WO2017204530A1 - Redox flow battery - Google Patents

Redox flow battery Download PDF

Info

Publication number
WO2017204530A1
WO2017204530A1 PCT/KR2017/005348 KR2017005348W WO2017204530A1 WO 2017204530 A1 WO2017204530 A1 WO 2017204530A1 KR 2017005348 W KR2017005348 W KR 2017005348W WO 2017204530 A1 WO2017204530 A1 WO 2017204530A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
chamber
pipe
stack
flow battery
Prior art date
Application number
PCT/KR2017/005348
Other languages
French (fr)
Korean (ko)
Inventor
이용희
김미경
강태혁
Original Assignee
롯데케미칼주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼주식회사 filed Critical 롯데케미칼주식회사
Publication of WO2017204530A1 publication Critical patent/WO2017204530A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a redox flow battery, and more particularly, to a redox flow battery capable of maintaining performance even with a simpler configuration.
  • the electric power storage device stores electric energy when a large amount of power is generated, and releases electric energy when a large amount of power is consumed, thereby eliminating the problem of fluctuations in power generation and inconsistency in supply and demand.
  • Renewable energy such as solar and wind power
  • a large capacity power storage technology is required to accommodate the fluctuations of renewable energy and to smoothly supply power and efficiently utilize power generation facilities.
  • Redox (redox) flow batteries are secondary batteries for high-capacity power storage, and have low maintenance costs, operate at room temperature, and can independently design capacity and output.
  • the redox flow battery includes a stack in which a plurality of cells are stacked, an electrolyte tank for storing the positive and negative electrolytes, and a circulation device such as a pump for supplying and discharging the positive and negative electrolytes to the stack.
  • a configuration such as an automatic control valve capable of automatically controlling their circulation may be further included for smooth circulation of the positive or negative electrolyte.
  • a configuration such as an automatic control valve is difficult to manufacture, expensive, and damage due to continuous operation may be a factor that impairs the economics and durability of the redox flow battery.
  • the present disclosure is to provide a redox flow battery that can maintain performance even with a simpler configuration.
  • an electrolyte tank and an electrolyte tank comprising a stack of a plurality of battery cells, a first chamber for storing the first electrolyte and a second chamber for storing the crab 2 electrolyte And an electrolyte circulation part for supplying an electrolyte solution to the stack, and recovering the electrolyte solution used in the stack to the electrolyte tank, wherein the electrolyte solution circulation part comprises: a first pipe connecting the lower side of the crab chamber and the stack; A second pipe connecting the upper side of the first chamber, a first sub pipe connected to the lower side of the second chamber, and a second sub pipe connected to the upper side of the second chamber, wherein the first sub pipe and the first sub pipe are connected to each other.
  • 2 includes the sub-pipe and a fourth pipe for connecting the upper side of the third pipe and the stack and, the second chamber connecting the stack.
  • the electrolyte circulation unit may further include a first pump installed in the first pipe to circulate the first electrolyte and a second pump installed in the third pipe to circulate the second electrolyte.
  • the eleven sub-pipes may include a first valve positioned in the first sub-pipe to control the opening and closing of the first sub-pipe.
  • the electrolyte circulation unit may further include a connection pipe connecting the first chamber and the second chamber.
  • connection pipe may include a second valve for controlling opening and closing of the connection pipe between the first chamber and the second chamber.
  • connection pipe may be connected to the upper portion of the second chamber.
  • the redox flow battery of this embodiment may be a zinc-bromine flow battery.
  • FIG. 1 is a schematic diagram of a redox flow battery according to an embodiment of the present invention.
  • 2 is a partially enlarged perspective view of the redox flow battery shown in FIG. 1.
  • 3 is an exploded perspective view illustrating one battery cell of the stack illustrated in FIG. 1.
  • Figure 4 is a graph showing the state of charge and discharge of the stack of redox flow battery according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a redox flow battery 100 according to a first embodiment of the present invention
  • FIG. 2 is a partially enlarged perspective view of the redox flow battery 100 shown in FIG. 1.
  • the redox flow battery 100 of the present embodiment includes a stack 20, an electrolyte tank 30, and an electrolyte circulation unit 40.
  • the stack 20 includes a plurality of battery cells 10, and the electrolyte tank 30 includes a first chamber 31 for storing the first electrolyte and a second chamber 32 for storing the second electrolyte.
  • the first electrolyte may be a cathode electrolyte
  • the second electrolyte may be a cathode electrolyte.
  • the electrolyte circulation portion 40 supplies the first electrolyte and the crab 2 electrolyte stored in the first chamber 31 and the second chamber 32 of the electrolyte tank 30 to the stack 20, respectively, and is used in the stack 20.
  • the first electrolyte solution and the second electrolyte solution are recovered to the electrolyte tank 30.
  • the redox flow battery 100 of the present embodiment may be a zinc-bromine redox flow battery.
  • the zinc-bromine redox flow battery uses ZnBr 2 as a positive electrode and a negative electrode electrolyte, and the reaction is as follows.
  • the present invention is not limited thereto, and may be a vanadium redox flow battery instead of a zinc-red redox flow battery.
  • the vanadium redox flow battery uses H 2 S0 4 as the positive electrode and the negative electrode electrolyte, and the reaction is as follows.
  • Redox flow battery 100 of the present embodiment is not limited to the above-described zinc-bream or vanadium type, any temperature can be applied as long as the temperature of the stack 20 is increased by the reaction heat to lower the temperature of the stack 20 Do.
  • FIG. 3 is an exploded perspective view showing one battery cell 10 of the stack 20 ′ shown in FIG. 1.
  • the battery cell 10 includes the membrane 11, which is an ion exchange membrane, and the first and second porous electrodes 12 and 13, with the membrane 11 interposed therebetween; First and second flow frames 14 and 15 for fixing the first and second porous electrodes 12, 13 at the edges of the porous electrodes 12, 13, respectively; and the first and second porous electrodes 12, 13. 13 and a first electrode 16 and a second electrode 17, respectively located outside of 13).
  • the first electrode 16 and the second electrode 17 may each function as either an anode electrode or a cathode electrode, and the function of the anode and the cathode is determined according to the direction of reaction and current occurring at each electrode.
  • first electrode 16 and the second electrode 17 are integrally formed, which is called a bipolar plate.
  • First and second porosity The electrodes 12, 13 can be made of carbon felt, and the first and second electrodes 16, 17 can be made of graphite.
  • Four holes for the electrolyte circulation are formed in the first and the second flow frames 14 and 15.
  • One of the four holes in the first flow frame 14 is the second electrolyte inlet, the other is the second electrolyte outlet, and the other two are the first electrolyte through holes.
  • the flow path 14 is formed in the jet flow frame 14 between the second electrolyte inlet and the first porous electrode 12 and between the first porous electrode 12 and the second electrolyte outlet so that the second porous electrode 12 has a second flow path. Allow the electrolyte to flow.
  • One of the four holes in the second flow frame 15 is the first electrolyte inlet, the other is the first electrolyte outlet, and the other two are twelve electrolyte through holes.
  • a flow path is formed between the system 1 electrolyte inlet and the second porous electrode 13 and between the system 2 porous electrode 13 and the first electrolyte outlet so that the system 1 is connected to the second porous electrode 13. Allow the electrolyte to flow.
  • the electrolyte tank 30 includes a crab chamber 31 storing a crab 1 electrolyte and a second chamber 32 storing a second electrolyte. It includes.
