことができ、これにより電極面での均一な流速分
布が得られ、過電圧の発生防止及び電池効率の向
上を図ることができる。
[Effects of the invention] As explained above, according to the invention, a switching device for switching the flow of electrolyte in the reaction tank is provided between the storage tank of at least one pole and the reaction tank, so that the flow of the electrolyte in the reaction tank can be changed. The generated gas can be appropriately removed, thereby achieving a uniform flow velocity distribution on the electrode surface, thereby making it possible to prevent overvoltage from occurring and improve battery efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る金属−臭素電池の原理説
明図、第2図及び第3は切替バルブの切替状態の
説明図、第4図は従来の金属−臭素電池の原理説
明図てある。 34……正極側電解液貯蔵槽、36……負極側
電解液貯蔵槽、38……反応槽、40……正極、
42……負極、44……セパレータ、46,4
8,50……配管、60……送出口、62……流
出入口、64……還流口、66……切替バルブ。
FIG. 1 is a diagram illustrating the principle of a metal-bromine battery according to the present invention, FIGS. 2 and 3 are diagrams illustrating the switching state of a switching valve, and FIG. 4 is a diagram illustrating the principle of a conventional metal-bromine battery. 34... Positive electrode side electrolyte storage tank, 36... Negative electrode side electrolyte storage tank, 38... Reaction tank, 40... Positive electrode,
42...Negative electrode, 44...Separator, 46,4
8, 50...Piping, 60...Outlet port, 62...Outflow inlet, 64...Recirculation port, 66...Switching valve.

Claims (1)

【実用新案登録請求の範囲】 (1) 正極側電解液貯蔵槽及び負極側電解液貯蔵槽
と、自己放電防止用のセパレータ膜を用いて互
いに仕切られ電解液を介して所定の充放電反応
を行う正極側反応槽及び負極側反応槽と、の間
で配管により正極側電解液及び負極側電解液を
それぞれ独立して循環する金属−臭素電池にお
いて、 (a) 正極側貯蔵槽と正極側反応槽との間に、正
極側貯蔵槽の送出口と正極側反応槽の一方の
流出入口とを接続しかつ正極側貯蔵槽の環流
口と正極側反応槽の他の流出入口とを接続す
る第1のモードと、正極側貯蔵槽の送出口と
正極側反応槽の前記他方の流出入口とを接続
しかつ正極側貯蔵槽の環流口と正極側反応槽
の前記一方の流出入口とを接続する第2のモ
ードとに切替え接続する切替装置、 または、 (b) 負極側貯蔵槽と負極側反応槽との間に、負
極側貯蔵槽の送出口と負極側反応槽の一方の
流出入口とを接続しかつ負極側貯蔵槽の環流
口と負極側反応槽の他の流出入口とを接続す
る第1のモードと、負極側貯蔵槽の送出口と
負極側反応槽の前記他方の流出入口とを接続
しかつ負極側貯蔵槽の環流口と負極側反応槽
の前記一方の流出入口とを接続する第2のモ
ードとに切替え接続する切替装置、 を備え、 正極側電解液または負極側電解液をそれぞれ逆
方向に循環若しくは順方向に循環させることを特
徴とする金属−臭素電池。
[Scope of Claim for Utility Model Registration] (1) A positive electrode side electrolyte storage tank and a negative electrode side electrolyte storage tank are separated from each other using a separator film for self-discharge prevention, and a predetermined charge/discharge reaction is carried out via the electrolyte. In a metal-bromine battery, in which the positive electrode side electrolyte and the negative electrode side electrolyte are independently circulated through piping between the positive electrode side reaction tank and the negative electrode side reaction tank, (a) the positive electrode side storage tank and the positive electrode side reaction tank, A second tank is provided between the positive electrode storage tank and the positive electrode reaction tank, which connects the outlet of the positive electrode side storage tank and one outlet of the positive electrode side reaction tank, and connects the reflux port of the positive electrode side storage tank with the other outlet of the positive electrode side reaction tank. In mode 1, the outlet of the positive electrode storage tank is connected to the other outlet of the positive electrode reaction tank, and the reflux port of the positive electrode storage tank is connected to the one outlet of the positive electrode reaction tank. or (b) between the negative electrode side storage tank and the negative electrode side reaction tank, the outlet of the negative electrode side storage tank and the outflow inlet of one of the negative electrode side reaction tanks. a first mode in which the reflux port of the negative electrode side storage tank and the other outflow inlet of the negative electrode side reaction tank are connected; and a switching device that connects the reflux port of the negative electrode side storage tank and the one inlet/outlet of the negative electrode side reaction tank and switches the connection to a second mode, which connects the positive electrode side electrolyte or the negative electrode side electrolyte A metal-bromine battery characterized by being circulated in a reverse direction or in a forward direction, respectively.
JP1985027961U 1985-02-26 1985-02-26 Expired JPH0449823Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985027961U JPH0449823Y2 (en) 1985-02-26 1985-02-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985027961U JPH0449823Y2 (en) 1985-02-26 1985-02-26

Publications (2)

Publication Number Publication Date
JPS61144573U JPS61144573U (en) 1986-09-06
JPH0449823Y2 true JPH0449823Y2 (en) 1992-11-24

Family

ID=30525398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985027961U Expired JPH0449823Y2 (en) 1985-02-26 1985-02-26

Country Status (1)

Country Link
JP (1) JPH0449823Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185873A (en) * 1985-02-12 1986-08-19 Toyota Motor Corp Zinc-bromine cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185873A (en) * 1985-02-12 1986-08-19 Toyota Motor Corp Zinc-bromine cell

Also Published As

Publication number Publication date
JPS61144573U (en) 1986-09-06

Similar Documents

Publication Publication Date Title
US4254190A (en) Electrochemical power generation apparatus and methods
US7358001B2 (en) Process for operating a regenerative fuel cell
US4663251A (en) Zinc-bromine battery
JPH0449823Y2 (en)
US4369234A (en) Electrochemical power generation
CN109638309A (en) A kind of gas phase adverse current without diaphragm metal-oxygen-containing gas flow battery
US4677039A (en) Zinc-bromine battery
EP0186204A2 (en) Zinc-bromine battery
JP3307048B2 (en) Operating method of zinc-bromine battery
JP3135360B2 (en) Electrolyte tank for electrolyte flow type battery
JP2809936B2 (en) Battery device for power storage
JPH03272573A (en) Zinc-bromine battery
JPH0578150B2 (en)
JP2526659B2 (en) How to store zinc-bromine batteries
JPH06333609A (en) Method for operating zinc-bromine battery
JPWO2019131341A1 (en) Redox flow battery
KR20200059942A (en) Striping method of zinc-bromine redox flow battery
JPH0722026B2 (en) Electrolyte circulation type metal-halogen battery
JPH0610635Y2 (en) Zinc-bromine battery
JPS58103788A (en) Metal-halogen cell
JPH03147278A (en) Zinc-bromine battery
AU2002233534B2 (en) Process for operating a regenerative fuel cell
JPS63252366A (en) Gas circulation type zinc-halogen battery
JPS628470A (en) Method for turning over static zinc-bromine cell
JPH0582034B2 (en)