JPS60253154A - Electrolyte supply type battery of self-discharge prevention ability - Google Patents

Electrolyte supply type battery of self-discharge prevention ability

Info

Publication number
JPS60253154A
JPS60253154A JP59109265A JP10926584A JPS60253154A JP S60253154 A JPS60253154 A JP S60253154A JP 59109265 A JP59109265 A JP 59109265A JP 10926584 A JP10926584 A JP 10926584A JP S60253154 A JPS60253154 A JP S60253154A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
opening
discharged
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59109265A
Other languages
Japanese (ja)
Inventor
Koichi Ashizawa
芦沢 公一
Yuichi Watakabe
雄一 渡壁
Shunji Shimizu
清水 俊二
Koji Fujii
康次 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP59109265A priority Critical patent/JPS60253154A/en
Publication of JPS60253154A publication Critical patent/JPS60253154A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To eliminate liquid passage and prevent self-discharging at the time of standstill of a battery by providing an opening on the piping of supply side of electrolyte. CONSTITUTION:Distribution pipes 2a, 2b,... 2x, 2y branched from a manifold 1 are laid on a zinc-chlorine battery in which 25 cells C-1, C-2,... C-24, C-25 are connected together in series, and electrolyte 4 whose main component is zinc chloride is supplied from an electrolyte distributing port 3 uniformly to respective cells. This time, an opening 9 opened to atmoshere through a valve 8 is provided on the tip of the manifold, and a part of the electrolyte 4 is discharged normally from the opening 9. When electric supply is stopped and supply of the electrolyte 4 is also stopped to stop operation of the battery, external air enters from the opening 9 and the electrolyte 4 is discharged to the electrolyte surface level of each cell and replaced with the external air. And the electrolyte 4' in the piping on the discharging side is also discharged and liquid passage between cells is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解液供給型電池に関し、特に運転休止時にお
tノる自己放電を防止した電解液供給型電池に係るもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrolyte-supplied battery, and more particularly to an electrolyte-supplied battery that prevents self-discharge during suspension of operation.

〔従来技術〕[Prior art]

電解液をセル外部から供給し、セルの電極間を通して再
び外部に排出する、いわゆる電解液供給型電池において
は、単セルを電気的に直列に接続ないしは積層して電池
容量を増加させる場合、例えば第3図の概念図に示すよ
うに各単セル(C−1) 、(C−2) 、(C−3>
 、(C−4>にマニフオールド(1)から分岐した分
配管(2a) 、(2b) 、(2c) 、<2d)を
夫々配設して、電解液分配口(3)J、り電解液(4)
を供給して各セルに均等に分配すると共に、各セルから
各排出管(5a> 、(5b) 、(5c) 、(5d
>を経て排出された電解液(4′)は電解液共通排出管
(6)に集められ、電解液排出口(7)より排出げろよ
うになっている。
In so-called electrolyte-supplied batteries, in which electrolyte is supplied from outside the cell and discharged to the outside through between the electrodes of the cell, when increasing the battery capacity by electrically connecting or stacking single cells in series, for example, As shown in the conceptual diagram of Fig. 3, each single cell (C-1), (C-2), (C-3>
, (C-4>) are provided with distribution pipes (2a), (2b), (2c), <2d) branched from the manifold (1), respectively, and the electrolyte distribution port (3) J is connected to the electrolytic solution. liquid (4)
is supplied and distributed equally to each cell, and each discharge pipe (5a> , (5b) , (5c) , (5d
The electrolytic solution (4') discharged through the electrolytic solution discharge port (4') is collected in an electrolytic solution common discharge pipe (6) and can be discharged from an electrolytic solution discharge port (7).

この場合、電解液供給側ならびに排出側の各配管を介し
て電気伝導性の電解液によって各セル間が結ばれている
ため、それらセル間に液絡が起きて通電電流のロスが生
じる。
In this case, since each cell is connected by an electrically conductive electrolyte through each pipe on the electrolyte supply side and the discharge side, a liquid junction occurs between the cells, resulting in a loss of current flowing through the cells.

これに対しては例えば各分配管(2a) 、(2b)、
(2c) 、(2d)や排出管(5a) 、(5b) 
For this, for example, each distribution pipe (2a), (2b),
(2c), (2d) and discharge pipes (5a), (5b)
.