  • the first chamber 31 and the second chamber 32 of this embodiment are connected by a connecting pipe 47.
  • the connection pipe 47 is disposed between the first chamber 31 and the second chamber 32, and may include a second valve 49 for controlling opening and closing of the connection pipe 47.
  • the connection pipe 47 connected to the second chamber 32 may be connected to the upper portion of the crab chamber 32 to prevent the QBr described later from flowing into the first chamber 31.
  • the electrolyte circulation part 40 includes a crab 1 pipe 41, a second pipe 42, a third pipe 43, and a fourth pipe 44.
  • the first pipe 41 connects the lower side of the first chamber 31 and the stack 20, and the second pipe 42 connects the stack 20 and the upper side of the first chamber 31, and a third Piping 43 connects the second chamber 32 and the stack 20, the fourth The pipe 44 connects the stack 20 and the upper side of the second chamber 32.
  • the first pump 45 may be arranged in the crab 1 pipe 41 to assist in the circulation of the first electrolyte
  • the second pump 46 may be arranged in the crab 3 pipe 43 to assist in the circulation of the second electrolyte. ) May be arranged.
  • the crab 3 pipe 43 includes a first sub pipe 43a connected to a lower side of the crab 2 chamber 32 and a second sub pipe 43b connected to an upper side of the crab 2 chamber 32,
  • the first sub pipe 43a and the second sub pipe 43b may be joined to the third pipe 43 to be connected to the stack 20.
  • the first electrolyte of the first chamber 31 is supplied to the stack 20 through the first pipe 41 and provided to the second porous electrode 13 of each battery cell 10, each battery cell 10. At first, the first electrolyte solution, which has undergone chemical reaction, is recovered back to the first chamber 31 through the crab 2 pipe 42.
  • the electrolyte circulation part 40 includes a third pipe 44 connecting the lower side of the second chamber 32 and the crab 2 electrolyte inlet of the stack 20, the crab 2 electrolyte outlet and the third of the stack 20.
  • the crab 4 pipe 45 which connects the upper side of the chamber 33, and the crab 2 pump 46 provided in the crab 3 pipe 44 to circulate a 2nd electrolyte solution are included.
  • the Crab 2 electrolyte of the second chamber 32 is supplied to the stack 20 through the third pipe 44 and provided to the first porous electrode 12 of each battery cell 10, each battery cell 10.
  • the second electrolyte is recovered to the crab 3 chamber 33 through the crab 4 pipe 45.
  • the fourth pipe 45 is connected to the upper side of the second chamber 32, at the initial stage of operation of the redox flow cell 100, the second electrolyte is collected in the second chamber 32 and QBr is precipitated downward.
  • QBr precipitated system 2 electrolyte may be moved to the third pipe 43 through the first sub pipe 43a connected to the lower part of the second chamber 32, and the second electrolyte solution from which QBr is separated
  • the sub pipe 43b may be moved to the system 3 pipe 43.
  • the second electrolyte solution of the second chamber 32 moved to the third pipe 43 is supplied back to the stack 20 through the nearly 13 pipe 44.
  • the first sub pipe 43a may be provided with a first valve 48 for controlling opening and closing of the first sub pipe 43a.
  • the first valve 48 regulates the flow of QBr precipitated in the two chambers 32 by controlling the opening and closing of the first sub pipe 43a.
  • the activated carbon coated on the first porous electrode 12 and the second electrolyte serving as an anode electrolyte for example, cause reaction reaction. Inside the stack a reaction deposit, QBr, is produced.
  • QBr is a bromine complex (Bromine Compex), a cathode active material, and is a heavy and viscous material with high specific gravity. QBr generates electricity by reacting when discharged, but does not affect reaction when re-introduced into the stack 20 during layer deposition. However, when re-introduced into the stack 20, QBr is a heavy and somewhat high viscosity material, which affects the pump speed, resulting in a slow flow rate and high power consumption. In addition, the QBr should be removed at the beginning of operation since it may function to remove zinc metal accumulated in the second porous electrode 13 at a later reaction.
  • Bromine Compex bromine complex
  • cathode active material a cathode active material
  • the QBr can be separated from the system 2 electrolyte containing QBr using a heavy property, which is one of QBr's characteristics, without any additional configuration, such as an automatic bridging control valve that automatically controls the inflow of QBr. Can be.
  • a heavy property which is one of QBr's characteristics
  • an automatic bridging control valve that automatically controls the inflow of QBr.
  • the first sub pipe 43a connected to the lower part of the second chamber 32 storing the second electrolyte solution and the second sub pipe 43b connected to the upper end of the second chamber 32 are provided. It includes each.
  • the second electrolyte delivered from the stack 20 to the second chamber 32 by the fourth pipe 44 after the layer transfer of the redox flow battery 100 of the present embodiment in the stack 20 is QBr. It includes. In the second chamber 32, QBr has a high specific gravity and is heavy, so that it is precipitated to the lower part of the second chamber 32 as shown in FIGS. 1 and 2, and the water-soluble anolyte electrolyte is disposed on the upper part of the second chamber 32. Will exist.
  • the lower part of the second chamber 32 is connected to the first sub pipe 43a including the first valve 48 so that the QBr stack 20 is closed by closing the first valve 48 when the floor is floored. ), And when discharged, the U-valve 48 can be opened to generate QBr into the stack 20 to generate power.
  • the second sub-pipe 43b is connected to the upper part of the second chamber 32, so that when QBr is precipitated and the water-soluble anolyte electrolyte rising above it is stored above a certain level, only the water-soluble anolyte electrolyte from which QBr is separated is stacked ( With 20) It can flow in.
  • the configuration of the redox flow battery 100 according to the exemplary embodiment of the present invention has been described above.
  • a result of comparing the performance of the redox flow battery 100 according to the present embodiment and the redox flow battery according to the comparative example will be described.
  • the second chamber 32 in which the system 2 electrolyte is stored is formed as one, and the system 1 sub pipe 43a including the first valve 48 is provided at the bottom thereof.
  • the second sub pipe 43b is connected to the upper portion.
  • the redox flow cell according to the comparative example includes an automatic bromine complex regulating valve which automatically regulates the inflow of QBr.
  • FIG. 4 is a graph showing the layer charge and discharge states of the stack 20 of the redox flow battery 100 according to an embodiment of the present invention.
  • an abnormality occurs in the operating conditions, several peaks appear in the layer curve or the discharge curve. This is because the electrolyte is not uniformly supplied into the stack 20, or the substances to be reacted in the electrolyte container are not properly introduced into the stack 20, and when a large amount is introduced at a time or is accumulated in the electrolyte container. Occurs in the case.
  • Table 2 shows energy efficiency (EE), Coulomb ic Efficiency (CE), and voltage efficiency (Voltage Efficiency, VE) according to the layer charge and discharge results of the redox flow battery according to the comparative example.
  • [Table 3] shows the results of the pressure values at the positive and negative electrolyte inflows during layer discharge and discharge.
  • the data described as “anode” is the pressure value of the redox flow battery 100 according to this embodiment, and the data described as "existing anode” is the pressure value of the redox flow battery according to the comparative example.
  • the redox flow battery 100 according to the exemplary embodiment of the present invention has been described. According to the present embodiment, it is possible to provide a redox flow battery 100 capable of performing the same or similar performance with a simple configuration without the addition of an expensive and complicated configuration such as an automatic bromine complex control valve. Therefore, the manufacturing cost can be reduced, and the space required for the installation of the complex bromine complex control valve can be saved, which is more economical.
  • redox flow battery 10 battery cell
  • membrane 12 first porous electrode

