JP3098961B2 - Redox flow battery and method of operating the same - Google Patents

Redox flow battery and method of operating the same

Info

Publication number
JP3098961B2
JP3098961B2 JP08194537A JP19453796A JP3098961B2 JP 3098961 B2 JP3098961 B2 JP 3098961B2 JP 08194537 A JP08194537 A JP 08194537A JP 19453796 A JP19453796 A JP 19453796A JP 3098961 B2 JP3098961 B2 JP 3098961B2
Authority
JP
Japan
Prior art keywords
battery cell
electrolyte
battery
storage unit
redox flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08194537A
Other languages
Japanese (ja)
Other versions
JPH1040944A (en
Inventor
敏夫 重松
俊郎 嶋田
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP08194537A priority Critical patent/JP3098961B2/en
Publication of JPH1040944A publication Critical patent/JPH1040944A/en
Application granted granted Critical
Publication of JP3098961B2 publication Critical patent/JP3098961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、一般にレドック
スフロー電池に関するものであり、より特定的には、応
答性が向上するように改良されたレドックスフロー2次
電池に関する。この発明は、また、そのようなレドック
スフロー電池の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates generally to a redox flow battery, and more particularly, to a redox flow secondary battery improved so as to improve responsiveness. The invention also relates to a method for operating such a redox flow battery.

【0002】[0002]

【従来の技術】図2は、既に提案されているレドックス
フロー電池の一例を示す概略構成図である。図2を参照
して、電池セル1は、隔膜によって分離された正極室と
負極室を有する。電池セル1の正極室には、正極タンク
2aに貯蔵された正極電解液がポンプPによって連続的
に供給される。同様に、電池セル1の負極室2bには、
負極タンク3に貯蔵された負極電解液がポンプPによっ
て連続的に供給される。正極電解液として、たとえばV
5+/V4+イオンを含む硫酸溶液、負極電解液として、た
とえばV2+/V3+イオンを含む硫酸溶液を用いれば、V
5+のV4+への還元(正極側)とV2+のV3+への酸化(負
極側)により放電が行われ、その逆反応により充電が行
われる。このとき、両極の間に設けられた隔膜を水素イ
オンが通過する。
2. Description of the Related Art FIG. 2 is a schematic diagram showing an example of a redox flow battery that has been already proposed. Referring to FIG. 2, battery cell 1 has a positive electrode chamber and a negative electrode chamber separated by a diaphragm. The positive electrode electrolyte stored in the positive electrode tank 2 a is continuously supplied to the positive electrode chamber of the battery cell 1 by the pump P. Similarly, in the negative electrode chamber 2b of the battery cell 1,
The negative electrode electrolyte stored in the negative electrode tank 3 is continuously supplied by the pump P. For example, V
If a sulfuric acid solution containing 5 + / V 4+ ions and a sulfuric acid solution containing V 2+ / V 3+ ions are used as the negative electrode electrolyte, for example,
Discharge is performed by reduction of 5+ to V 4+ (positive electrode side) and oxidation of V 2+ to V 3+ (negative electrode side), and charging is performed by the reverse reaction. At this time, hydrogen ions pass through a diaphragm provided between the two electrodes.

【0003】[0003]

【発明が解決しようとする課題】従来のレドックスフロ
ー電池では、図2を参照して、停止時には、電解液を電
池セル1へ供給循環するためのポンプPを停止するが、
その際、その時点での充電状態に応じた電解液が電池セ
ル1内に残存する。この残存電解液は、停止中に電池セ
ル1内で隔膜を介しての拡散や直列積層セル内のマニホ
ールドを通して自己放電する。また起動時には、循環ポ
ンプの起動により、電解液貯蔵部2,3から電池セル1
内へと配管を経由してこの残存電解液が送液循環するた
め、定格の出力が得られるには、分オーダーの時間を要
する。そのため、応答性が悪いという問題点があった。
In the conventional redox flow battery, referring to FIG. 2, a pump P for supplying and circulating the electrolyte to the battery cell 1 is stopped when the battery is stopped.
At that time, the electrolytic solution corresponding to the state of charge at that time remains in the battery cell 1. The remaining electrolytic solution is self-discharged through the diaphragm in the battery cell 1 or through the manifold in the series-stacked cell during shutdown. In addition, at the time of startup, the battery cell 1 is discharged from the electrolyte storage units 2 and 3 by starting the circulation pump.
Since the remaining electrolyte is sent and circulated into the inside via a pipe, it takes time on the order of minutes to obtain a rated output. Therefore, there is a problem that the response is poor.