<50) 、(5d)を長くしたり、その管径を小さく
する等の対策によりある程度防ぐことができる。
<50), it can be prevented to some extent by making the tube (5d) longer or reducing its diameter.

(発明が解決しようとしている問題点〕しかしながら、
電池の運転を休止して、その通電ならびに電解液の供給
を停止した場合、つまり開放状態においても第4図に示
すようにマ二フオールド(1)及び各分配管(2a> 
、(2b)、(2c) 、<2d)に電解液(4)が残
っているため、電池容量のある限りそれら配管を介して
各セル間に液絡が生じる。その結果、運転休止期間が長
い程自己放N色が大き゛くなり、電池エネルギーのロス
が増加していた。
(The problem that the invention is trying to solve) However,
When the operation of the battery is stopped and its energization and electrolyte supply are stopped, that is, even when it is in an open state, the manifold (1) and each distribution pipe (2a>
, (2b), (2c), and <2d), liquid junctions occur between the cells via these pipes as long as the battery capacity is available. As a result, the longer the outage period, the greater the self-emitted N color, which increased the loss of battery energy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこのような問題点に対処しでなされたもので、
電気的に複数個直列に接続ないしは積層した単セルの各
々に、マニフA−ルドから分岐した各分配管によって電
解液を分配供給すると共に、排出管によって各単セルよ
り電解液を排出覆る電池において、マニフォールドない
しは分配管に虜けるセル電解液面レベルよりも高い位置
に外気への開口部を設けることにより、電池の運転休止
時に該開口部を開放状態にして該マニフォールド及び分
配管に存在する電解液を排出して外気と置換し、各セル
間の液絡をなくして自己放電を防止したものである。
The present invention has been made to address these problems.
In a battery where electrolyte is distributed and supplied to each of a plurality of electrically connected or stacked single cells in series through each distribution pipe branched from the manifold, and the electrolyte is discharged from each single cell through a discharge pipe. By providing an opening to the outside air at a position higher than the level of the cell electrolyte contained in the manifold or distribution pipe, the opening can be left open when the battery is out of operation to drain the electrolyte present in the manifold or distribution pipe. The liquid is drained and replaced with outside air, eliminating liquid junctions between each cell and preventing self-discharge.

マニフオールドないしは分配管における間口部の位置は
レル内の電解液4面レベルより高い位置にあればよく、
電池の運転休止時開口部を開放することにより、供給側
の配管内に存在づる電解液は排出されて外気と置換し、
最終的には勺イホンの原理により第2図に示すように分
配管の液面はセル内の電解液4面と同一レベルになる。
The position of the opening in the manifold or distribution pipe should be higher than the level of the electrolyte on the four sides in the barrel.
By opening the opening when the battery is out of operation, the electrolyte present in the supply-side piping is discharged and replaced with outside air.
Eventually, as shown in FIG. 2, the liquid level in the distribution tube becomes at the same level as the four electrolytic solution surfaces in the cell due to the Ihon principle.

しICがって各セル間の電解液による結びつきは遮断さ
れ、液絡を゛なくすることができる。
Therefore, the connection between each cell due to the electrolyte is cut off, and liquid junctions can be eliminated.

なお、開口部には適宜配管してバルブ等を付し、電池の
運転休止時にこのバルブ等を開放してもよく、またバル
ブ等を開放のままで電池運転時常時これより電解液の一
部を放出するようにしてもよい。この場合は電池の運転
休止時にはバルブ操作をしなくても開口部はそのまま開
放状態になっているので、自然に管内の電解液は排出し
、外気と置換される。なお、これら開口部から排出され
る電解液を受けて電池の排出管へ流す配管は勿論必要で
ある。
In addition, the opening may be provided with appropriate piping and a valve, etc., and this valve, etc. may be opened when the battery is not operating, or a portion of the electrolyte may be kept open during battery operation by leaving the valve, etc. open. may be released. In this case, when the battery is out of operation, the opening remains open without operating the valve, so the electrolyte in the tube is naturally drained and replaced with outside air. Note that piping is, of course, required to receive the electrolytic solution discharged from these openings and to flow it to the discharge pipe of the battery.