Abstract

The present invention relates to a redox flow battery comprising: a stack including a plurality of battery cells laminated on each other; an electrolyte tank including a first chamber for storing a first electrolyte and a second chamber for storing a second electrolyte; and an electrolyte circulation part for supplying an electrolyte of the electrolyte tank to the stack and collecting, into the electrolyte tank, the electrolyte used in the stack, wherein the electrolyte circulation part includes: a first pipe connecting a lower side of the first chamber and the stack; a second pipe connecting the stack and an upper side of the first chamber; a first sub-pipe connected to a lower side of the second chamber; and a second sub-pipe connected to an upper side of the second chamber, and includes: a third pipe connecting the first sub-pipe and the second sub-pipe to the stack; and a fourth pipe connecting the stack and the upper side of the second chamber.

Description

【발명의 설명】  [Explanation of invention]
【발명의 명칭】  [Name of invention]
레독스 흐름 전지  Redox flow battery
【기술분야】  Technical Field
본 기재는 레독스 흐름 전지에 관한 것으로, 보다 상세하게는 보다 간편한 구성만으로도 성능을 유지할 수 있는 레독스 흐름 전지에 관한 것이다.  The present disclosure relates to a redox flow battery, and more particularly, to a redox flow battery capable of maintaining performance even with a simpler configuration.
【배경기술】  Background Art
최근 들어 태양광 발전 및 풍력 발전과 같은 신재생 에너지 기술이 발전하면서 대용량 전력 저장장치에 대한 요구가 증가하고 있다. 전력 저장장치는 발전량이 많을 때 전기 에너지를 저장하고, 소비량이 많을 때 전기 에너지를 방출하여 전력 생산의 변동성과 수급 시점의 불일치 문제를 해소할 수 있다.  Recently, with the development of renewable energy technologies such as solar and wind power generation, the demand for large-capacity power storage devices is increasing. The electric power storage device stores electric energy when a large amount of power is generated, and releases electric energy when a large amount of power is consumed, thereby eliminating the problem of fluctuations in power generation and inconsistency in supply and demand.
태양광 및 풍력과 같은 재생 에너지는 변동성이 높은 자연 에너지에 의존하기 때문에 전력의 변동성에 대웅하기 어렵고, 전력 공급의 안정성을 확보하기 어렵다. 따라서 재생 에너지의 변동성을 수용하고, 원활한 전력 공급 및 발전 설비의 효율적인 활용을 위해 대용량 전력 저장 기술이 필요하다.  Renewable energy, such as solar and wind power, is dependent on highly volatile natural energy, making it difficult to measure power variability and securing power supply stability. Therefore, a large capacity power storage technology is required to accommodate the fluctuations of renewable energy and to smoothly supply power and efficiently utilize power generation facilities.
레독스 (산화환원) 흐름 전지는 대용량 전력 저장을 위한 이차 전지로서, 유지 보수 비용이 낮고, 상온에서 작동하며, 용량과 출력을 독립적으로 설계할 수 있다. 레독스 흐름 전지는 복수의 셀이 적층된 스택과, 양극 전해액과 음극 전해액을 저장하는 전해액 탱크와, 양극 전해액과 음극 전해액을 스택으로 공급 후 배출시키는 펌프와 같은 순환 장치를 포함한다.  Redox (redox) flow batteries are secondary batteries for high-capacity power storage, and have low maintenance costs, operate at room temperature, and can independently design capacity and output. The redox flow battery includes a stack in which a plurality of cells are stacked, an electrolyte tank for storing the positive and negative electrolytes, and a circulation device such as a pump for supplying and discharging the positive and negative electrolytes to the stack.
이때 양극 전해액 또는 음극 전해액의 원활한 순환을 위하여 이들의 순환을 자동으로 제어할 수 있는 자동 제어 밸브와 같은 구성이 더 포함될 수 있다. 다만, 자동 제어 밸브와 같은 구성은 제작이 어렵고, 고가이며, 계속적인 운전으로 인한 손상이 발생될 수 있어 레독스 흐름 전지의 경제성 및 내구성을 저해하는 요인이 되어 왔다.  In this case, a configuration such as an automatic control valve capable of automatically controlling their circulation may be further included for smooth circulation of the positive or negative electrolyte. However, a configuration such as an automatic control valve is difficult to manufacture, expensive, and damage due to continuous operation may be a factor that impairs the economics and durability of the redox flow battery.
【발명의 상세한 설명】 【기술적 과제】 [Detailed Description of the Invention] [Technical problem]
본 기재는, 보다 간편한 구성만으로도 성능을 유지할 수 있는 레독스 흐름 전지를 제공하고자 한다.  The present disclosure is to provide a redox flow battery that can maintain performance even with a simpler configuration.
또한, 본 발명이 해결하고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.  In addition, the technical problem to be solved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned are clearly to those of ordinary skill in the art from the following description. It can be understood.
【기술적 해결방법】  Technical Solution
본 발명의 일 실시예에 따른 레독스 흐름 전지는, 복수의 전지 셀이 적층된 스택, 제 1 전해액을 저장하는 게 1 챔버 및 게 2 전해액을 저장하는 제 2 챔버를 포함하는 전해액 탱크 및 전해액 탱크의 전해액을 상기 스택으로 공급하고, 상기 스택에서 사용된 전해액을 상기 전해액 탱크로 회수하는 전해액 순환부를 포함하며, 전해액 순환부는, 게 1 챔버의 하측과 상기 스택을 연결하는 제 1 배관, 스택과 상기 제 1 챔버의 상측을 연결하는 제 2 배관, 제 2 챔버의 하측과 연결되는 게 1 서브 배관 및 상기 제 2 챔버의 상측과 연결되는 게 2 서브 배관을 포함하며, 상기 제 1 서브 배관 및 상기 제 2 서브 배관과 상기 스택을 연결하는 제 3 배관 및 스택과 상기' 제 2 챔버의 상측을 연결하는 제 4 배관을 포함한다. Redox flow battery according to an embodiment of the present invention, an electrolyte tank and an electrolyte tank comprising a stack of a plurality of battery cells, a first chamber for storing the first electrolyte and a second chamber for storing the crab 2 electrolyte And an electrolyte circulation part for supplying an electrolyte solution to the stack, and recovering the electrolyte solution used in the stack to the electrolyte tank, wherein the electrolyte solution circulation part comprises: a first pipe connecting the lower side of the crab chamber and the stack; A second pipe connecting the upper side of the first chamber, a first sub pipe connected to the lower side of the second chamber, and a second sub pipe connected to the upper side of the second chamber, wherein the first sub pipe and the first sub pipe are connected to each other. 2 includes the sub-pipe and a fourth pipe for connecting the upper side of the third pipe and the stack and, the second chamber connecting the stack.
전해액 순환부는, 제 1 배관에 설치되어 제 1 전해액을 순환시키는 게 1 펌프 및 제 3 배관에 설치되어 제 2 전해액을 순환시키는 제 2 펌프를 더 포함할 수 있다.  The electrolyte circulation unit may further include a first pump installed in the first pipe to circulate the first electrolyte and a second pump installed in the third pipe to circulate the second electrolyte.
거 11 서브 배관은, 제 1 서브 배관에 위치하여 상기 제 1 서브 배관의 개폐를 조절하는 게 1 밸브를 포함할 수 있다.  The eleven sub-pipes may include a first valve positioned in the first sub-pipe to control the opening and closing of the first sub-pipe.
전해액 순환부는, 제 1 챔버와 상기 제 2 챔버를 연결하는 연결 배관을 더 포함할 수 있다.  The electrolyte circulation unit may further include a connection pipe connecting the first chamber and the second chamber.
이때 연결 배관은, 제 1 챔버와 상기 제 2 챔버 사이에서 상기 연결 배관의 개폐를 조절하는 제 2 밸브를 포함할 수 있다.  In this case, the connection pipe may include a second valve for controlling opening and closing of the connection pipe between the first chamber and the second chamber.