【0004】この発明は上記のような問題点を解決する
ためになされたもので、応答性が改良されたレドックス
フロー電池を提供することを目的とする。
The present invention has been made to solve the above problems, and has as its object to provide a redox flow battery with improved responsiveness.

【0005】この発明の他の目的は、そのようなレドッ
クスフロー電池の運転方法を提供することにある。
It is another object of the present invention to provide a method for operating such a redox flow battery.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

【0007】この発明に従うレドックスフロー電池は、
電池セルと、該電池セルへ循環供給する電解液を蓄える
電解液貯蔵部を備える。上記電池セルと上記電解液貯蔵
部との間に、上記電解液貯蔵部から上記電池セルへ送り
込むための送液用管路が設けられている。上記電池セル
と上記電解液貯蔵部との間には、上記電池セルから上記
電界液貯蔵タンクへ電解液を排液する排液用管路が設け
られている。上記排液用管路内に、該排液用管路の開閉
を行うバルブが設けられている。上記電池セルと上記電
解液貯蔵部との間に、上記電解液貯蔵部の上部空間部に
充填されている不活性ガスを上記電池セル内に送り込む
不活性ガス供給管路が設けられている。上記不活性ガス
供給管路内に、上記電池セルへ送り込む上記不活性ガス
の圧力を制御する圧力制御手段が設けられている。上記
電池セルの設置高さは、上記電解液貯蔵部の液面レベル
以下にされている。
[0007] The redox flow battery according to the present invention comprises:
The battery includes a battery cell and an electrolyte storage unit that stores an electrolyte that is circulated and supplied to the battery cell. Between the battery cell and the electrolytic solution storage section, a liquid sending pipe for feeding the battery cell from the electrolytic solution storage section to the battery cell is provided. A drain pipe for draining the electrolyte from the battery cell to the electrolyte storage tank is provided between the battery cell and the electrolyte storage unit. A valve for opening and closing the drainage pipe is provided in the drainage pipe. An inert gas supply pipe is provided between the battery cell and the electrolyte solution storage unit for feeding an inert gas filled in an upper space of the electrolyte solution storage unit into the battery cell. Pressure control means for controlling the pressure of the inert gas sent to the battery cell is provided in the inert gas supply pipe. The installation height of the battery cell is set to be equal to or lower than the liquid level of the electrolyte storage unit.

【0008】この発明のさらに他の局面に従うレドック
スフロー電池の運転方法は、電池セルと、該電池セルへ
循環供給する電解液を蓄える電解液貯蔵部とを備えたレ
ドックスフロー電池の運転方法に係る。充電後、システ
ムを停止待機させる際に、上記電池セル内に残存してい
る電解液を不活性ガスと置換することを特徴とする。
[0008] A method for operating a redox flow battery according to still another aspect of the present invention relates to a method for operating a redox flow battery including a battery cell and an electrolyte storage unit for storing an electrolyte solution to be circulated and supplied to the battery cell. . After charging, when the system is stopped and waited, the electrolytic solution remaining in the battery cell is replaced with an inert gas.