[実施例] 以下図面に暴いて実施例を述べる。[Example] Examples will be described below with reference to the drawings.

硬質ゲラフッフィト製亜鉛極板と多孔質グラファイト製
塩素極板を塩ビ製枠体に配設した、電極の作用面積が3
0Of:aiの単セルを第1図に示すように25セル(
C−1)、(C−2)・・・(C−24) 。
The active area of the electrode is 3, with a zinc electrode plate made of hard gelafuffite and a chlorine electrode plate made of porous graphite arranged in a PVC frame.
As shown in Figure 1, the single cell of 0Of:ai is 25 cells (
C-1), (C-2)...(C-24).

(C−25>直列に接続した亜鉛−塩素電池に、マニノ
オールド(1)より分岐した分配管(2a)、(2b)
・・・(2x) 、(2y)を配設し、電解液分配口(
3)より塩化亜鉛を主成分とする電解液(4)を供給し
て各セルに均等に分配すると共に、排出管(5a) 、
(5b) −(5x) 、(5y)より排出して電解液
共通排出管(6)に集め、電解液排出口(7)より排出
し、電池を充電運転した。この際、マニフォールド(1
)の先端部にバルブ(8)を介して外気に開口する開口
部(9)を付設し、バルブ(8)を開放してこの間口部
(9〉より電解液(4)の一部を常時放出し、電解液共
通排出管(6)に連なる排出管(10)に排出した。
(C-25> Distribution pipes (2a) and (2b) branched from Manino Old (1) to the zinc-chlorine batteries connected in series.
... (2x) and (2y) are arranged, and the electrolyte distribution port (
3) supplies an electrolytic solution (4) containing zinc chloride as a main component and distributes it evenly to each cell, and a discharge pipe (5a),
(5b) - (5x) and (5y), collected in the electrolyte common discharge pipe (6), and discharged from the electrolyte discharge port (7), and the battery was operated for charging. At this time, the manifold (1
) is provided with an opening (9) that opens to the outside air via a valve (8), and by opening the valve (8), a portion of the electrolyte (4) is constantly supplied from this opening (9>). It was discharged into a discharge pipe (10) connected to the electrolyte common discharge pipe (6).

このときの電池の運転条件は電解液(4)として2mo
l/f塩化亜鉛+ 1mol/、2塩化ナトリウム+2
io1/1m化カリウムの水溶液をPH1に調整したも
のを2d/ci・10で供給し、充電電流密度301A
/cI11、温度30℃、充電時間は8時間であった。
The battery operating conditions at this time were 2 mo as the electrolyte (4).
l/f zinc chloride + 1 mol/, sodium dichloride + 2
An aqueous solution of io1/1m potassium adjusted to PH1 was supplied at 2d/ci・10, and the charging current density was 301A.
/cI11, temperature was 30° C., and charging time was 8 hours.

ついで通電を止めると共に電解液(4)の供給を止めて
電池の運転を休止したところ、開口部(9)より外気が
侵入し、電解液の供給側配管では第2図に示すようにセ
ルの電解液々面しベルまで電解液(4)が排出されて外
気と置換し、また排出側配管も電解液(4′)が排出さ
れて各セル間の液絡はなくなった。
Then, when the electricity was turned off and the supply of electrolyte (4) was stopped to stop battery operation, outside air entered through the opening (9) and the electrolyte supply piping was blocked by the cell as shown in Figure 2. The electrolytic solution (4) was discharged up to the electrolyte bell and replaced with outside air, and the electrolytic solution (4') was also discharged from the discharge side piping, eliminating the liquid junction between each cell.

次に第1〜3表に充電後電解液供給を停止しないで直ち
に放電した場合、電池の運転を休止して2週間後に放電
した揚台及び同様に休止して4週間後に放電した場合の
の夫々について電流効率、電圧効率、エネル、V?−効
率を測定した結果を示す。
Next, Tables 1 to 3 show the case where the battery was discharged immediately without stopping the electrolyte supply after charging, the platform where the battery was discharged two weeks after stopping operation, and the case where the battery was similarly stopped and discharged four weeks later. Current efficiency, voltage efficiency, energy, V? - Indicates the results of measuring efficiency.

