JPH09270266A - Redox flow secondary battery and method for operating same - Google Patents

Redox flow secondary battery and method for operating same

Info

Publication number
JPH09270266A
JPH09270266A JP8078920A JP7892096A JPH09270266A JP H09270266 A JPH09270266 A JP H09270266A JP 8078920 A JP8078920 A JP 8078920A JP 7892096 A JP7892096 A JP 7892096A JP H09270266 A JPH09270266 A JP H09270266A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
battery cell
storage tank
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8078920A
Other languages
Japanese (ja)
Inventor
Toshio Shigematsu
敏夫 重松
Nobuyuki Tokuda
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP8078920A priority Critical patent/JPH09270266A/en
Publication of JPH09270266A publication Critical patent/JPH09270266A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a redox flow secondary battery which is improved such that self discharging during stoppage of a system can be prevented and efficiency of the system can be enhanced. SOLUTION: In a redox flow battery, a positive electrode electrolyte is circularly supplied from a positive electrode tank 2 to a positive electrode, a negative electrode electrolyte is circularly supplied from a negative electrode tank 3 to a negative electrode, and a redox reaction is carried out on each of the electrodes for electric charging/discharging. During stoppage of the battery after charging, the positive electrode electrolyte in the discharged state is supplied from a positive electrode discharging electrolyte storage tank 4 to the positive electrode, while the negative electrode electrolyte in the charged state is supplied from a negative electrode discharging electrolyte storage tank 5 to the negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、一般にレドック
スフロー型二次電池装置に関するものであり、より特定
的には、装置の停止時の自己放電がなくなり、装置の効
率が向上するように改良されたレドックスフロー型二次
電池装置に関する。この発明は、またそのようなレドッ
クスフロー型二次電池装置の運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a redox flow type secondary battery device, and more specifically, it is improved so that self-discharge when the device is stopped is eliminated and the efficiency of the device is improved. The present invention relates to a redox flow type secondary battery device. The present invention also relates to a method of operating such a redox flow type secondary battery device.

【0002】[0002]

【従来の技術】図2は従来のレドックスフロー型二次電
池装置の概略図である。レドックスフロー型二次電池
は、隔膜により分離された正極と負極とを含む、電池セ
ル1を備える。正極タンク2は、電池セル1の正極へ循
環供給する正極液を蓄える。負極タンク3は、電池セル
1の負極へ循環供給する負極液を蓄える。このレドック
スフロー型二次電池は、電池セル1の正極に正極タンク
2からの正極電解液を循環供給し、電池セル1の負極に
負極液タンク3から負極電解液を循環供給し、それぞれ
の電極上で、酸化還元反応を行なわせることにより、充
放電を行なう。正極液にV5+/V4+の硫酸溶液を用い、
負極液としてV2+/V3+の硫酸水溶液を用いた場合の、
両極における電池反応は、次の式のようになる。
2. Description of the Related Art FIG. 2 is a schematic view of a conventional redox flow type secondary battery device. The redox flow type secondary battery includes a battery cell 1 including a positive electrode and a negative electrode separated by a diaphragm. The positive electrode tank 2 stores positive electrode liquid that is circulated and supplied to the positive electrode of the battery cell 1. The negative electrode tank 3 stores the negative electrode liquid that is circulated and supplied to the negative electrode of the battery cell 1. In this redox flow secondary battery, the positive electrode electrolyte from the positive electrode tank 2 is circulated and supplied to the positive electrode of the battery cell 1, and the negative electrode electrolyte solution is circulated and supplied from the negative electrode liquid tank 3 to the negative electrode of the battery cell 1, and each electrode is Charging / discharging is performed by causing the redox reaction to occur. V 5+ / V 4+ sulfuric acid solution is used as the positive electrode liquid,
When an aqueous solution of V 2+ / V 3+ sulfuric acid is used as the negative electrode solution,
The battery reaction at both electrodes is as follows.

【0003】[0003]

【化1】 Embedded image

【0004】[0004]

【発明が解決しようとする課題】従来の装置において
は、停止時に、電解液をセルへ循環供給させるためのポ
ンプPを停止する。このとき、その時点での充電状態に
応じて、電池セル1内に、充電された電解液が残存す
る。このため、次のような問題点があった。
In the conventional apparatus, the pump P for circulating and supplying the electrolytic solution to the cell is stopped when the apparatus is stopped. At this time, the charged electrolytic solution remains in the battery cell 1 depending on the state of charge at that time. Therefore, there are the following problems.