【0009】[0009]

【発明の実施の形態】以下、この発明の実施の形態を図
について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

【0010】図1は、この発明の参考となるレドックス
フロー電池の概念図である。レドックスフロー電池は、
電池セル1を備える。レドックスフロー電池は、電池セ
ルへ循環供給する電解液を蓄える電解液貯蔵部(正極タ
ンク2a,負極タンク2b)を備える。電池セル1と電
解液貯蔵部2a,2bとの間に、電解液貯蔵部2a,2
bから電解液を電池セル1内へ送り込むための送液用管
路3a,3bを備える。電池セル1と電解液貯蔵部2
a,2bとの間に、電池セル1から電解液貯蔵部2a,
2bへ電解液を排液する排液用管路4a,4bが設けら
れている。排液用管路4a,4b内に、該排液用管路4
a,4bの開閉を行うバルブ5a,5bが設けられてい
る。排液液用管路4a,4bの、バルブ5a,5bと電
池セル1との間に位置する部分に、不活性ガスを送り込
むための管路6a,6bが接続されている。管路6a,
6bのそれぞれの一方端は、バルブ7を含む管路8に合
流するように接続されている。管路8は不活性ガス供給
システム9に接続されている。電池セル1の設置高さ
は、電解液貯蔵部(正極タンク2a,負極タンク2b)
の液面レベル以下にされている。
FIG. 1 is a conceptual diagram of a redox flow battery which is a reference of the present invention. Redox flow batteries
A battery cell 1 is provided. The redox flow battery includes an electrolytic solution storage unit (a positive electrode tank 2a and a negative electrode tank 2b) for storing an electrolytic solution to be circulated and supplied to the battery cells. Between the battery cell 1 and the electrolyte storage units 2a and 2b, the electrolyte storage units 2a and 2b
b. Liquid supply pipes 3a and 3b for supplying the electrolyte from the battery b into the battery cell 1 are provided. Battery cell 1 and electrolyte storage unit 2
a, 2b, between the battery cell 1 and the electrolyte storage units 2a, 2b.
Drain lines 4a and 4b for draining the electrolyte to 2b are provided. The drainage pipes 4 are provided in the drainage pipes 4a and 4b.
Valves 5a and 5b for opening and closing a and 4b are provided. Pipelines 6a and 6b for feeding inert gas are connected to portions of the drainage pipes 4a and 4b located between the valves 5a and 5b and the battery cell 1. Conduit 6a,
One end of each of the members 6b is connected to join a conduit 8 including a valve 7. The pipe 8 is connected to an inert gas supply system 9. The installation height of the battery cell 1 is determined by the electrolyte storage unit (the positive electrode tank 2a and the negative electrode tank 2b).
Below the liquid level.

【0011】次に、動作について説明する。電池システ
ム充電後、循環ポンプPを停止した場合、電池セル1内
において電解液が残存している。電池セル1の排液用管
路4a,4bのバルブ5a,5bを締め、バルブ7を開
けることで、電池セル1内の残存電解液を不活性ガス供
給システム9から供給される不活性ガスと置換する。電
池セル1内の残存電解液は、不活性ガスに押され、電解
液貯蔵部2a,2b内へと戻る。この操作によって、停
止待機中の、電池セル1内での残存電解液による自己放
電は十分に抑制される。次に、待機後、放電を開始する
場合には、バルブ7を締め、バルブ5a,5bを開ける
(この操作は、自動制御とするのが、即応性の点で望ま
しい。)。この操作によって、電解液貯蔵部2a,2b
の液面レベル位置の高さ分による圧力に応じて、電池セ
ル1内に電解液が自然と導入される。この間に、ポンプ
Pを起動開始しておく。
Next, the operation will be described. When the circulation pump P is stopped after charging the battery system, the electrolyte remains in the battery cell 1. By closing the valves 5a and 5b of the drainage pipes 4a and 4b of the battery cell 1 and opening the valve 7, the remaining electrolytic solution in the battery cell 1 is removed from the inert gas supplied from the inert gas supply system 9 by the inert gas supply system 9. Replace. The remaining electrolyte in the battery cell 1 is pushed by the inert gas and returns to the electrolyte storage units 2a and 2b. By this operation, the self-discharge due to the remaining electrolyte in the battery cell 1 during the stop standby is sufficiently suppressed. Next, when the discharge is started after the standby, the valve 7 is closed and the valves 5a and 5b are opened (this operation is preferably controlled automatically, in terms of responsiveness). By this operation, the electrolyte storage units 2a and 2b
The electrolyte is naturally introduced into the battery cell 1 according to the pressure corresponding to the height of the liquid level position. During this time, the pump P is started to be started.