한편, 연결 배관은 제 2 챔버의 상부에 연결될 수 있다.  On the other hand, the connection pipe may be connected to the upper portion of the second chamber.
본 실시예의 레독스 흐름 전지는 아연 -브롬 (Zinc-Bromine) 흐름 전지일 수 있다. [발명의 효과] The redox flow battery of this embodiment may be a zinc-bromine flow battery. [Effects of the Invention]
본 기재에 의하면 자동 브롬 착화물 조절 밸브와 같은 고가이고 잡한 구성의 추가 없이 간편한 구성만으로도 동일하거나 유사한 성능을 발휘할 수 있는 레독스 흐름 전지를 제공할 수 있다. 따라서 제조에 소요되는 비용을 감소시킬 수 있으며, 복합한 구성의 자동 브롬 착화물 조절 밸브를 설치하기 위해 필요한 공간을 절약할 수 있어 보다 경제적이다. 【도면의 간단한 설명】  According to the present disclosure, it is possible to provide a redox flow battery capable of exhibiting the same or similar performance with a simple configuration without adding an expensive and miscellaneous configuration such as an automatic bromine complex control valve. Therefore, the manufacturing cost can be reduced, and the space required for the installation of the complex bromine complex control valve can be saved, which is more economical. [Brief Description of Drawings]
도 1은 본 발명의 알실시예에 따른 레독스 흐름 전지의 개략도이다. -도 2는 도 1에 도시한 레독스 흐름 전지의 부분 확대 사시도이다. 도 3은 도 1에 도시한 스택 중 하나의 전지 셀을 나타낸 분해 사시도이다.  1 is a schematic diagram of a redox flow battery according to an embodiment of the present invention. 2 is a partially enlarged perspective view of the redox flow battery shown in FIG. 1. 3 is an exploded perspective view illustrating one battery cell of the stack illustrated in FIG. 1.
도 4는 본 발명의 일 실시예에 따른 레독스 흐름 전지의 스택의 충전 및 방전 상태를 도시한 그래프이다.  Figure 4 is a graph showing the state of charge and discharge of the stack of redox flow battery according to an embodiment of the present invention.
【발명의 실시를 위한 형태】  [Form for implementation of invention]
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 기재를 설명함에 있어서, 이미 공지된 기능 흑은 구성에 대한 설명은, 본 기재의 요지를 명료하게 하기 위하여 생략하기로 한다.  Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in the description of the present disclosure, the description of the already known function black configuration will be omitted to clarify the gist of the present disclosure.
본 기재를 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로 본 기재가 반드시 도시된 바에 한정되지 않는다.  Parts not related to the description are omitted for clarity of description, and like reference numerals designate like elements throughout the specification. In addition, the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, so the present disclosure is not necessarily limited to the illustrated.
도 1은 본 발명의 제 1 실시예에 따른 레독스 흐름 전지 ( 100)의 개략도이고, 도 2는 도 1에 도시한 레독스 흐름 전지 ( 100)의 부분 확대 사시도이다.  1 is a schematic diagram of a redox flow battery 100 according to a first embodiment of the present invention, and FIG. 2 is a partially enlarged perspective view of the redox flow battery 100 shown in FIG. 1.
도 1과 도 2를 참고하면, 본 실시예의 레독스 흐름 전지 ( 100)는 스택 (20), 전해액 탱크 (30) 및 전해액 순환부 (40)를 포함한다.  1 and 2, the redox flow battery 100 of the present embodiment includes a stack 20, an electrolyte tank 30, and an electrolyte circulation unit 40.
스택 (20)은 복수의 전지 셀 ( 10)로 구성되며, 전해액 탱크 (30)는 제 1 전해액을 저장하는 게 1 챔버 (31) 및 계 2 전해액을 저장하는 계 2 챔버 (32)를 포함한다. 이때, 도 1을 참고하면, 제 1 전해액은 음극 전해액일 수 있으며, 제 2 전해액은 양극 전해액일 수 있다. 그러나, 이는 일 예에 불과하며, 양극 및 음극의 연결 위치에 따라 변화될 수 있다. 전해액 순환부 (40)는 전해액 탱크 (30)의 제 1 챔버 (31) 및 제 2 챔버 (32)에 각각 저장된 제 1 전해액 및 게 2 전해액을 스택 (20)으로 공급하며 스택 (20)에서 사용된 제 1 전해액 및 제 2 전해액을 전해액 탱크 (30)로 회수한다. The stack 20 includes a plurality of battery cells 10, and the electrolyte tank 30 includes a first chamber 31 for storing the first electrolyte and a second chamber 32 for storing the second electrolyte. Include. In this case, referring to FIG. 1, the first electrolyte may be a cathode electrolyte, and the second electrolyte may be a cathode electrolyte. However, this is only an example and may vary depending on the connection position of the positive electrode and the negative electrode. The electrolyte circulation portion 40 supplies the first electrolyte and the crab 2 electrolyte stored in the first chamber 31 and the second chamber 32 of the electrolyte tank 30 to the stack 20, respectively, and is used in the stack 20. The first electrolyte solution and the second electrolyte solution are recovered to the electrolyte tank 30.
본 실시예의 레독스 흐름 전지 ( 100)는 아연 -브름 (Zinc-Bromine) 레독스 흐름 전지일 수 있다. 아연 -브롬 레독스 흐름 전지는 양극 및 음극 전해액으로 ZnBr2를 사용하며, 반웅식은 아래와 같다. The redox flow battery 100 of the present embodiment may be a zinc-bromine redox flow battery. The zinc-bromine redox flow battery uses ZnBr 2 as a positive electrode and a negative electrode electrolyte, and the reaction is as follows.
음극: Zn ^ Zn2+ + 2e" 양극: Br2 + 2e— ^ 2ΒΓ Cathode: Zn ^ Zn 2+ + 2e " Anode: Br 2 + 2e— ^ 2ΒΓ
다만 이에 한정되는 것은 아니며, 아연 -브름 레독스 흐름 전지 대신 바나듐 레독스 흐름 전지일 수 있다. 바나듐 레독스 흐름 전지는 양극 및 음극 전해액으로 H2S04를 사용하며, 반웅식은 아래와 같다. However, the present invention is not limited thereto, and may be a vanadium redox flow battery instead of a zinc-red redox flow battery. The vanadium redox flow battery uses H 2 S0 4 as the positive electrode and the negative electrode electrolyte, and the reaction is as follows.
음극 : V2+→ V3+ + e— 양극: V02 + +e" ^ V02+ Cathode: V 2+ → V 3+ + e— Anode: V0 2 + + e " ^ V0 2+
본 실시예의 레독스 흐름 전지 ( 100)는 전술한 아연 -브름 또는 바나듐 타입으로 한정되지 않으며, 반응열에 의해 스택 (20)의 온도가 상승하여 스택 (20)의 온도를 낮추어야 하는 타입이라면 모두 적용 가능하다.  Redox flow battery 100 of the present embodiment is not limited to the above-described zinc-bream or vanadium type, any temperature can be applied as long as the temperature of the stack 20 is increased by the reaction heat to lower the temperature of the stack 20 Do.
도 3은 도 1에 도시한 스택 (20) '중 하나의 전지 셀 ( 10)을 나타낸 분해 사시도이다. 3 is an exploded perspective view showing one battery cell 10 of the stack 20 shown in FIG. 1.
도 3을 참고하면, 전지 셀 ( 10)은 이온 교환막인 멤브레인 ( 11)과, 멤브레인 ( 11)을 사이에 두고 위치하는 게 1 및 제 2 다공성 전극 ( 12, 13)과, 계 1 및 제 2 다공성 전극 ( 12 , 13)의 가장자리에서 게 1 및 제 2 다공성 전극 ( 12 , 13)을 각각 고정시키는 제 1 및 제 2 플로우 프레임 ( 14, 15)과, 제 1 및 제 2 다공성 전극 (12 , 13)의 외측에 각각 위치하는 제 1 전극 ( 16) 및 제 2 전극 ( 17)을 포함한다. 제 1 전극 ( 16) 및 계 2 전극 ( 17)은 양극 전극 또는 음극 전극 중 어느 하나로 각각 기능할 수 있으며, 양극과 음극의 기능은 각 전극에서 일어나는 반웅 및 전류의 방향에 따라 결정된다.  Referring to FIG. 3, the battery cell 10 includes the membrane 11, which is an ion exchange membrane, and the first and second porous electrodes 12 and 13, with the membrane 11 interposed therebetween; First and second flow frames 14 and 15 for fixing the first and second porous electrodes 12, 13 at the edges of the porous electrodes 12, 13, respectively; and the first and second porous electrodes 12, 13. 13 and a first electrode 16 and a second electrode 17, respectively located outside of 13). The first electrode 16 and the second electrode 17 may each function as either an anode electrode or a cathode electrode, and the function of the anode and the cathode is determined according to the direction of reaction and current occurring at each electrode.