なお、夫々の表の下段の数値は本発明の関口部が付設さ
れていない従来の電池の場合について比較のために示し
たものである。
The numerical values at the bottom of each table are shown for comparison in the case of a conventional battery to which the gate part of the present invention is not attached.

第1表 L] 前記結果より、電11効率はいずれの場合もほぼ一定の
値であったが、電流効率においては電池の運転体」ト後
4週間放置すると、従来の電池で10%程度減少したの
に対し、本発明の電池では3%程度の減少に止まり、液
絡をなくして自己放電を防止した効果が顕著であった。
[Table 1 L] From the above results, the electric current efficiency was almost constant in all cases, but the current efficiency decreased by about 10% for conventional batteries when left for 4 weeks after the battery was turned off. On the other hand, in the battery of the present invention, the decrease was only about 3%, and the effect of eliminating the liquid junction and preventing self-discharge was remarkable.

(発明の効果) 前記実施例の結果にみられるように、電解液の供給側配
管に開口部を設けた本発明の電池においては、電池の運
転休止時に液絡をなくすることができるので自己放電を
著しく防止できたものである。
(Effects of the Invention) As can be seen from the results of the above examples, in the battery of the present invention in which an opening is provided in the electrolyte supply pipe, the liquid junction can be eliminated when the battery is not in operation, so that it is self-sustaining. This significantly prevented discharge.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に示した、本発明の電解液供給型電池の
−fI[”ある亜鉛−塩素電池の運転時の状態を示づ説
明図、第2図は同電池の休止時の状態を示す説明図、第
3図は従来の電解液供給型電池の運転時の概念図、第4
図は従来の電解液供給型電池の休止時の状態を示す説明
図である。 1・・・マニノA−ルド 2a、 2b、 2c、 2d、 2x、 2y−分配
管3・・・電解液分配口 4.4′ ・・・電解液 5a、 5b、 5c、 5d、 5x、 5y、 1
O−−−nf出管6・・・電解液共通排出管 7・・・電解液排出口 8・・・バルブ 9・・・開口部 C−1,C−2,C−3,C−4,(、−24,C−2
5・・・セル
Figure 1 is an explanatory diagram showing the operational state of a zinc-chlorine battery of the electrolyte supply type battery of the present invention shown in the Example, and Figure 2 is the state of the same battery during rest. Figure 3 is a conceptual diagram of the operation of a conventional electrolyte-supplied battery; Figure 4 is an explanatory diagram showing the
The figure is an explanatory diagram showing a state of a conventional electrolyte supply type battery when it is at rest. 1...Manino A-old 2a, 2b, 2c, 2d, 2x, 2y-distribution pipe 3...electrolyte distribution port 4.4'...electrolyte 5a, 5b, 5c, 5d, 5x, 5y , 1
O---nf outlet pipe 6... Electrolyte common discharge pipe 7... Electrolyte outlet 8... Valve 9... Openings C-1, C-2, C-3, C-4 ,(,-24,C-2
5...Cell

Claims (3)

【特許請求の範囲】[Claims] (1)電気的に複数個直列に接続ないしは積層した単セ
ルの各々に、マニノt−ルドから分岐した各分配管によ
って電解液を分配供給すると共に、排出管によって各単
セルより電解液を排出づる電池におい−C、マ二フィー
ルドないしは分配管におりるセル電解液面レベルよりも
高い位置に外気への間口部を設(プることにより、電池
の運転休止時に該開口部を開放状態にして該マニフA−
ルド及び分配管に存在する電解液を排出して外気とWi
換するようにしたことを特徴とJる自己放電を防止した
電解液供給型電池。
(1) Electrolyte is distributed and supplied to each of the multiple electrically connected or stacked single cells in series through each distribution pipe branched from the mani-no-told, and the electrolyte is discharged from each single cell through a discharge pipe. By installing an opening to the outside air at a position higher than the level of the cell electrolyte flowing into the manifold or distribution pipe, the opening can be kept open when the battery is out of operation. The manifold A-
The electrolyte present in the field and distribution pipe is discharged and connected to the outside air.
This is an electrolyte supply type battery that prevents self-discharge.
(2)電池が塩化亜鉛を主成分とする水溶液を電解液と
して供給する亜鉛−塩素電池である特許請求の範囲第(
1)項記載の自己放電を防止した電解液供給型電池。
(2) The battery is a zinc-chlorine battery that supplies an aqueous solution containing zinc chloride as the main component as an electrolyte.
An electrolyte supply type battery that prevents self-discharge as described in item 1).
(3)マユノA−ルドの先端部にI?tlLI部を設置
ノ、運転時常時間放し−にれより電解液の一部を放出し
−C排出管に排出するようにし、電池の運転休止時に、
そのまま開口部が開放状態にあるようにした特許請求の
範囲第(1)項または第(2)項記載の自己放電を防止
した電解液供給型電池。
(3) Is there an I on the tip of Mayuno A-ru? After installing the tlLI part, it is left open at all times during operation so that a part of the electrolyte is released from the pipe and discharged to the C discharge pipe, and when the battery is not in operation,
An electrolyte supply type battery that prevents self-discharge according to claim (1) or (2), wherein the opening is left open.
JP59109265A 1984-05-29 1984-05-29 Electrolyte supply type battery of self-discharge prevention ability Pending JPS60253154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59109265A JPS60253154A (en) 1984-05-29 1984-05-29 Electrolyte supply type battery of self-discharge prevention ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59109265A JPS60253154A (en) 1984-05-29 1984-05-29 Electrolyte supply type battery of self-discharge prevention ability