【0012】本発明の実施の形態によれば、上述の最初
のバルブ操作によって、即時に放電が可能となる。また
電池セル1内の電解液による放電中(数分程度)にポン
プシステムも定格運転可能となり、継続して放電が可能
となる。その結果、即応性が達成され、非常時など、即
応性が要求される場合に、有益である。
According to the embodiment of the present invention, the first valve operation described above allows immediate discharge. Also, the pump system can perform rated operation during the discharge by the electrolyte in the battery cell 1 (about several minutes), and the discharge can be continued. As a result, responsiveness is achieved, which is useful when responsiveness is required, such as in an emergency.

【0013】[0013]

【実施例】以下、比較例と実施例とを述べて、本発明
を、さらに詳細に説明する。
The present invention will be described below in more detail with reference to comparative examples and examples.

【0014】比較例 図2のように従来のレドックスフロー電池を構成し、2
0kwセルを用いて容量2時間程度のレドックスフロー
電池を作製した。定格充電後、循環ポンプPを停止した
後、放置した。放置後1日以内で、電池セル1の電解液
分はすべて自己放電した。この量は、全電解液のおよそ
2%程度であった。次に、放電操作を開始した。ポンプ
を起動し、所望の20kw出力を得るには、数分間を要
した。
Comparative Example A conventional redox flow battery was constructed as shown in FIG.
A redox flow battery having a capacity of about 2 hours was manufactured using a 0 kW cell. After the rated charging, the circulation pump P was stopped and then left. Within one day after the standing, all of the electrolyte in the battery cell 1 self-discharged. This amount was about 2% of the total electrolyte. Next, the discharging operation was started. It took several minutes to start the pump and obtain the desired 20 kW output.

【0015】参考例1 図1に示すように、参考となるレドックスフロー電池を
構成した。定格充電後、循環ポンプPを停止した後、電
池セル1の排液用管路4a,4bのバルブ5a,5bを
閉め、バルブ7を開け、不活性ガス供給システム9よ
り、窒素ガスを電池セル1内に供給し、電池セル1内の
残存電解液を電解液貯蔵部2a,2bへと戻す操作を行
った。放置後1日を経て、バルブ7を閉じ、排液用管路
4a,4bのバルブ5a,5bを開け、ポンプPを起動
し、放電を実施したところ、ほとんど自己放電はないこ
とがわかった。
REFERENCE EXAMPLE 1 As shown in FIG. 1, a reference redox flow battery was constructed. After the rated charge, the circulation pump P is stopped, the valves 5a and 5b of the drainage pipes 4a and 4b of the battery cell 1 are closed, the valve 7 is opened, and nitrogen gas is supplied from the inert gas supply system 9 to the battery cell. 1 and the operation of returning the remaining electrolyte solution in the battery cell 1 to the electrolyte solution storage units 2a and 2b was performed. One day after the standing, the valve 7 was closed, the valves 5a and 5b of the drainage pipes 4a and 4b were opened, the pump P was started, and discharge was performed. As a result, it was found that there was almost no self-discharge.