이웃한 두 개의 전지 셀 (10)에서 제 1 전극 (16)과 계 2 전극 (17)은 일체로 형성되며, 이를 바이폴라 플레이트라 한다. 제 1 및 제 2 다공성 전극 (12, 13)은 카본 펠트로 제작될 수 있고, 제 1 및 제 2 전극 (16, 17)은 그라파이트로 제작될 수 있다. 그리고 제 1 및 게 2 플로우 프레임 (14, 15)에는 전해액 순환을 위한 네 개의 홀이 형성된다. In two adjacent battery cells 10, the first electrode 16 and the second electrode 17 are integrally formed, which is called a bipolar plate. First and second porosity The electrodes 12, 13 can be made of carbon felt, and the first and second electrodes 16, 17 can be made of graphite. Four holes for the electrolyte circulation are formed in the first and the second flow frames 14 and 15.
제 1 플로우 프레임 (14)에서 네 개의 홀 중 하나는 제 2 전해액 주입구이고, 다른 하나는 제 2 전해액 배출구이며, 나머지 두 개는 제 1 전해액 통과공이다. 제丄 플로우 프레임 (14)에는 제 2 전해액 주입구와 제 1 다공성 전극 (12) 사이 및 제 1 다공성 전극 ( 12)과 제 2 전해액 배출구 사이에 유로가 형성되어 제 1 다공성 전극 (12)에 제 2 전해액이 흐르도록 한다.  One of the four holes in the first flow frame 14 is the second electrolyte inlet, the other is the second electrolyte outlet, and the other two are the first electrolyte through holes. The flow path 14 is formed in the jet flow frame 14 between the second electrolyte inlet and the first porous electrode 12 and between the first porous electrode 12 and the second electrolyte outlet so that the second porous electrode 12 has a second flow path. Allow the electrolyte to flow.
제 2 플로우 프레임 (15)에서 네 개의 홀 중 하나는 제 1 전해액 주입구이고, 다른 하나는 제 1 전해액 배출구이며, 나머지 두 개는 거 12 전해액 통과공이다. 게 2 플로우 프레임 (15)에는 계 1 전해액 주입구와 제 2 다공성 전극 (13) 사이 및 계 2 다공성 전극 (13)과 제 1 전해액 배출구 사이에 유로가 형성되어 제 2 다공성 전극 (13)에 계 1 전해액이 흐르도록 한다.  One of the four holes in the second flow frame 15 is the first electrolyte inlet, the other is the first electrolyte outlet, and the other two are twelve electrolyte through holes. In the second flow frame 15, a flow path is formed between the system 1 electrolyte inlet and the second porous electrode 13 and between the system 2 porous electrode 13 and the first electrolyte outlet so that the system 1 is connected to the second porous electrode 13. Allow the electrolyte to flow.
제 1 및 제 2 전해액에 포함된 서로 다른 산화수를 가지는 두 종류의 레독스 커플 (아연 -브롬 또는 바나듐-바나듐 등)이 계 1 및 제 2 다공성 전극 (12 , 13)에서 반웅함으로써 층전 및 방전이 이루어진다. 구체적으로 산화 반웅에 의해 층전이 이루어지고, 환원 반응에 의해 방전이 이루어진다. 앞서 설명한 것과 같이, 도 1 및 도 2를 참고하면 본 실시예에 따른 전해액 탱크 (30)는 게 1 전해액을 저장하는 게 1 챔버 (31)와, 제 2 전해액을 저장하는 제 2 챔버 (32)를 포함한다.  Two types of redox couples (zinc-bromine or vanadium-vanadium, etc.) having different oxidation numbers contained in the first and second electrolytes react at the system 1 and the second porous electrodes 12 and 13 to prevent layer transfer and discharge. Is done. Specifically, layer conversion is performed by oxidation reaction, and discharge is performed by a reduction reaction. As described above, referring to FIGS. 1 and 2, the electrolyte tank 30 according to the present embodiment includes a crab chamber 31 storing a crab 1 electrolyte and a second chamber 32 storing a second electrolyte. It includes.
본 실시예의 제 1 챔버 (31) 및 제 2 챔버 (32)는 연결 배관 (47)에 의해 연결된다. 연결 배관 (47)은 제 1 챔버 (31) 및 제 2 챔버 (32) 사이에 배치되며, 연결 배관 (47)의 개폐를 조절하는 제 2 밸브 (49)를 포함할 수 있다. 이때 제 2 챔버 (32)에 연결되는 연결 배관 (47)은 이후 설명하는 QBr이 제 1 챔버 (31) 내로 유입되는 것을 방지하기 위하여 게 2 챔버 (32)의 상부에 연결될 수 있다.  The first chamber 31 and the second chamber 32 of this embodiment are connected by a connecting pipe 47. The connection pipe 47 is disposed between the first chamber 31 and the second chamber 32, and may include a second valve 49 for controlling opening and closing of the connection pipe 47. In this case, the connection pipe 47 connected to the second chamber 32 may be connected to the upper portion of the crab chamber 32 to prevent the QBr described later from flowing into the first chamber 31.
전해액 순환부 (40)는 게 1 배관 (41), 제 2 배관 (42), 제 3 배관 (43) 및 제 4 배관 (44)을 포함한다. 제 1 배관 (41)은 계 1 챔버 (31)의 하측과 스택 (20)을 연결하며, 제 2 배관 (42)은 스택 (20)과 제 1 챔버 (31)의 상측을 연결하고, 제 3 배관 (43)은 제 2 챔버 (32)와 스택 (20)을 연결하며, 제 4 배관 (44)은 스택 (20)과 제 2 챔버 (32)의 상측을 연결한다. The electrolyte circulation part 40 includes a crab 1 pipe 41, a second pipe 42, a third pipe 43, and a fourth pipe 44. The first pipe 41 connects the lower side of the first chamber 31 and the stack 20, and the second pipe 42 connects the stack 20 and the upper side of the first chamber 31, and a third Piping 43 connects the second chamber 32 and the stack 20, the fourth The pipe 44 connects the stack 20 and the upper side of the second chamber 32.
한편, 게 1 배관 (41)에는 제 1 전해액의 순환을' 보조하는 제 1 펌프 (45)가 배치될 수 있으며, 게 3 배관 (43)에는 제 2 전해액의 순환을 보조하는 제 2 펌프 (46)가 배치될 수 있다.  On the other hand, the first pump 45 may be arranged in the crab 1 pipe 41 to assist in the circulation of the first electrolyte, and the second pump 46 may be arranged in the crab 3 pipe 43 to assist in the circulation of the second electrolyte. ) May be arranged.
이때,게 3 배관 (43)은 게 2 챔버 (32)의 하측과 연결되는 제 1 서브 배관 (43a) 및 게 2 챔버 (32)의 상측과 연결되는 제 2 서브 배관 (43b)을 포함하며, 게 1 서브 배관 (43a) 및 제 2 서브 배관 (43b)이 제 3 배관 (43)으로 합류되어 스택 (20)과 연결될 수 있다.  In this case, the crab 3 pipe 43 includes a first sub pipe 43a connected to a lower side of the crab 2 chamber 32 and a second sub pipe 43b connected to an upper side of the crab 2 chamber 32, The first sub pipe 43a and the second sub pipe 43b may be joined to the third pipe 43 to be connected to the stack 20.
제 1 챔버 (31)의 게 1 전해액은 제 1 배관 (41)을 통해 스택 (20)으로 공급되어 각 전지 셀 ( 10)의 제 2 다공성 전극 ( 13)에 제공되며, 각 전지 셀 ( 10)에서 화학 반웅을 거친 제 1 전해액은 게 2 배관 (42)을 통해 다시 제 1 챔버 (31)로 회수된다.  The first electrolyte of the first chamber 31 is supplied to the stack 20 through the first pipe 41 and provided to the second porous electrode 13 of each battery cell 10, each battery cell 10. At first, the first electrolyte solution, which has undergone chemical reaction, is recovered back to the first chamber 31 through the crab 2 pipe 42.
또한, 전해액 순환부 (40)는 제 2 챔버 (32)의 하측과 스택 (20)의 게 2 전해액 주입구를 연결하는 제 3 배관 (44)과, 스택 (20)의 게 2 전해액 배출구와 제 3 챔버 (33)의 상측을 연결하는 게 4 배관 (45)과, 게 3 배관 (44)에 설치되어 제 2 전해액을 순환시키는 게 2 펌프 (46)를 포함한다.  In addition, the electrolyte circulation part 40 includes a third pipe 44 connecting the lower side of the second chamber 32 and the crab 2 electrolyte inlet of the stack 20, the crab 2 electrolyte outlet and the third of the stack 20. The crab 4 pipe 45 which connects the upper side of the chamber 33, and the crab 2 pump 46 provided in the crab 3 pipe 44 to circulate a 2nd electrolyte solution are included.
제 2 챔버 (32)의 게 2 전해액은 제 3 배관 (44)을 통해 스택 (20)으로 공급되어 각 전지 셀 (10)의 제 1 다공성 전극 ( 12)에 제공되며, 각 전지 셀 ( 10)에서 화학 반웅을 거친 제 2 전해액은 게 4 배관 (45)을 통해 게 3 챔버 (33)로 회수된다.  The Crab 2 electrolyte of the second chamber 32 is supplied to the stack 20 through the third pipe 44 and provided to the first porous electrode 12 of each battery cell 10, each battery cell 10. At the chemical reaction, the second electrolyte is recovered to the crab 3 chamber 33 through the crab 4 pipe 45.