Publications (1)

Publication Number Publication Date
JPS60253154A true JPS60253154A (en) 1985-12-13

Family

ID=14505784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59109265A Pending JPS60253154A (en) 1984-05-29 1984-05-29 Electrolyte supply type battery of self-discharge prevention ability

Country Status (1)

Country Link
JP (1) JPS60253154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228361A2 (en) * 1986-01-03 1987-07-08 S.E.A. Studiengesellschaft für Energiespeicher und Antriebssysteme Gesellschaft m.b.H. Galvanic element and process for storing and supplying electrical energy
JP2017199492A (en) * 2016-04-26 2017-11-02 行政院原子能委員会核能研究所 Branch current suppression device and branch current suppression method for flow battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0228361A2 (en) * 1986-01-03 1987-07-08 S.E.A. Studiengesellschaft für Energiespeicher und Antriebssysteme Gesellschaft m.b.H. Galvanic element and process for storing and supplying electrical energy
EP0228361A3 (en) * 1986-01-03 1990-05-30 S.E.A. Studiengesellschaft für Energiespeicher und Antriebssysteme Gesellschaft m.b.H. Galvanic element and process for storing and supplying electrical energy
JP2017199492A (en) * 2016-04-26 2017-11-02 行政院原子能委員会核能研究所 Branch current suppression device and branch current suppression method for flow battery

Similar Documents

Publication Publication Date Title
CA2446213C (en) Secondary battery system allowing a high overload operation
EP1551074A1 (en) Method for operating redox flow battery and redox flow battery cell stack
CA1244078A (en) Metal-halogen secondary battery
US4534833A (en) Zinc-chloride battery in a chlorine producing/consuming plant
CN110620250A (en) Flow battery energy storage device and flow battery energy storage system
US4049878A (en) Electrochemical battery
JP2009016219A (en) Redox flow battery system having emergency power source function, and emergency operation method of redox flow battery system
WO2019131944A1 (en) Redox flow battery and operation method therefor
TW202011634A (en) Method for operating redox flow cell and redox flow cell
JPS60253154A (en) Electrolyte supply type battery of self-discharge prevention ability
US5391973A (en) Method of charging a multiplicity of batteries
JPS61156641A (en) Zinc-bromine battery
JPH07502370A (en) How to perform suitable electrochemical transformations with rechargeable batteries
JP3098961B2 (en) Redox flow battery and method of operating the same
JP2003007326A (en) Electricity storage system
JP2006012425A (en) Operation method of redox flow battery
JPH05166551A (en) Method for operating metal halogen battery
JP3507818B2 (en) Operating Redox Flow Battery
JPS60258850A (en) Electrolytic liquid supply type cell
US2221677A (en) Storage battery
JP2006073471A (en) Redox flow battery and its operation method
JPS63291365A (en) Redox flow type battery
JP2002252020A (en) Redox flow battery
JPH01124965A (en) Electrolyte flow type cell
JPH0159706B2 (en)