【0016】参考例2 参考例1 と同様のシステムを用い、比較例と同様に充電
した。充電後、セル内の残存電解液を窒素ガスと置換す
る作業を行った。この際、非常時を想定し、応答性を上
げるべく、バルブ操作を電気的瞬時に開閉できる電磁バ
ルブを用いた。充電後、放電開始する際、まず電気的に
電磁バルブを開放し、電池セル1内へ電解液を瞬時に導
入した。電池セル1の設置高さが電解液貯蔵部2a,2
bの液面レベル以下にされているので、このとき、重力
により、電解液が電池セル1内に瞬時に導入される。同
時に、ポンプPを起動した。瞬時に所望の20kw出力
を得、セル内電解液分の放電を終了する前に、ポンプP
も立上がり、継続的に放電できることがわかった。
Reference Example 2 Using the same system as in Reference Example 1 , charging was performed in the same manner as in the Comparative Example. After charging, an operation of replacing the remaining electrolyte in the cell with nitrogen gas was performed. At this time, an electromagnetic valve capable of electrically opening and closing the valve instantaneously was used in order to improve responsiveness in an emergency. When starting discharging after charging, the electromagnetic valve was first opened electrically, and the electrolytic solution was instantaneously introduced into the battery cell 1. The installation height of the battery cell 1 depends on the electrolyte storage units 2a, 2
At this time, the electrolytic solution is instantaneously introduced into the battery cell 1 due to gravity because the liquid level is equal to or lower than the liquid level of b. At the same time, the pump P was started. Before the desired 20 kW output is obtained and the discharge of the electrolyte in the cell is completed, the pump P
, And it was found that continuous discharge was possible.

【0017】実施例 図3は、この発明の実施例にかかるレドックスフロー電
池の概念図である。図3に示すレドックスフロー電池
は、図1に示すレドックスフロー電池と、以下に述べる
点を除いて、同一であるので、同一または相当する部分
には、同一の参照番号を付し、その説明を繰返さない。
[0017] Example Figure 3 is a schematic diagram of a redox flow battery according to an embodiment of the present invention. Since the redox flow battery shown in FIG. 3 is the same as the redox flow battery shown in FIG. 1 except for the points described below, the same or corresponding parts are denoted by the same reference numerals, and a description thereof will be given. Do not repeat.

【0018】図3に示すレドックスフロー電池が、図1
に示すレドックスフロー電池と異なる点は、電池セル1
と電解液貯蔵部2a,2bとの間に、電解液貯蔵部2a
の上部空間部に充填されている不活性ガスを電池セル1
内に送り込む不活性ガス供給管路10a,10bを備え
る点である。不活性ガス供給管路10a,10b内に
は、不活性ガスの圧力を制御する圧力制御装置11が設
けられている。また、不活性ガス供給管路10a,10
bのそれぞれには、バルブ12a,12bが設けられて
いる。この実施例では、電解液酸化防止のために、電解
液貯蔵部の上部空間部に充填されている不活性ガスを利
用することを特徴とする。本実施例によれば、外部に不
活性ガスボンベを設置する必要がなく、コスト・メンテ
ナンスの面で有利となる。また、外部からの新規の不活
性ガスは、通常、乾燥状態であるため、乾燥状態のガス
を利用するとセル内が乾燥し、隔膜の寿命に影響を与え
るという問題点がある。しかし、本実施例のように、電
解液貯蔵部2a,2b内に充填された不活性ガスは、湿
潤状態にあるため、そのような問題点が生じさせないと
いう効果を奏する。
The redox flow battery shown in FIG.
The difference from the redox flow battery shown in FIG.
Between the electrolyte storage sections 2a and 2b and the electrolyte storage section 2a
Inert gas filled in the upper space of the battery cell 1
In that it is provided with inert gas supply pipes 10a and 10b for feeding the inside. A pressure control device 11 for controlling the pressure of the inert gas is provided in the inert gas supply pipes 10a and 10b. In addition, the inert gas supply lines 10a, 10
Each of b is provided with a valve 12a, 12b. This embodiment is characterized in that an inert gas filled in an upper space of the electrolyte storage is used to prevent oxidation of the electrolyte. According to this embodiment, there is no need to install an inert gas cylinder outside, which is advantageous in terms of cost and maintenance. In addition, since a new inert gas from the outside is usually in a dry state, if a gas in a dry state is used, there is a problem that the inside of the cell is dried and the life of the diaphragm is affected. However, as in the present embodiment, since the inert gas filled in the electrolyte solution storage sections 2a and 2b is in a wet state, there is an effect that such a problem does not occur.