제 2 챔버 (32)의 상측에 제 4 배관 (45)이 연결됨에 따라, 레독스 흐름 전지 ( 100)의 작동 초기에 제 2 전해액은 제 2 챔버 (32)에 모이고 QBr은 아래로 침전된다. QBr이 침전된 계 2 전해액은 제 2 챔버 (32)의 하부에 연결되는 제 1 서브 배관 (43a)을 통해 제 3 배관 (43)으로 이동될 수 있으며, QBr이 분리된 제 2 전해액은 제 2 서브 배관 (43b)을 통해 계 3 배관 (43)으로 이동될 수 있다. 제 3 배관 (43)으로 이동된 게 2 챔버 (32)의 제 2 전해액은 거 13 배관 (44)을 통해 다시 스택 (20)으로 공급된다.  As the fourth pipe 45 is connected to the upper side of the second chamber 32, at the initial stage of operation of the redox flow cell 100, the second electrolyte is collected in the second chamber 32 and QBr is precipitated downward. QBr precipitated system 2 electrolyte may be moved to the third pipe 43 through the first sub pipe 43a connected to the lower part of the second chamber 32, and the second electrolyte solution from which QBr is separated The sub pipe 43b may be moved to the system 3 pipe 43. The second electrolyte solution of the second chamber 32 moved to the third pipe 43 is supplied back to the stack 20 through the nearly 13 pipe 44.
제 1 서브 배관 (43a)에는 제 1 서브 배관 (43a)의 개폐를 조절하는 제 1 밸브 (48)가 위치될 수 있다. 제 1 밸브 (48)는 제 1 서브 배관 (43a)의 개폐를 조절함으로싸 게 2 챔버 (32) 내에 침전된 QBr의 유동을 조절한다. 본 실시예에 따른 아연 -브롬 레독스 흐름 전지의 경우, 층전을 진행하게 되면 계 1 다공성 전극 ( 12)에 코팅된 활성화 카본과, 일 예로 양극 전해액으로 기능하는 제 2 전해액이 산화 반웅을 일으키면서 스택 내부에서 반웅 침전물인 QBr이 생성된다. The first sub pipe 43a may be provided with a first valve 48 for controlling opening and closing of the first sub pipe 43a. The first valve 48 regulates the flow of QBr precipitated in the two chambers 32 by controlling the opening and closing of the first sub pipe 43a. In the case of the zinc-bromine redox flow battery according to the present embodiment, when the layer is advanced, the activated carbon coated on the first porous electrode 12 and the second electrolyte serving as an anode electrolyte, for example, cause reaction reaction. Inside the stack a reaction deposit, QBr, is produced.
QBr은 양극 활물질인 브름 착화물 (Bromine Comp l ex)으로, 비중이 높아 무겁고 점성이 높은 물질아다. QBr은 방전 시에는 반웅을 하여 전기를 생성하지만, 층전 시에는 스택 (20) 내에 재유입되어도 반웅에 영향을 주지 않는다. 다만, 스택 (20) 내에 재 유입시, QBr은 무겁고 점도가 다소 높은 물질이기 때문에ᅳ 펌프 속도에 영향을 주어 유속이 느려지고 전력 소비가 심해지게 한다. 또한 차후 반웅 시 제 2 다공성 전극 ( 13)에 쌓여 있는 아연 금속을 없애는 기능을 할 수 있으므로 작동 초기에 QBr을 제거해야 한다. 본 실시예에서는, 자동으로 QBr의 유입을 조절하는 자동 브름 착화물 조절 밸브와 같은 별도의 추가 구성없이, QBr의 특성 증 하나인 무거운 성질을 이용하여 QBr을 포함하는 계 2 전해액으로부터 QBr을 분리할 수 있다. 이를 위하여 본 실시예에서는 제 2 전해액을 저장하는 제 2 챔버 (32)의 하부에 연결되는 제 1 서브 배관 (43a) 및 제 2 챔버 (32)의 상단에 연결되는 제 2 서브 배관 (43b)을 각각 포함한다.  QBr is a bromine complex (Bromine Compex), a cathode active material, and is a heavy and viscous material with high specific gravity. QBr generates electricity by reacting when discharged, but does not affect reaction when re-introduced into the stack 20 during layer deposition. However, when re-introduced into the stack 20, QBr is a heavy and somewhat high viscosity material, which affects the pump speed, resulting in a slow flow rate and high power consumption. In addition, the QBr should be removed at the beginning of operation since it may function to remove zinc metal accumulated in the second porous electrode 13 at a later reaction. In this embodiment, the QBr can be separated from the system 2 electrolyte containing QBr using a heavy property, which is one of QBr's characteristics, without any additional configuration, such as an automatic bridging control valve that automatically controls the inflow of QBr. Can be. To this end, in the present embodiment, the first sub pipe 43a connected to the lower part of the second chamber 32 storing the second electrolyte solution and the second sub pipe 43b connected to the upper end of the second chamber 32 are provided. It includes each.
스택 (20) 내에서 본 실시예의 레독스 흐름 전지 ( 100)의 층전이 진행되고 난 후 제 4 배관 (44)에 의해 스택 (20)으로부터 제 2 챔버 (32)로 전달되는 제 2 전해액은 QBr을 포함한다. 제 2 챔버 (32) 내에서 QBr은 높은 비중을 가져 무겁기 때문에 도 1 및 도 2에 도시된 것과 같이 제 2 챔버 (32)의 하부로 침전되며, 제 2 챔버 (32)의 상부에는 수용성 양극 전해액이 존재하게 된다.  The second electrolyte delivered from the stack 20 to the second chamber 32 by the fourth pipe 44 after the layer transfer of the redox flow battery 100 of the present embodiment in the stack 20 is QBr. It includes. In the second chamber 32, QBr has a high specific gravity and is heavy, so that it is precipitated to the lower part of the second chamber 32 as shown in FIGS. 1 and 2, and the water-soluble anolyte electrolyte is disposed on the upper part of the second chamber 32. Will exist.
제 2 챔버 (32)의 하부는 앞서 설명한 것과 같이, 제 1 밸브 (48)를 포함하는 제 1 서브 배관 (43a)이 연결되어 층전 시에는 제 1 밸브 (48)를 폐쇄하여 QBr이 스택 (20)으로 재유입되는 것을 방지하고, 방전 시에는 거 U 밸브 (48)를 개방하여 스택 (20) 내로 QBr을 유입시켜 전력올 생성할 수 있다. 한편, 제 2 챔버 (32)의 상부에는 제 2 서브 배관 (43b)가 연결되어 있어, QBr이 침전되고 그 위로 떠오르는 수용성 양극 전해액이 일정 수위 이상으로 저장되면 QBr이 분리된 수용성 양극 전해액만을 스택 (20)으로 유입시킬 수 있다. As described above, the lower part of the second chamber 32 is connected to the first sub pipe 43a including the first valve 48 so that the QBr stack 20 is closed by closing the first valve 48 when the floor is floored. ), And when discharged, the U-valve 48 can be opened to generate QBr into the stack 20 to generate power. On the other hand, the second sub-pipe 43b is connected to the upper part of the second chamber 32, so that when QBr is precipitated and the water-soluble anolyte electrolyte rising above it is stored above a certain level, only the water-soluble anolyte electrolyte from which QBr is separated is stacked ( With 20) It can flow in.
이상에서는 본 발명의 일 실시예에 따른 레독스 흐름 전지 ( 100)의 구성에 대해 설명하였다. 이하에서는 본 실시예에 따른 레독스 흐름 전지 ( 100)와 비교예에 따른 레독스 흐름 전지의 성능을 비교한 결과를 설명하기로 한다.  The configuration of the redox flow battery 100 according to the exemplary embodiment of the present invention has been described above. Hereinafter, a result of comparing the performance of the redox flow battery 100 according to the present embodiment and the redox flow battery according to the comparative example will be described.
본 실시예에 따른 레독스 흐름 전지 ( 100)는 계 2 전해액이 저장되는 제 2 챔버 (32)가 하나로 형성되며, 하부에는 제 1 밸브 (48)를 포함하는 계 1 서브 배관 (43a)이, 상부에는 제 2 서브 배관 (43b)이 연결된다. 비교예에 따른 레독스 흐름 전지는 자동으로 QBr의 유입을 조절하는 자동 브롬 착화물 조절 밸브를 포함한다.  In the redox flow battery 100 according to the present embodiment, the second chamber 32 in which the system 2 electrolyte is stored is formed as one, and the system 1 sub pipe 43a including the first valve 48 is provided at the bottom thereof. The second sub pipe 43b is connected to the upper portion. The redox flow cell according to the comparative example includes an automatic bromine complex regulating valve which automatically regulates the inflow of QBr.
도 4는 본 발명의 일 실시예에 따른 레독스 흐름 전지 (100)의 스택 (20)의 층전 및 방전 상태를 도시한 그래프이다. 전지의 운전 조건에 따라, 운전 조건에 이상이 발생하게 되면 층전 곡선 또는 방전 곡선에 여러 개의 피크가 나타나게 된다. 이는 스택 (20) 내부로 전해액이 균일하게 공급되지 못하거나, 전해액 용기 내에 반웅해야 할 물질들이 스택 (20) 내부로 적절히 유입되지 못하고, 한 번에 대량으로 유입되는 경우 혹은 전해액 용기 내에 적체되어 있는 경우에 발생된다.  4 is a graph showing the layer charge and discharge states of the stack 20 of the redox flow battery 100 according to an embodiment of the present invention. Depending on the operating conditions of the battery, if an abnormality occurs in the operating conditions, several peaks appear in the layer curve or the discharge curve. This is because the electrolyte is not uniformly supplied into the stack 20, or the substances to be reacted in the electrolyte container are not properly introduced into the stack 20, and when a large amount is introduced at a time or is accumulated in the electrolyte container. Occurs in the case.
도 4의 그래프를 참조하면, 본 실시예에 따른 레독스 흐름 전지 (100)의 층전 시, 정전류 20A가 인가되는 경우 그래프에 복잡한 피크가 발생되지 않음에 따라, 전압이 큰 폭의 변동없이 안정적으로 층전이 이루어짐을 확인할 수 있다. 마찬가지로, 본 실시예에 따른 레독스 흐름 전지 ( 100)의 방전 시, 레독스 흐름 전지 ( 100)로부터 정전류 -20A가 방출되는 경우 역시 그래프에 복잡한 피크가 발생되지 않음에 따라, 전압이 크게 변동없이 안정적으로 감소됨을 확인할 수 있다.  Referring to the graph of FIG. 4, when the constant current 20A is applied during the layer charging of the redox flow battery 100 according to the present embodiment, a complex peak does not occur in the graph, so that the voltage is stably maintained without large fluctuations. It can be seen that the layer is made. Similarly, when the constant current -20A is discharged from the redox flow battery 100 in the discharge of the redox flow battery 100 according to the present embodiment, since a complex peak does not occur in the graph, the voltage does not change significantly. It can be seen that the reduction is stable.
따라서 도 4를 참조하면, 본 실시예에 따른 레독스 흐름 전지 ( 100)의 경우, 비교예와 같이 자동 브롬 착화물 조절 밸브를 포함하지 않는다 할지라도 안정적으로 층전 및 방전이 이루어질 수 있음을 확인할 수 있다. ' [표 1]은 본 실시예에 따른 레독스 흐름 전지 ( 100)의 층전 및 방전 결과에 따른 에너지 효율 (Energy Ef f i ciency, EE) , 쿨통 효율 (Coulombi c Ef f ici ency, CE) 및 전압 효율 (Vol tage Ef f i ci ency, VE)이다. 이때, [표 1]에 기재된 데이터는 도 4에 도시된 그래프의 결과를 정리한 수치이다.Therefore, referring to FIG. 4, in the case of the redox flow battery 100 according to the present exemplary embodiment, even when the redox flow control valve is not included as in the comparative example, the layered and discharged can be stably formed. have. [Table 1] shows the energy efficiency (Energy Ef fi ciency, EE), the coolant efficiency (Coulombi c Ef f iciency, CE) and the voltage according to the layer charge and discharge results of the redox flow battery 100 according to the present embodiment Efficiency (Voltage Ef fi ciency, VE). At this time, [Table The data described in [1] are numerical values that summarize the results of the graph shown in FIG.
[표 2]는 비교예에 따른 레독스 흐름 전지의 층전 및 방전 결과에 따른 에너지 효율 (Energy Efficiency, EE), 쿨통 효율 (Coulomb ic Efficiency, CE) 및 전압 효율 (Voltage Efficiency, VE)이다. Table 2 shows energy efficiency (EE), Coulomb ic Efficiency (CE), and voltage efficiency (Voltage Efficiency, VE) according to the layer charge and discharge results of the redox flow battery according to the comparative example.
【표 1】
Figure imgf000011_0001
Table 1
Figure imgf000011_0001
[표 1] 및 [표 2]에 기재된 것과 같이 본 실시예와 같이 별도의 자동 브롬 착화물 조절 밸브를 포함하지 않고 제 1 서브 배관 (43a) 및 게 2 서브 배관 (43b)의 연결 위치만을 조절하는 것만으로도, 자동 브롬 착화물 조절 밸브를 포함하는 비교예와 유사한 결과를 나타낼 수 있다. As shown in [Table 1] and [Table 2], only the connection position of the first sub pipe 43a and the crab 2 sub pipe 43b is adjusted without including the separate automatic bromine complex control valve as in the present embodiment. By just doing so, similar results can be obtained as in the comparative example including the automatic bromine complex control valve.
[표 3]은 층전 및 방전 시 양극과 음극 전해액 유입 시의 압력값을 나타낸 결과이다. "양극''으로 기재된 데이터는 본 실시예에 따른 레독스 흐름 전지 (100)의 압력값이며, "기존 양극' '으로 기재된 데이터는 비교예에 따른 레독스 흐름 전지의 압력값이다.  [Table 3] shows the results of the pressure values at the positive and negative electrolyte inflows during layer discharge and discharge. The data described as "anode" is the pressure value of the redox flow battery 100 according to this embodiment, and the data described as "existing anode" is the pressure value of the redox flow battery according to the comparative example.
【표 3】 Table 3
Figure imgf000011_0002
[표 3]에 기재된 것과 같이 2시간 층전 시의 결과는 비교예에 비해 약간 저하되는 결과를 보이나, [표 1] 및 [표 2]와 마찬가지로, 대부분의 실험 결과가 비교예와 동일하거나 유사함을 확인할 수 있다. 이상에서와 같이 본 실시예에 따른 레독스 흐름 전지 (100)는 보다 간편한 구성만으로도 동일하거나 유사한 성능을 발휘할 수 있음을 확인할 수 있다.
Figure imgf000011_0002
As shown in [Table 3], the result of 2 hours lamination was slightly lower than that of the comparative example, but as in [Table 1] and [Table 2], most of the experimental results were the same or similar to the comparative example. can confirm. As described above, it can be seen that the redox flow battery 100 according to the present embodiment may exhibit the same or similar performance even with a simpler configuration.
지금까지 본 발명의 일 실시예에 따른 레독스 흐름 전지 (100)에 대해 설명하였다. 본 실시예에 따르면, 자동 브롬 착화물 조절 밸브와 같은 고가이고 복잡한 구성의 추가 없이 간편한 구성만으로도 동일하거나 유사한 성능을 발휘할 수 있는 레독스 흐름 전지 (100)를 제공할 수 있다. 따라서 제조에 소요되는 비용을 감소시킬 수 있으며, 복합한 구성의 자동 브롬 착화물 조절 밸브를 설치하기 위해 필요한 공간을 절약할 수 있어 보다 경제적이다.  So far, the redox flow battery 100 according to the exemplary embodiment of the present invention has been described. According to the present embodiment, it is possible to provide a redox flow battery 100 capable of performing the same or similar performance with a simple configuration without the addition of an expensive and complicated configuration such as an automatic bromine complex control valve. Therefore, the manufacturing cost can be reduced, and the space required for the installation of the complex bromine complex control valve can be saved, which is more economical.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.  While specific embodiments of the invention have been described and illustrated above, it is to be understood that the invention is not limited to the described embodiments, and that various modifications and changes can be made without departing from the spirit and scope of the invention. It is self-evident to those who have. Therefore, such modifications or variations are not to be understood individually from the technical spirit or viewpoint of the present invention, and the modified embodiments shall belong to the claims of the present invention.
【부호의 설명】 [Explanation of code]
100: 레독스 흐름 전지 10: 전지 셀  100 : redox flow battery 10 : battery cell
11 : 멤브레인 12: 제 1 다공성 전극  11: membrane 12: first porous electrode
13: 제 2 다공성 전극 14: 저 u 플로우 프레임  13 : second porous electrode 14 : low u flow frame
15: 제 2 플로우 프레임 16: 제 1 전극  15: 2nd flow frame 16: 1st electrode
17: 게 2 전극 20: Bfl  17 : Crab 2 electrode 20 : Bfl
30: 전해액 탱크 31: 챔버  30: electrolyte tank 31: chamber
32: 제 2 챔버 40: 전해액 순환부  32: 2nd chamber 40: electrolyte solution circulation part
41: 제 1 배관 42: 제 2 배관 : 제 3 배관 43a: 제 1 서브b: 제 2 서브 배관 44: 제 4 배관 : 제 1 펌프 46: 제 2 펌프 : 연결 배관 48: 제 1 밸브 : 제 2 밸브 41: 1st piping 42: 2nd piping : 3rd piping 43a: 1st subb: 2nd subpipe 44: 4th piping : 1st pump 46: 2nd pump : connection piping 48: 1st valve: 2nd valve

Claims

【청구범위】 [Claim]
【청구항 1】  [Claim 1]
복수의 전지 셀이 적층된 스택;  A stack in which a plurality of battery cells are stacked;
제 1 전해액을 저장하는 제 1 챔버 및 제 2 전해액을 저장하는 제 2 챔버를 포함하는 전해액 탱크; 및  An electrolyte tank comprising a first chamber storing a first electrolyte and a second chamber storing a second electrolyte; And
상기 전해액 탱크의 전해액을 상기 스택으로 공급하고, 상기 스택에서 사용된 전해액을 상기 전해액 탱크로 회수하는 전해액 순환부를 포함하며,  An electrolyte circulation part for supplying an electrolyte solution of the electrolyte tank to the stack, and recovering the electrolyte solution used in the stack to the electrolyte tank,
상기 전해액 순환부는,  The electrolyte solution circulation portion,
상기 제 1 챔버의 하측과 상기 스택을 연결하는 제 1 배관;  A first pipe connecting the lower side of the first chamber and the stack;
상기 스택과 상기 제 1 챔버의 상측을 연결하는 제 2 배관;  A second pipe connecting the stack and the upper side of the first chamber;
상기 제 2 챔버의 하측과 연결되는 게 1 서브 배관 및 상기 제 2 챔버의 상측과 연결되는 게 2 서브 배관을 포함하며, 상기 제 1 서브 배관 및 상기 제 2 서브 배관과 상기 스택을 연결하는 게 3 배관; 및  A first sub pipe connected to a lower side of the second chamber and a second sub pipe connected to an upper side of the second chamber, and connecting the first sub pipe and the second sub pipe to the stack 3 pipe; And
상기 스택과 상기 제 2 챔버의 상측을 연결하는 게 4 배관을 포함하는, 레독스 흐름 전지 .  Redox flow battery comprising four pipes connecting the stack and the upper side of the second chamber.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 전해액 순환부는,  The electrolyte solution circulation unit,
상기 제 1 배관에 설치되어 제 1 전해액을 순환시키는 제 1 펌프; 및 상기 제 3 배관에 설치되어 제 2 전해액을 순환시키는 제 2 펌프를 더 포함하는, 레독스 흐름 전지 .  A first pump installed in the first pipe to circulate the first electrolyte solution; And a second pump installed in the third pipe to circulate the second electrolyte.
【청구항 3】 [Claim 3]
거 U항에 있어서,  In U,
상기 제 1 서브 배관은,  The first sub pipe is,
상기 제 1 서브 배관에 위치하여 상기 제 1 서브 배관의 개폐 조절하는 제 1 밸브를 포함하는, 레독스 흐름 전지 . And a first valve positioned in the first sub pipe, the first valve configured to control opening and closing of the first sub pipe.
【청구항 4] [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 전해액 순환부는,  The electrolyte solution circulation unit,
상기 제 1 챔버와 상기 제 2 챔버를 연결하는 연결 배관을 더 포함하는, 레독스 흐름 전지 .  The redox flow battery further comprises a connection pipe connecting the first chamber and the second chamber.
【청구항 5] [Claim 5]
게 4항에 있어서,  According to claim 4,
상기 연결 배관은,  The connecting pipe is,
상기 제 1 챔버와 상기 제 2 챔버 사이에서 상기 연결 배관의 개폐를 조절하는 계 2 밸브를 포함하는, 레독스 흐름 전지.  And a second valve for controlling opening and closing of the connecting pipe between the first chamber and the second chamber.
【청구항 6] [Claim 6]
게 4항에 있어서,  The method of claim 4,
상기 연결 배관은 제 2 챔버의 상부에 연결되는, 레독스 흐름 전지.  The connecting pipe is connected to the upper portion of the second chamber, redox flow battery.
[청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 레독스 흐름 전지는 아연 -브롬 (Zinc-Bromine) 흐름 전지인, 레독스 흐름 전지 .  The redox flow battery is a zinc-bromine flow battery, redox flow battery.
PCT/KR2017/005348 2016-05-23 2017-05-23 Redox flow battery WO2017204530A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0062929 2016-05-23
KR1020160062929A KR20170132005A (en) 2016-05-23 2016-05-23 Redox flow battery

Publications (1)

Publication Number Publication Date
WO2017204530A1 true WO2017204530A1 (en) 2017-11-30

Family

ID=60412767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005348 WO2017204530A1 (en) 2016-05-23 2017-05-23 Redox flow battery

Country Status (2)

Country Link
KR (1) KR20170132005A (en)
WO (1) WO2017204530A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742434A (en) * 2019-01-21 2019-05-10 西安交通大学 A kind of longitudinal direction uniform flow field flow battery and its working method
CN114744237A (en) * 2020-12-21 2022-07-12 广东三水合肥工业大学研究院 Circulating system and method for flow battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101855290B1 (en) 2017-03-02 2018-05-04 스탠다드에너지(주) Redox flow battery
KR20200041121A (en) * 2018-10-11 2020-04-21 스탠다드에너지(주) Redox flow battery
KR20200063892A (en) 2018-11-28 2020-06-05 롯데케미칼 주식회사 Test equipment for redox flow battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244972A (en) * 2009-04-09 2010-10-28 Sharp Corp Redox flow battery
WO2013042103A1 (en) * 2011-09-21 2013-03-28 Bromine Compounds Ltd. A method of operating metal- bromine cells
KR101511228B1 (en) * 2013-11-28 2015-04-10 롯데케미칼 주식회사 Redox flow battery
KR20150100040A (en) * 2014-02-24 2015-09-02 오씨아이 주식회사 Redox flow battery
CN204966601U (en) * 2015-09-23 2016-01-13 特变电工沈阳变压器集团有限公司 Realize black device that starts of zinc bromine liquid stream system battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010244972A (en) * 2009-04-09 2010-10-28 Sharp Corp Redox flow battery
WO2013042103A1 (en) * 2011-09-21 2013-03-28 Bromine Compounds Ltd. A method of operating metal- bromine cells
KR101511228B1 (en) * 2013-11-28 2015-04-10 롯데케미칼 주식회사 Redox flow battery
KR20150100040A (en) * 2014-02-24 2015-09-02 오씨아이 주식회사 Redox flow battery
CN204966601U (en) * 2015-09-23 2016-01-13 特变电工沈阳变压器集团有限公司 Realize black device that starts of zinc bromine liquid stream system battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742434A (en) * 2019-01-21 2019-05-10 西安交通大学 A kind of longitudinal direction uniform flow field flow battery and its working method
CN114744237A (en) * 2020-12-21 2022-07-12 广东三水合肥工业大学研究院 Circulating system and method for flow battery
CN114744237B (en) * 2020-12-21 2024-01-30 广东三水合肥工业大学研究院 Circulation system and method for flow battery

Also Published As

Publication number Publication date
KR20170132005A (en) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2017204530A1 (en) Redox flow battery
Li et al. Studies on optimal charging conditions for vanadium redox flow batteries
US20070072067A1 (en) Vanadium redox battery cell stack
US7199550B2 (en) Method of operating a secondary battery system having first and second tanks for reserving electrolytes
CN103733409B (en) System and method for sensing and mitigating hydrogen evolution within a flow battery system
US10665882B2 (en) Redox flow battery
US9853454B2 (en) Vanadium redox battery energy storage system
CN109845012A (en) Redox flow batteries comprising the system for reducing by-pass current
KR102178304B1 (en) Redox flow battery using balancing flow path
CN109713339B (en) Flow battery system control method based on current optimization strategy
KR102154387B1 (en) Redox flow battery system
KR101760983B1 (en) Flow battery and method of preventing mix of the electrolyte
KR20160064545A (en) Zn-Br Redox Flow Battery System
TW201631831A (en) Redox-flow battery operation method and redox-flow battery
KR102216144B1 (en) Redox flow battery
CN110311157B (en) Redox flow battery using electrolyte concentration gradient and method of operating the same
JP7149623B2 (en) redox flow battery
KR101747491B1 (en) Electrolyte storage unit for Flow battery and Vanadium redox flow battery comprising the same
JP6629911B2 (en) Redox flow battery
KR102192924B1 (en) Redox flow battery(rfb) using electrolyte concentration gradient and operation method thereof
KR102589318B1 (en) Vanadium Redox flow battery for data center and operating method thereof
KR101877618B1 (en) Self-driving vanadium redox flow cell
KR20190110219A (en) Redox flow battery(rfb) using electrolyte concentration gradient and operation method thereof
EP3561930B1 (en) Redox flow battery
KR20180044702A (en) Redox flow battery and method for regenerating electrolyte thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17803049

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17803049

Country of ref document: EP

Kind code of ref document: A1