【0005】すなわち、セル内の残存電解液が、停止中
に、隔膜を介して拡散したり、また積層された電池セル
内マニホールドを通して、自己放電するため、全体効率
が低下する。また、充電状態の電解液中、特に、5価バ
ナジウムは酸化力が大きく、電池構成素材、特に隔膜材
料、の劣化に強く影響し、装置の停止時にも、その劣化
が促進され、装置の寿命を短くしていた。
That is, since the remaining electrolytic solution in the cell diffuses through the diaphragm during the stop and self-discharges through the stacked battery cell manifolds, the overall efficiency is lowered. Also, in the charged electrolyte, pentavalent vanadium, in particular, has a large oxidizing power, which strongly affects the deterioration of the battery constituent materials, particularly the diaphragm material, and promotes the deterioration even when the device is stopped, resulting in the life of the device. Was shortened.

【0006】この発明は、上記のような問題点を解決す
るためになされたもので、装置の停止時の自己放電がな
くなり、装置の効率が向上するように改良された、レド
ックスフロー型二次電池装置を提供することにある。
The present invention has been made in order to solve the above-mentioned problems, and it is improved so that self-discharge when the apparatus is stopped is eliminated and the efficiency of the apparatus is improved. It is to provide a battery device.

【0007】この発明の他の目的は、隔膜などの電池材
料の寿命を延ばし、装置の長寿命化を図ることができる
ように改良された、レドックスフロー型二次電池を提供
することにある。
Another object of the present invention is to provide a redox flow type secondary battery improved so as to extend the life of battery material such as a diaphragm and extend the life of the device.

【0008】この発明のさらに他の目的は、そのような
レドックスフロー型二次電池装置の運転方法を提供する
ことにある。
Still another object of the present invention is to provide a method of operating such a redox flow type secondary battery device.

【0009】[0009]

【課題を解決するための手段】この発明に従うレドック
スフロー型二次電池装置は、電極に電解液を循環供給
し、該電極上で酸化還元反応を行なわせることにより、
充放電を行なうものである。当該レドックスフロー型二
次電池は、隔膜により分離された正極と負極とを含む、
電池セルを備える。当該装置は、上記電池セルの上記正
極へ循環供給する正極液を蓄える正極タンクと、上記電
池セルの上記負極へ循環供給する負極液を蓄える負極タ
ンクとを備える。当該装置はさらに、上記電池セルの上
記正極へ供給する上記正極液の放電状態のものを蓄え
る、正極放電電解液貯蔵タンクと、上記電池セルの上記
負極へ供給する、上記負極液の放電状態のものを蓄え
る、負極放電電解液貯蔵タンクとを備える。上記電池セ
ルと上記正極放電電解液貯蔵タンクとの間に、放電状態
の正極液を上記正極放電電解液貯蔵タンクから上記電池
セルへ送り込む第1の送液手段が設けられている。上記
電池セルと上記負極放電電解液貯蔵タンクとの間に、放
電状態の上記負極液を上記負極放電電解液貯蔵タンクか
ら上記電池セルへ送り込む第2の送液手段が設けられて
いる。
A redox flow type secondary battery device according to the present invention is configured such that an electrolytic solution is circulated and supplied to an electrode and an oxidation-reduction reaction is performed on the electrode,
It is for charging and discharging. The redox flow secondary battery includes a positive electrode and a negative electrode separated by a diaphragm,
Equipped with battery cells. The apparatus includes a positive electrode tank that stores a positive electrode liquid that is circulated and supplied to the positive electrode of the battery cell, and a negative electrode tank that stores a negative electrode liquid that is circulated and supplied to the negative electrode of the battery cell. The apparatus further stores a positive electrode discharge electrolyte storage tank that stores a discharged state of the positive electrode liquid to be supplied to the positive electrode of the battery cell, and supplies the negative electrode liquid to the negative electrode of the battery cell in a discharged state of the negative electrode liquid. And a negative electrode discharge electrolyte storage tank for storing things. Between the battery cell and the positive electrode discharge electrolytic solution storage tank, there is provided a first liquid sending means for sending the discharged positive electrode solution from the positive electrode discharge electrolytic solution storage tank to the battery cell. A second liquid feeding means is provided between the battery cell and the negative electrode discharge electrolyte storage tank to feed the discharged negative electrode liquid from the negative electrode discharge electrolyte storage tank to the battery cell.

【0010】この発明に係るレドックスフロー型二次電
池によれば、放電状態の電解液を電池セルへ送り込むこ
とができるので、装置の停止時に、電池セル内に残存す
る電解液の充電の程度を下げることができる。その結
果、装置の停止時の自己放電がなくなり、装置の効率が
向上する。
According to the redox flow type secondary battery according to the present invention, the discharged electrolytic solution can be sent to the battery cell. Therefore, when the apparatus is stopped, the degree of charge of the electrolytic solution remaining in the battery cell can be controlled. Can be lowered. As a result, self-discharge when the device is stopped is eliminated, and the efficiency of the device is improved.

【0011】また、この発明の他の局面に従うレドック
スフロー型二次電池装置の運転方法は、正極に正極電解
液を正極タンクから循環供給し、負極に負極電解液を負
極タンクから循環供給し、それぞれの電極上で酸化還元
反応を行なわせて、充放電を行なうレドックスフロー型
二次電池装置の運転方法に係る。充電後、該装置の停止
時に、上記正極に、放電状態にある正極電解液を供給
し、上記負極に、放電状態にある負極電極液を供給す
る。
A method of operating a redox flow type secondary battery device according to another aspect of the present invention is that a positive electrode electrolytic solution is circulated and supplied from a positive electrode tank to a positive electrode and a negative electrode electrolytic solution is circulated and supplied from a negative electrode tank to a negative electrode. The present invention relates to a method for operating a redox flow type secondary battery device in which a redox reaction is performed on each electrode to perform charging / discharging. After charging, when the apparatus is stopped, the positive electrode electrolyte solution in the discharged state is supplied to the positive electrode, and the negative electrode solution in the discharged state is supplied to the negative electrode.

【0012】この発明に係るレドックスフロー型二次電
池装置の運転方法によれば、装置の停止時に、電池セル
へ放電電解液を送り込むので、充電の程度を下げること
ができる。その結果、システムの停止時の自己放電がな
くなり、装置の効率が向上する。
According to the operation method of the redox flow type secondary battery device according to the present invention, since the discharge electrolytic solution is sent to the battery cells when the device is stopped, the degree of charging can be reduced. As a result, there is no self-discharge when the system is stopped, and the efficiency of the device is improved.

【0013】[0013]

【発明の実施の形態】以下、この発明の実施の形態につ
いて説明する。
Embodiments of the present invention will be described below.

【0014】図1は、本発明の実施の形態に係るレドッ
クスフロー型二次電池の概念図である。本発明の実施の
形態に係るレドックスフロー型二次電池は、薄膜により
分離された正極と負極を含む、電池セル1を備える。電
池セル1の正極へ、正極タンク2から、正極液が、ポン
プPにより循環供給されるようになっている。電池セル
1の負極へ、負極タンク3から、ポンプPにより負極液
が循環供給されるようになっている。当該装置は、電池
セル1の正極へ供給する、正極液の放電状態のもの(V
4+)を蓄える、正極放電電解液貯蔵タンク4を備える。
当該装置は、また、電池セル1の負極へ供給する、負極
液の放電状態のもの(V3+)を蓄える、負極放電電解液
貯蔵タンク5を備える。電池セル1と正極放電電解液貯
蔵タンク4との間に、放電状態の正極液(V4+)を正極
放電電解液貯蔵タンク4から電池セル1へ送り込む第1
の送液手段を備える。第1の送液手段は、正極電解液貯
蔵タンク4を電池セル1より上に設置し、さらに、電池
セル1に繋ぐ第1の管路6を含めることによって構成さ
れる。第1の管路6内に、該第1の管路6の開閉を行な
う第1のバルブ7が設けられている。
FIG. 1 is a conceptual diagram of a redox flow type secondary battery according to an embodiment of the present invention. The redox flow secondary battery according to the embodiment of the present invention includes a battery cell 1 including a positive electrode and a negative electrode separated by a thin film. The positive electrode liquid is circulated and supplied from the positive electrode tank 2 to the positive electrode of the battery cell 1 by the pump P. The negative electrode liquid is circulated and supplied from the negative electrode tank 3 to the negative electrode of the battery cell 1 by the pump P. The apparatus is one in which the positive electrode liquid supplied to the positive electrode of the battery cell 1 is in a discharged state (V
4+ ) for storing the positive electrode discharge electrolyte storage tank 4.
The apparatus also includes a negative electrode discharge electrolyte storage tank 5 for storing the negative electrode liquid in a discharged state (V 3+ ) to be supplied to the negative electrode of the battery cell 1. A first positive electrode solution (V 4+ ) in a discharged state is sent from the positive electrode discharge electrolyte storage tank 4 to the battery cell 1 between the battery cell 1 and the positive electrode discharge electrolyte storage tank 4.
The liquid feeding means is provided. The first liquid feeding means is configured by installing the positive electrode electrolyte storage tank 4 above the battery cell 1 and further including a first conduit 6 connected to the battery cell 1. A first valve 7 that opens and closes the first conduit 6 is provided in the first conduit 6.

【0015】当該装置は、電池セル1と負極放電電解液
貯蔵タンクとの間に設けられ、放電状態の負極液を負極
放電電解液貯蔵タンク5から電池セル1へ送り込む第2
の送液手段とを備える。第2の送液手段は、正極放電電
解液貯蔵タンク5を電池セル1より上に配置し、さら
に、電池セルに繋ぐ第2の管路8を含めることによって
構成される。第2の管路8内に、該第2の管路8の開閉
を行なう第2のバルブ9が設けられている。
The apparatus is provided between the battery cell 1 and the negative electrode discharge electrolytic solution storage tank and sends the discharged negative electrode solution from the negative electrode discharge electrolytic solution storage tank 5 to the battery cell 1.
And a liquid feeding means. The second liquid feeding means is configured by disposing the positive electrode discharge electrolyte storage tank 5 above the battery cell 1 and further including a second conduit 8 connected to the battery cell. A second valve 9 that opens and closes the second conduit 8 is provided in the second conduit 8.

【0016】正極タンク2と正極放電電解液貯蔵タンク
4は、管路10で接続されている。管路10には、正極
タンク2から正極放電電解液貯蔵タンク4へ液を送液す
るポンプPが設けられている。負極タンク3と負極放電
電解液貯蔵タンク5は、管路11で結ばれている。管路
11内には、負極タンク3から負極放電電解液貯蔵タン
ク5へ液を送液するポンプPが設けられている。
The positive electrode tank 2 and the positive electrode discharge electrolyte storage tank 4 are connected by a pipe line 10. The pipe 10 is provided with a pump P for feeding the liquid from the positive electrode tank 2 to the positive electrode discharge electrolyte storage tank 4. The negative electrode tank 3 and the negative electrode discharge electrolyte storage tank 5 are connected by a pipe line 11. In the pipe line 11, a pump P for feeding the liquid from the negative electrode tank 3 to the negative electrode discharge electrolyte storage tank 5 is provided.

【0017】図示しないが、電池セル1は、該電池セル
の充電状態を検知する充電状態検知手段を有している。
Although not shown, the battery cell 1 has a charge state detecting means for detecting the charge state of the battery cell.

【0018】次に、動作について説明する。電池システ
ム充電後、電池セル1内には、負極ではV2+イオン、正
極ではV5+イオンが主として残存している。この量は、
電池停止時の充電状態に応じる。90%の充電状態で
は、負極ではV2+イオンが90%、V3+イオンが10
%、正極ではV5+イオンが90%、V4+イオンが10%
となる。
Next, the operation will be described. After charging the battery system, V 2+ ions mainly remain in the negative electrode and V 5+ ions remain in the positive electrode in the battery cell 1. This amount is
According to the charge status when the battery is stopped. In the charged state of 90%, the negative electrode contains 90% of V 2+ ions and 10% of V 3+ ions.
%, V 5+ ions are 90% and V 4+ ions are 10% in the positive electrode
Becomes

【0019】ポンプを停止した後、正極放電電解液貯蔵
タンク4から電池セル1の正極へ、放電電解液(V4+
オン)を送液し、負極放電電解液貯蔵タンク5から電池
セル1の負極へ放電電解液(V3+イオン)を送液し、電
池セルの残存電解液を、それぞれ正極タンク2、負極タ
ンク3へと戻す。こうすることで、システム停止中に、
従来システムにおいてみられた自己放電やV5+イオンの
強い酸化力による素材の劣化現象を極力低減できる。な
お、正極放電電解液貯蔵タンク4(負極放電電解液貯蔵
タンク5)が空になった際には、正極タンク2(負極タ
ンク3)が放電状態になっている際に、適宜送液するこ
とで、繰返し使用することが可能となる。
After stopping the pump, the discharge electrolyte (V 4+ ions) is sent from the positive electrode discharge electrolyte storage tank 4 to the positive electrode of the battery cell 1, and the negative discharge electrolyte storage tank 5 transfers the battery cell 1 to the positive electrode. The discharge electrolyte (V 3+ ions) is sent to the negative electrode, and the remaining electrolyte in the battery cell is returned to the positive electrode tank 2 and the negative electrode tank 3, respectively. By doing this, while the system is stopped,
It is possible to reduce as much as possible the deterioration phenomena of the material due to the self-discharge and the strong oxidizing power of V 5+ ions, which are seen in the conventional system. In addition, when the positive electrode discharge electrolytic solution storage tank 4 (negative electrode discharge electrolytic solution storage tank 5) is empty, the liquid is appropriately sent when the positive electrode tank 2 (negative electrode tank 3) is in a discharged state. It becomes possible to use it repeatedly.

【0020】[0020]

【実施例】以下、この発明の実施例を比較例とともに説
明する。
EXAMPLES Examples of the present invention will be described below together with comparative examples.

【0021】比較例1 電池セルとして約20kWの電力を充放電できるもの
と、正負各300リットル程度の電解液を貯蔵したタン
ク2基を備えたレドックスフロー電池システムを構成し
た。電解液として、負極には3価のバナジウムを硫酸に
溶解したものを準備し、正極には4価のバナジウムを硫
酸に溶解したものを準備した。いずれも、バナジウム濃
度は1モル/l、硫酸濃度は3モル/lとした。このシ
ステムを用いて充電した後、即放電させたところ、放電
可能容量は約7200Whであった。
Comparative Example 1 A redox flow battery system having a battery cell capable of charging and discharging about 20 kW of electric power and two tanks each storing positive and negative electrolytes of about 300 liters was constructed. As the electrolytic solution, a negative electrode prepared by dissolving trivalent vanadium in sulfuric acid was prepared, and a positive electrode prepared by dissolving tetravalent vanadium in sulfuric acid. In each case, the vanadium concentration was 1 mol / l and the sulfuric acid concentration was 3 mol / l. When the battery was charged using this system and then immediately discharged, the dischargeable capacity was about 7200 Wh.

【0022】比較例2 比較例1と同様のレドックスフロー電池システムを構成
した。充電後、ポンプを停止し、48時間放置した後、
放電可能容量を求めたところ、約6500Whであっ
た。
Comparative Example 2 A redox flow battery system similar to Comparative Example 1 was constructed. After charging, stop the pump, leave it for 48 hours,
When the dischargeable capacity was determined, it was about 6500 Wh.

【0023】実施例1 比較例1,2のシステムに、図1に示すような、レドッ
クスフロー電池システムを構成した。その他は、比較例
1と同一の条件にした。
[0023] system of Example 1 Comparative Examples 1 and 2, as shown in FIG. 1, to constitute a redox flow battery system. The other conditions were the same as those in Comparative Example 1.

【0024】充電後、ポンプを停止し、セル上部に設け
た正極放電電解液貯蔵タンク4,負極放電電解液貯蔵タ
ンク5から電池セル1へと送液がなされるようにバルブ
7,9を開放し、電池セル1の電圧が0.5V/セル以
下となるまで、この操作を実施した。この後、バルブ
7,9を閉め、48時間放電したところ、放電可能容量
は約7200Whであった。
After charging, the pump is stopped, and the valves 7 and 9 are opened so that the positive electrode discharge electrolytic solution storage tank 4 and the negative electrode discharge electrolytic solution storage tank 5 provided at the upper part of the cell can transfer the liquid to the battery cell 1. Then, this operation was performed until the voltage of the battery cell 1 became 0.5 V / cell or less. Thereafter, when the valves 7 and 9 were closed and the battery was discharged for 48 hours, the dischargeable capacity was about 7200 Wh.

【0025】実施例2 実施例1のシステムに、さらに、正極タンク2から正極
放電電解液貯蔵タンク4へ送液するための配管10とポ
ンプPを設け、負極タンク3から負極放電電解液貯蔵タ
ンク5へ送液するための配管11とポンプPを設けた。
Example 2 The system of Example 1 is further provided with a pipe 10 and a pump P for feeding the positive electrode tank 2 to the positive electrode discharge electrolyte storage tank 4, and from the negative electrode tank 3 to the negative electrode discharge electrolyte storage tank. A pipe 11 and a pump P for feeding the liquid to No. 5 were provided.

【0026】放電終了後、正極タンク2から正極放電電
解液貯蔵タンク4へ電解液を送液し、負極タンク3から
負極放電電解液貯蔵タンク5へ電解液を送液した。再度
充電操作および実施例1と同様の操作を実施したとこ
ろ、放電可能容量は約7200Whであった。
After the discharge was completed, the electrolytic solution was sent from the positive electrode tank 2 to the positive electrode discharge electrolytic solution storage tank 4, and the electrolytic solution was sent from the negative electrode tank 3 to the negative electrode discharge electrolytic solution storage tank 5. When the charging operation and the same operation as in Example 1 were performed again, the dischargeable capacity was about 7200 Wh.

【0027】実施例3 実施例1のシステムにおいて、約半分の充電後、同様の
操作を試みたところ、正極放電電解液貯蔵タンク4(負
極放電電解液貯蔵タンク5)から電池セル1への送液必
要量は、実施例1,2と比べ、およそ半分程度でよいこ
とがわかった。
Example 3 In the system of Example 1, the same operation was attempted after charging about half, and the positive electrode discharge electrolyte storage tank 4 (negative electrode discharge electrolyte storage tank 5) was transferred to the battery cell 1. It was found that the required amount of liquid should be about half that of Examples 1 and 2.

【0028】[0028]

【発明の効果】以上説明したとおり、この発明に係るレ
ドックスフロー型二次電池装置およびその運転方法によ
れば、電池システム停止時の電池セル内に残存する充電
電解液が放電電解液と置換されるため、システム停止時
の自己放電がなくなり、システムの効率が向上するとい
う効果を奏する。
As described above, according to the redox flow type secondary battery device and the method of operating the same according to the present invention, the charged electrolytic solution remaining in the battery cells when the battery system is stopped is replaced with the discharged electrolytic solution. Therefore, there is an effect that self-discharging when the system is stopped is eliminated and the efficiency of the system is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るレドックスフロー型二次電池装置
の概略図である。
FIG. 1 is a schematic view of a redox flow type secondary battery device according to the present invention.

【図2】従来のレドックスフロー型二次電池装置の概略
図である。
FIG. 2 is a schematic view of a conventional redox flow type secondary battery device.

【符号の説明】[Explanation of symbols]

1 電池セル 2 正極タンク 3 負極タンク 4 正極放電電解液貯蔵タンク 5 負極放電電解液貯蔵タンク 6 第1の管路 7 第1のバルブ 8 第2の管路 9 第2のバルブ DESCRIPTION OF SYMBOLS 1 Battery cell 2 Positive electrode tank 3 Negative electrode tank 4 Positive electrode discharge electrolyte storage tank 5 Negative discharge electrolyte storage tank 6 1st pipe line 7 1st valve 8 2nd pipe line 9 2nd valve

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電極に電解液を循環供給し、該電極上で
酸化還元反応を行なわせることにより、充放電を行なう
レドックスフロー型二次電池装置であって、 隔膜により分離された正極と負極を含む、電池セルと、 前記電池セルの前記正極へ循環供給する正極液を蓄える
正極タンクと、 前記電池セルの前記負極へ循環供給する負極液を蓄える
負極タンクと、 前記電池セルの前記正極へ供給する、前記正極液の放電
状態のものを蓄える、正極放電電解液貯蔵タンクと、 前記電池セルの前記負極へ供給する前記負極液の放電状
態のものを蓄える、負極放電電解液貯蔵タンクと、 前記電池セルと前記正極放電電解液貯蔵タンクとの間に
設けられ、放電状態の前記正極液を前記正極放電電解液
貯蔵タンクから前記電池セルへ送り込む第1の送液手段
と、 前記電池セルと前記負極放電電解液貯蔵タンクとの間に
設けられ、放電状態の前記負極液を前記負極放電電解液
貯蔵タンクから前記電池セルへ送り込む第2の送液手段
と、を備えたレドックスフロー型二次電池装置。
1. A redox flow secondary battery device for charging and discharging by circulating and supplying an electrolytic solution to an electrode and carrying out an oxidation-reduction reaction on the electrode, wherein a positive electrode and a negative electrode separated by a diaphragm. Including a battery cell, a positive electrode tank that stores a positive electrode liquid that is circulated and supplied to the positive electrode of the battery cell, a negative electrode tank that stores a negative electrode liquid that is circulated and supplied to the negative electrode of the battery cell, and to the positive electrode of the battery cell. Supplying, storing the discharge state of the positive electrode solution, a positive electrode discharge electrolyte storage tank, and storing the discharge state of the negative electrode solution to be supplied to the negative electrode of the battery cell, a negative electrode discharge electrolyte storage tank, A first liquid supply means that is provided between the battery cell and the positive electrode discharge electrolyte storage tank and sends the positive electrode liquid in a discharged state from the positive electrode discharge electrolyte storage tank to the battery cell. A second liquid supply unit that is provided between the battery cell and the negative electrode discharge electrolytic solution storage tank and sends the negative electrode solution in a discharged state from the negative electrode discharge electrolytic solution storage tank to the battery cell. Redox flow type secondary battery device.
【請求項2】 前記第1の送液手段は、 前記正極放電電解液貯蔵タンクを前記電池セルより上方
に配置し、さらに、 前記正極放電電解液貯蔵タンクと前記電池セルを繋ぐ第
1の管路と、 前記第1の管路内に設けられ、該第1の管路の開閉を行
なう第1のバルブと、を含めて、構成されている、 前記第2の送液手段は、 前記負極放電電解液貯蔵タンクを前記電池セルより上方
に配置し、さらに、 前記負極放電電解液貯蔵タンクと前記電池セルを繋ぐ第
2の管路と、 前記第2の管路内に設けられ、該第2の管路の開閉を行
なう第2のバルブとを含めて、構成されている、請求項
1に記載のレドックスフロー型二次電池装置。
2. The first liquid feeding means has the positive electrode discharge electrolyte storage tank disposed above the battery cell, and further has a first pipe connecting the positive electrode discharge electrolyte storage tank and the battery cell. And a first valve that is provided in the first pipeline and that opens and closes the first pipeline. The second liquid sending unit is configured to include the negative electrode. A discharge electrolyte storage tank is disposed above the battery cell, and further, a second conduit connecting the negative electrode discharge electrolyte storage tank and the battery cell is provided in the second conduit. The redox flow type secondary battery device according to claim 1, which is configured to include a second valve for opening and closing the second conduit.
【請求項3】 前記電池セルの充電状態を検知する充電
状態検出手段をさらに備える、請求項1に記載のレドッ
クスフロー型二次電池装置。
3. The redox flow type secondary battery device according to claim 1, further comprising a charge state detection unit that detects a charge state of the battery cell.
【請求項4】 前記正極タンクと前記正極放電電解液貯
蔵タンクとの間に設けられ、該正極タンクから前記正極
放電電解液貯蔵タンクへ液を送液する第3の送液手段
と、 前記負極タンクと前記負極放電電解液貯蔵タンクとの間
に設けられ、該負極タンクから前記負極放電電解液貯蔵
タンクへ液を送液する第4の送液手段と、を備える請求
項1に記載のレドックスフロー型二次電池装置。
4. A third liquid feeding means, which is provided between the positive electrode tank and the positive electrode discharge electrolytic solution storage tank, and which feeds a liquid from the positive electrode tank to the positive electrode discharge electrolytic solution storage tank, and the negative electrode. The redox device according to claim 1, further comprising: a fourth liquid supply unit that is provided between the tank and the negative electrode discharge electrolytic solution storage tank, and that supplies a liquid from the negative electrode tank to the negative electrode discharge electrolytic solution storage tank. Flow type secondary battery device.
【請求項5】 正極に正極電解液を正極タンクから循環
供給し、負極に負極電解液を負極タンクから循環供給
し、それぞれの電極上で酸化還元反応を行なわせて、充
放電を行なうレドックスフロー電池装置の運転方法にお
いて、 充電後、該装置の停止時に、前記正極に、放電状態にあ
る正極電解液を供給し、前記負極に、放電状態にある負
極電極液を供給することを特徴とする、レドックスフロ
ー型二次電池装置の運転方法。
5. A redox flow in which a positive electrode electrolytic solution is circulated and supplied to a positive electrode from a positive electrode tank, and a negative electrode electrolytic solution is circulated and supplied to a negative electrode to cause an oxidation-reduction reaction on each electrode to perform charging and discharging. In a method of operating a battery device, after charging, when the device is stopped, a positive electrode electrolyte solution in a discharged state is supplied to the positive electrode, and a negative electrode solution in a discharged state is supplied to the negative electrode. , Operating method of redox flow type secondary battery device.
【請求項6】 前記電池セルの充電状態を検知し、その
検知結果に応じて、前記放電状態にある正極電解液およ
び前記放電状態にある負極電解液の送液量を制御する、
請求項5に記載の、レドックスフロー型二次電池装置の
運転方法。
6. The charge state of the battery cell is detected, and the amount of the positive electrode electrolytic solution in the discharged state and the negative electrode electrolytic solution in the discharged state that are fed are controlled according to the detection result.
The method for operating the redox flow type secondary battery device according to claim 5.
【請求項7】 前記放電状態にある正極電解液として、
前記正極タンク内の、放電状態における、正極電解液を
用い、 前記放電状態にある負極電解液として、前記負極タンク
内の、放電状態における、負極電解液を用いる、請求項
5に記載のレドックスフロー型二次電池装置の運転方
法。
7. The positive electrode electrolyte in the discharged state,
The redox flow according to claim 5, wherein a positive electrode electrolytic solution in a discharged state in the positive electrode tank is used, and a negative electrode electrolytic solution in a discharged state in the negative electrode tank is used as the negative electrode electrolytic solution in the discharged state. Type secondary battery device operating method.
JP8078920A 1996-04-01 1996-04-01 Redox flow secondary battery and method for operating same Pending JPH09270266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8078920A JPH09270266A (en) 1996-04-01 1996-04-01 Redox flow secondary battery and method for operating same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8078920A JPH09270266A (en) 1996-04-01 1996-04-01 Redox flow secondary battery and method for operating same

Publications (1)

Publication Number Publication Date
JPH09270266A true JPH09270266A (en) 1997-10-14

Family

ID=13675300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8078920A Pending JPH09270266A (en) 1996-04-01 1996-04-01 Redox flow secondary battery and method for operating same

Country Status (1)

Country Link
JP (1) JPH09270266A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527647A (en) * 2005-01-10 2008-07-24 ヴィーアールビー パワー システムズ インコーポレイテッド System and method for optimizing the efficiency and power output of a vanadium redox battery energy storage system
KR101357822B1 (en) * 2012-11-08 2014-02-05 한국과학기술원 Redox flow battery
CN103797631A (en) * 2011-06-27 2014-05-14 普里默斯电力公司 Electrolyte flow configuration for a metal-halogen flow battery
JP2016503940A (en) * 2012-12-09 2016-02-08 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with voltage limiting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008527647A (en) * 2005-01-10 2008-07-24 ヴィーアールビー パワー システムズ インコーポレイテッド System and method for optimizing the efficiency and power output of a vanadium redox battery energy storage system
CN103797631A (en) * 2011-06-27 2014-05-14 普里默斯电力公司 Electrolyte flow configuration for a metal-halogen flow battery
US9478803B2 (en) 2011-06-27 2016-10-25 Primus Power Corporation Electrolyte flow configuration for a metal-halogen flow battery
KR101357822B1 (en) * 2012-11-08 2014-02-05 한국과학기술원 Redox flow battery
JP2016503940A (en) * 2012-12-09 2016-02-08 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Flow battery with voltage limiting device

Similar Documents

Publication Publication Date Title
US7199550B2 (en) Method of operating a secondary battery system having first and second tanks for reserving electrolytes
EP2795709B1 (en) Flow battery system with standby mode
JP2002175822A (en) Redox flow battery and its operating method
JP3260280B2 (en) Redox flow type secondary battery device and operating method thereof
JP7145883B2 (en) Redox flow battery and its operation method
JPH02195657A (en) Electrolyte circulation type secondary battery
JPH09270266A (en) Redox flow secondary battery and method for operating same
JPH11204124A (en) Electrolyte circulating type cell
JPH10308232A (en) Electrolyte circulation type battery with internal resistance recovery mechanism
JP3098961B2 (en) Redox flow battery and method of operating the same
JPH0411340Y2 (en)
JP2004165028A (en) Discharging method of fuel cell stack and apparatus thereof
JPH08138718A (en) Operating method of redox-flow cell
JPS6235461A (en) Electrolyte circulation type secondary cell
WO2020021610A1 (en) Regeneration device for electrolyte solution for redox flow batteries, redox flow battery, and method for producing regenerated electrolyte solution for redox flow batteries
JP6683953B2 (en) Fuel cell system
JP2528100Y2 (en) Electrolyte flow battery
JP3642660B2 (en) Secondary battery for power storage
JPH10334938A (en) Power storage secondary battery
TWI787244B (en) Redox flow battery system and operation method of redox flow battery system
US20240030476A1 (en) Stack drainage for redox flow battery
EP4280323A1 (en) Iron redox flow battery
WO2020238939A1 (en) Electric vehicle charging apparatus consisting of metal fuel cells and operation method
JPH08138716A (en) Electrolyte of redox-flow cell and its operating method
JPH044568A (en) Redox flow battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030408