【0019】[0019]

【発明の効果】以上説明したとおり、この発明によれ
ば、停止中の自己放電がほとんどないレドックスフロー
電池となる。また、システムの電力貯蔵の効率を向上で
きる。さらに、停止後、放電開始する際の応答性が高ま
るため、即応性が必要とされる非常用電源などの用途に
も適用が可能となる。
As described above, according to the present invention, there is provided a redox flow battery having almost no self-discharge during stoppage. In addition, the power storage efficiency of the system can be improved. Further, the response at the time of starting the discharge after the stop is enhanced, so that the present invention can be applied to an application such as an emergency power supply that requires responsiveness.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るレドックスフロー電池の概念図で
ある。
FIG. 1 is a conceptual diagram of a redox flow battery according to the present invention.

【図2】従来のレドックスフロー電池の概念図である。FIG. 2 is a conceptual diagram of a conventional redox flow battery.

【図3】本発明の他の実施例に係るレドックスフロー電
池の概念図である。
FIG. 3 is a conceptual diagram of a redox flow battery according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電池セル 2a,2b 電解液貯蔵部 3a,3b 送液用管路 4a,4b 排液用管路 5a,5b バルブ 9 不活性ガス供給システム DESCRIPTION OF SYMBOLS 1 Battery cell 2a, 2b Electrolyte storage part 3a, 3b Liquid supply line 4a, 4b Liquid discharge line 5a, 5b Valve 9 Inert gas supply system

───────────────────────────────────────────────────── フロントページの続き (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (56)参考文献 特開 平1−264178(JP,A) 特開 昭62−35461(JP,A) 特開 昭62−229665(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 8/00 - 8/24 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Nobuyuki Tokuda 3-3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka Kansai Electric Power Co., Inc. (56) References JP-A 1-264178 (JP, A) JP JP-A-62-35461 (JP, A) JP-A-62-229665 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 8/00-8/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電池セルと、 前記電池セルへ循環供給する電解液を蓄える電解液貯蔵
部と、 前記電解液貯蔵部から電解液を前記電池セルへ送り込む
ための送液用管路と、 前記電池セルから前記電解液貯蔵タンクへ電解液を排液
する排液用管路と、 前記排液用管路内に設けられ、該排液用管路の開閉を行
うバルブと、 前記電池セルと前記電解液貯蔵部との間に設けられ、前
記電解液貯蔵部の上部空間部に充填されている不活性ガ
スを前記電池セル内に送り込む不活性ガス供給管路と、 前記不活性ガス供給管路内に設けられ、前記電池セルへ
送り込む前記不活性ガスの圧力を制御する圧力制御手段
と、を備え、 前記電池セルの設置高さは、前記電解液貯蔵部の液面レ
ベル以下にされている、レドックスフロー電池。
A battery cell; an electrolyte storage unit for storing an electrolyte solution to be circulated and supplied to the battery cell; a liquid sending pipe for sending an electrolyte solution from the electrolyte solution storage unit to the battery cell; A drain pipe for draining the electrolyte from the battery cell to the electrolyte storage tank; a valve provided in the drain pipe for opening and closing the drain pipe; and the battery cell An inert gas supply pipe that is provided between the electrolyte solution storage unit and feeds an inert gas filled in an upper space of the electrolyte solution storage unit into the battery cell; Pressure control means for controlling the pressure of the inert gas sent to the battery cell, provided in a path, and the installation height of the battery cell is set to be equal to or less than the liquid level of the electrolyte solution storage unit. There is a redox flow battery.
【請求項2】 電池セルと、該電池セルへ循環供給する
電解液を蓄える電解液貯蔵部とを備えたレドックスフロ
ー電池の運転方法において、 充電後、システムを停止待機させる際に、前記電池セル
内に残存している電解液を、前記電解液貯蔵部の上部空
間部に充填されている不活性ガスを前記電池セル内に送
り込んで置換することを特徴とする、レドックスフロー
電池の運転方法。
2. A method for operating a redox flow battery comprising a battery cell and an electrolyte storage unit for storing an electrolyte circulating to be supplied to the battery cell. The remaining electrolyte solution is removed from the space above the electrolyte storage unit.
The inert gas filled in the space is sent into the battery cells.
A method for operating a redox flow battery, comprising:
【請求項3】 前記電池セルの設置高さを前記電解液貯
蔵部の液面レベル以下にし、 前記充電停止した後、放電開始するに先立ち、重力によ
り、前記電解液貯蔵タンクから電解液を前記電池セル内
に流れ込ませるようにして行う請求項2に記載のレドッ
クスフロー電池の運転方法。
3. An installation height of the battery cell is set to be equal to or lower than a liquid level of the electrolyte storage unit. After the charging is stopped, the electrolyte is discharged from the electrolyte storage tank by gravity before starting discharging. 3. The method for operating a redox flow battery according to claim 2, wherein the method is performed so as to flow into the battery cell.
JP08194537A 1996-07-24 1996-07-24 Redox flow battery and method of operating the same Expired - Fee Related JP3098961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08194537A JP3098961B2 (en) 1996-07-24 1996-07-24 Redox flow battery and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08194537A JP3098961B2 (en) 1996-07-24 1996-07-24 Redox flow battery and method of operating the same

Publications (2)

Publication Number Publication Date
JPH1040944A JPH1040944A (en) 1998-02-13
JP3098961B2 true JP3098961B2 (en) 2000-10-16

Family

ID=16326191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08194537A Expired - Fee Related JP3098961B2 (en) 1996-07-24 1996-07-24 Redox flow battery and method of operating the same

Country Status (1)

Country Link
JP (1) JP3098961B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507818B2 (en) * 2001-09-07 2004-03-15 住友電気工業株式会社 Operating Redox Flow Battery
JP5518535B2 (en) * 2010-03-15 2014-06-11 ダイハツ工業株式会社 Fuel cell system
CN104272513B (en) * 2012-03-05 2017-07-18 Eos控股公司 Redox flow batteries for hydrogen manufacturing
EP3416224B1 (en) * 2012-12-09 2020-07-08 United Technologies Corporation Flow battery with voltage-limiting device
CN103606691B (en) * 2013-11-20 2016-04-13 大连融科储能技术发展有限公司 A kind of flow battery system and method for exhausting thereof had from getting rid of gas in centrifugal pump
KR102011764B1 (en) * 2014-06-13 2019-08-19 주식회사 엘지화학 Flow battery and battery module comprising thereof
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Also Published As

Publication number Publication date
JPH1040944A (en) 1998-02-13

Similar Documents

Publication Publication Date Title
US7199550B2 (en) Method of operating a secondary battery system having first and second tanks for reserving electrolytes
KR101285997B1 (en) Fuel cell system operation method and fuel cell system
JP5580991B2 (en) Humidification of fuel cells
JP2007323954A (en) Fuel cell system, and control method thereof
JP3098961B2 (en) Redox flow battery and method of operating the same
JP2002175822A (en) Redox flow battery and its operating method
JP2001292532A (en) Battery energy storage system
JP4742444B2 (en) Fuel cell device
WO2017204530A1 (en) Redox flow battery
JP2007059120A (en) Fuel battery system
JP3231273B2 (en) Electrolyte flow battery
JP3260280B2 (en) Redox flow type secondary battery device and operating method thereof
JPH11176454A (en) Power source for fuel cell accessory
US5436087A (en) Process for reducing unwanted specific electro chemical conversion in rechargeable batteries
JP2017147121A (en) Power control method for fuel cell system
JP3583914B2 (en) Auxiliary power supply for fuel cell
JP2001043884A (en) Redox flow type secondary battery and its operation method
JP2004165028A (en) Discharging method of fuel cell stack and apparatus thereof
JP3098977B2 (en) Redox flow battery and method of operating the same
CA3214396A1 (en) Flow cell decontamination
JPS6235461A (en) Electrolyte circulation type secondary cell
TWI787244B (en) Redox flow battery system and operation method of redox flow battery system
JPH09270266A (en) Redox flow secondary battery and method for operating same
KR20220160222A (en) Vanadium Redox flow battery for data center and operating method thereof
WO2019131937A1 (en) Redox flow battery and method for operating same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees