JPS632899A - Production of alexandrite single crystal - Google Patents

Production of alexandrite single crystal

Info

Publication number
JPS632899A
JPS632899A JP5826387A JP5826387A JPS632899A JP S632899 A JPS632899 A JP S632899A JP 5826387 A JP5826387 A JP 5826387A JP 5826387 A JP5826387 A JP 5826387A JP S632899 A JPS632899 A JP S632899A
Authority
JP
Japan
Prior art keywords
raw material
sintered
single crystal
alexandrite
boundary face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5826387A
Other languages
Japanese (ja)
Other versions
JPH0361635B2 (en
Inventor
Hironao Kojima
児島 弘直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5826387A priority Critical patent/JPS632899A/en
Publication of JPS632899A publication Critical patent/JPS632899A/en
Publication of JPH0361635B2 publication Critical patent/JPH0361635B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To inexpensively and quickly produce the titled single crystal which has excellent discolorability without contg. twins and inclusions by melting a raw material for a specific bar-shaped high density sintered body at one boundary face of a melting zone where IR rays are focused and growing the same in a C-axis direction at the other boundary face. CONSTITUTION:Ammounium aluminum alum is sintered at 900-1,200 deg.C to obtain Al2O3. BeSO4 is sintered at 900-1,200 deg.C to obtain BeO. Cr2O3 and/or Fe3O4 is added at 0.05-4wt% to the compsn. composed of the Al2O3 and BeO at an equal mol and the mixture is molded to a bar shape by a rubber press under a hydrostatic pressure. The molding is thereafter sintered at 1,300-1,700 deg.C in an oxidizing atmosphere, by which the raw material 3 for the bar-shaped high density sintered body is obtd. The IR rays emitted from a halogen lamp or xyenon lamp are focused by a rotating ellipsoidal mirror body 1 to form the melting zone 8. The raw material 3 held to an upper revolving shaft 4 is moved to the melting zone 8 and is melted at one boundary face; thereafter, the raw material is brought into contact with a seed crystal 5 set to a lower revolving shaft 6, by which the alexandrite single crystal is grown in the C direction at the boundary face between the raw material 3 and the seed crystal 5.

Description

【発明の詳細な説明】 本発明は棒状焼結体に赤外線を回転楕円面鏡により集中
して溶融帯を形成し、溶融帯の一界面で溶融を行ない、
他方の界面でC軸方向に育成させて得られる変色性を示
すアレキサンドライト単結晶の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention focuses infrared rays on a rod-shaped sintered body using a spheroidal mirror to form a molten zone, and performs melting at one interface of the molten zone.
The present invention relates to a method for producing an alexandrite single crystal that exhibits discoloration and is grown in the C-axis direction at the other interface.

本発明の目的は双晶や包含物がなく自然光下で暗緑色、
人工光下で赤色を呈する変色性の顕著な高品質アレキサ
ンドライト単結晶を提供することにある。
The purpose of the present invention is to produce a dark green color under natural light without twins or inclusions.
The object of the present invention is to provide a high-quality alexandrite single crystal with remarkable discoloration that exhibits a red color under artificial light.

本発明の他の目的は低コストでしかも短期間で大型アレ
キサンドライト単結晶を提供することにある。
Another object of the present invention is to provide large alexandrite single crystals at low cost and in a short period of time.

アレキサンドライトはベリリウムとアルミニウムの2成
分酸化物(BeAQ204 )中に酸化クロムや酸化鉄
、等が固溶したクリンベリルの一種であり、高い硬度、
高融点、化学耐久性を示す斜方晶系の結晶である。自然
光下では暗緑色を呈し。
Alexandrite is a type of green beryl in which chromium oxide, iron oxide, etc. are dissolved in a binary oxide of beryllium and aluminum (BeAQ204), and it has high hardness and
It is an orthorhombic crystal with a high melting point and chemical durability. It appears dark green under natural light.

人工打丁では赤色を呈する代表的な宝石として著名であ
る。レーザーのホスト材料としても注目されている。こ
れを人工的に得ようとする試みは古来種々性なわれてお
り、フラックス法、引き上げ法により試みられているが
高品質大皿単結晶を得るまでには至っていない、即ちフ
ラックス法の場合双晶が生じやすく、添加物が固溶し難
く、又育成に長期間を要する。引き上げ法の場合にはア
レキサンドライトが1870℃の融点である為にイリジ
ウム等の高価格貴金属を用いなければならず、このルツ
ボ材料が抱合物として結晶中に入り込む等の不都合が生
じやすく良品質単結晶は得られていない。
It is famous as a typical red-colored gemstone in artificially carved knives. It is also attracting attention as a host material for lasers. There have been various attempts to obtain this artificially since ancient times, and attempts have been made using the flux method and the pulling method, but they have not reached the point of obtaining a high-quality large plate single crystal.In other words, in the case of the flux method, twin crystals It is difficult for additives to form a solid solution, and it takes a long time to grow. In the case of the pulling method, since alexandrite has a melting point of 1870°C, expensive precious metals such as iridium must be used, and this crucible material tends to enter the crystal as conjugates, resulting in problems such as high-quality single crystals. has not been obtained.

本発明は全く新規なる方法で高品質大工アレキサンドラ
イト単結晶を得るものである。
The present invention provides a completely new method for obtaining high quality carpenter alexandrite single crystals.

本発明の要旨は酸化アルミニウムと酸化ベリリウムのほ
ぼ等モル割合の組成の棒状高密度焼結体原料にハロゲン
ランプかキセノンランプより発せられる赤外線を回転楕
円面鏡により集光して原料棒の先端に溶融帯を形成し、
この溶融帯に種子結晶を接触させ、徐々に溶融帯を原料
棒中を移動させて種子結晶側の界面で結晶化を行ない、
他方の界面で原料の溶融を行なって結晶育成に伴う溶融
液の減少をおぎなう操作を継続していく育成製造法であ
る。棒状高密度焼結体の出発原料は酸化アルミニウムに
ついてはアンモニウムアルミニウムミョウバンを900
℃乃至1200”Cで焼結し、酸化ベリリウムについて
は硫酸ベリリウムを900℃乃至1200℃で焼成した
ものを用い、更に酸化クロムもしくは酸化鉄の少なくと
も一方を0゜05重量パーセント乃至5重量パーセント
添加して用いられる。焼成温度が900℃に達しない場
合には反応が完全に終了せず未反応成分が高密度焼結体
の中に混入し結晶化を妨げる。又焼成温度が1200℃
を超える場合は原料粉末の粒子径が大きく成長しすぎ高
密度焼結体が得られなくなる。
The gist of the present invention is to focus infrared rays emitted from a halogen lamp or a xenon lamp onto a rod-shaped high-density sintered raw material with a composition of approximately equimolar proportions of aluminum oxide and beryllium oxide, and direct it to the tip of the raw material rod. forming a molten zone,
A seed crystal is brought into contact with this molten zone, and the molten zone is gradually moved through the raw material rod to cause crystallization at the interface on the seed crystal side.
This is a growth production method in which the raw material is melted at the other interface and the operation is continued to reduce the amount of melt that accompanies crystal growth. The starting material for the rod-shaped high-density sintered body is ammonium aluminum alum at 900% for aluminum oxide.
℃ to 1200"C, and for beryllium oxide, beryllium sulfate sintered at 900℃ to 1200℃ is used, and at least one of chromium oxide or iron oxide is added from 0.05% by weight to 5% by weight. If the firing temperature does not reach 900°C, the reaction will not complete and unreacted components will mix into the high-density sintered body, hindering crystallization.Also, if the firing temperature does not reach 1200°C
If it exceeds this, the particle size of the raw material powder will grow too large, making it impossible to obtain a high-density sintered body.

又酸化鉄もしくは酸化クロムが0.05重量パーセント
に達しない場合はほとんど着色がみられず又、赤外線の
吸収能が悪くなる為に結晶化が妨げられる。この場合、
酸化クロム、酸化鉄は着色剤として作用するが、これら
酸化クロム、酸化鉄が少ないと溶融部分は透明状となり
集中照射される赤外線の吸収が悪くなり溶融が均一に、
良質に行なえないものである。従って本発明の如き赤外
線照射が集中して溶融帯域が形成される製造方法におい
ては発色剤としての酸化クロム、酸化鉄が0゜05重量
パーセント以上含有することはアレキサンドライトの美
麗な色調をもたらす上において、赤外線の集中照射によ
る良質な溶融帯域な形成する上においても極めて重要な
ことである。又、酸化クロム、酸化鉄が5重量パーセン
トを超えると結晶中に偏析を起して混在物として結晶性
を劣化させてしまう、成製はゴム製袋に粉末を充填し静
水圧でバインダーを用いずにラバープレスして棒状に作
製する。焼結は通常鹸化性雰囲気中で1300℃乃至1
700℃で行なわれる。この場合1300℃未満である
と各原料(酸化アルミニウム、酸化ベリリウム、融化ク
ロム、酸化鉄)同士は完全な同相反応が起こらなくなり
、原料棒の各原料が均一状態とならないことから、均−
買のアレキサンドライトが得られなくなる。−方、17
00℃を超えると各原料が還元されやすくなり原料棒か
ら7レキサンドライトが形成される際気泡が生じやすく
、又電気炉の耐久性が劣ることになる。
Further, if the amount of iron oxide or chromium oxide is less than 0.05% by weight, almost no coloring is observed and crystallization is hindered due to poor infrared absorbing ability. in this case,
Chromium oxide and iron oxide act as coloring agents, but if there is little of these chromium oxide and iron oxide, the melted part will become transparent and the absorption of concentrated infrared rays will be poor, resulting in uniform melting.
It cannot be done in good quality. Therefore, in the production method of the present invention in which infrared rays are concentrated to form a melting zone, it is important to contain 0.05% by weight or more of chromium oxide and iron oxide as coloring agents in order to obtain a beautiful color tone of alexandrite. This is extremely important in forming a high-quality melting zone by concentrated infrared irradiation. In addition, if chromium oxide or iron oxide exceeds 5% by weight, they will segregate in the crystal and deteriorate crystallinity as inclusions.For production, fill a rubber bag with powder and use a binder with hydrostatic pressure. Rubber press to make a rod shape. Sintering is usually carried out at 1300°C to 1°C in a saponifying atmosphere.
It is carried out at 700°C. In this case, if the temperature is below 1300°C, a complete in-phase reaction will not occur between the raw materials (aluminum oxide, beryllium oxide, fused chromium, iron oxide), and the raw materials in the raw material rod will not be in a uniform state.
Buy Alexandrite will no longer be available. - direction, 17
If the temperature exceeds 00°C, each raw material is likely to be reduced, bubbles are likely to be generated when lexandrite is formed from the raw material rod, and the durability of the electric furnace is deteriorated.

従って原料棒を得るだめの焼結温度は1300℃乃至1
700℃が好適である。−方、この原料棒の焼結時の雰
囲気は酸化性雰囲気とすることにより良質なアレキサン
ドライトが得られる。即ち、非酸化性雰囲気中でこの焼
結を行なうと、各原料は酸化物であるから各原料が還元
されやすくなり原料棒の溶解状態から結晶化される際に
その結晶物中に気泡が生じ、良質なアレキサンドライト
が得られないことになる。又、原料棒の溶解、結晶化を
空気などの酸化性雰囲気中で行なうことも上記の如く原
料棒を還元化させることがなく、従って気泡のない良質
なアレキサンドライトが得られるものである。−方、種
子結晶は望ましくはC軸方向に長い棒状のものが良いが
必ずしもこだわる必要はないが最大育成方向は種子結晶
のC軸方向に一致させると円柱状の完全なる単結晶を得
ることができる。他の方向に育成させるとC軸に垂直な
る面が生じ偏平状の結晶となってしまう、この様にして
均一に着色した包含物のない円柱棒状の大皿単結晶が得
られた。
Therefore, the sintering temperature for obtaining the raw material rod is 1300℃ to 1
700°C is preferred. - On the other hand, good quality alexandrite can be obtained by setting the atmosphere during sintering of this raw material rod to an oxidizing atmosphere. That is, when this sintering is performed in a non-oxidizing atmosphere, each raw material is an oxide, so each raw material is easily reduced, and when the raw material rod is crystallized from the melted state, bubbles are generated in the crystal. , good quality alexandrite cannot be obtained. Further, melting and crystallizing the raw material rod in an oxidizing atmosphere such as air does not reduce the raw material rod as described above, and therefore, good quality alexandrite without bubbles can be obtained. - On the other hand, it is preferable that the seed crystal be long in the C-axis direction, but it is not necessary to be particular about this, but if the maximum growth direction is aligned with the C-axis direction of the seed crystal, it is possible to obtain a complete cylindrical single crystal. can. If grown in any other direction, a plane perpendicular to the C-axis would be produced, resulting in a flat crystal.In this way, a uniformly colored, cylindrical, rod-shaped, large plate single crystal without inclusions was obtained.

第1図に本発明方法の概要を示す。FIG. 1 shows an outline of the method of the present invention.

回転楕円面鏡体1は二つの焦点を持っている。The spheroidal mirror body 1 has two focal points.

−焦点にハロゲンランプ又はキセノンランプを配置し、
他方の焦点には棒状原料3を配置する。棒状原料3は上
部回転4により保持されている。又種子結晶5は下部回
転軸6にセットされている、棒状原料3、種子結晶5、
上下回転軸4,6は透明石英管7内に封入されており雰
囲気を自由にコントロールでき、又真空あるいは加圧す
ることも可能である。棒状原料3中で瀧度が上がり溶融
帯8の形成されるのは焦点に完全に一致した部分のみで
ある。溶融帯8は回転軸4,6を上方あるいは下方に移
動させることにより相対的に移動される。操作はまず原
料棒3の先端に赤外線を集中させて溶融帯8を形成し、
しかるのちに種子結晶5を上方に移動して溶融帯8を接
触させる。平衡状態になったのを確認した後回転軸4,
6を移動すると種子結晶5が成長した状態で透明単結晶
が得られる。即ち溶融帯8と原料棒3の界面での原料の
溶融が起り、溶融帯8と結晶5の界面では結晶化が行な
われている。
- placing a halogen or xenon lamp at the focal point;
A rod-shaped raw material 3 is placed at the other focal point. The rod-shaped raw material 3 is held by an upper rotation 4. Further, the seed crystal 5 is set on the lower rotating shaft 6, and includes a rod-shaped raw material 3, a seed crystal 5,
The upper and lower rotating shafts 4 and 6 are enclosed in a transparent quartz tube 7, so that the atmosphere can be freely controlled, and it is also possible to use vacuum or pressurization. In the rod-shaped raw material 3, the degree of melting increases and a molten zone 8 is formed only in a portion that completely coincides with the focal point. The melting zone 8 is relatively moved by moving the rotating shafts 4 and 6 upward or downward. The operation begins by concentrating infrared rays on the tip of the raw material rod 3 to form a molten zone 8.
Thereafter, the seed crystal 5 is moved upward to contact the molten zone 8. After confirming that the equilibrium state has been reached, rotate the rotating shaft 4,
6, a transparent single crystal is obtained with the seed crystal 5 grown. That is, melting of the raw material occurs at the interface between the melting zone 8 and the raw material rod 3, and crystallization occurs at the interface between the melting zone 8 and the crystals 5.

この方法は次の様な数々の特徴及びメリットを持ってい
る。
This method has a number of features and advantages, including:

1、高温が容易に得られる為に操作上の安全性が非常に
高い0例えばベルヌーイ法の場合には酸素ガスと水素ガ
スを用いる為に高度のテクニックが必要であり、爆発の
危険に常にさらされているが末法では操作は容易で特別
な経験或いはテクニックを必要とせず、又危険性は全く
ない。
1. Operational safety is very high because high temperatures can be easily obtained. For example, in the Bernoulli method, advanced techniques are required because oxygen gas and hydrogen gas are used, and there is always a risk of explosion. However, the final method is easy to operate, does not require any special experience or technique, and is completely free of danger.

2、雰囲気及び圧力のコントロールが可能である為に分
解しやすい化合物あるいは酸化されやすい化合物も結晶
化が容易である。
2. Since the atmosphere and pressure can be controlled, compounds that are easily decomposed or easily oxidized can be easily crystallized.

3、赤外線により加熱が行なわれるので高周波誘導加熱
のできない酸化物等の単結晶の育成ができる。ルツボを
用いない為に当然不純物の混入が非常に少ない、溶融帯
の形成はハロゲンランプでは1900℃、キセノンラン
プでは2800 ’Cまで行なえるので、本発明では主
にハロゲンランプが用いられる。
3. Since heating is performed by infrared rays, it is possible to grow single crystals such as oxides that cannot be heated by high frequency induction heating. Since a crucible is not used, naturally there is very little contamination of impurities, and a molten zone can be formed at temperatures up to 1900° C. with a halogen lamp and 2800° C. with a xenon lamp, so halogen lamps are mainly used in the present invention.

4、ハロゲンランプ、キセノンランプは非常に出力が安
定しており、又コントロールも非常に容易である。その
為に溶融帯も非常に安定しており。
4. Halogen lamps and xenon lamps have very stable output and are very easy to control. Therefore, the molten zone is also very stable.

必ずしも種子単結晶を用いなくても結晶化が行なえる。Crystallization can be carried out without necessarily using a seed single crystal.

5、溶融状態を監視できる為、結晶成長の様子が観察で
きる。
5. Since the melting state can be monitored, the state of crystal growth can be observed.

以下に本発明について更に詳しく述べる。The present invention will be described in more detail below.

棒状原料は結晶の品質を良くする為にはできるだけ高密
度に焼結されていなければならない、その為には酸化ア
ルミニウム、酸化ベリリウムはできるだけ粒子径の細か
い粉末が用いられる。セの為にアンモニウムアルミニウ
ムミョウバン、硫酸ベリリウムを900℃乃至1200
℃で焼結したものが用いられる。この酸化アルミニウム
、酸化ベリリウムに酸化クロムあるいは酸化鉄のいずれ
か一方もしくは両方を0.05重量パーセント乃至5重
量パーセント添加し、ラバープレス法で成製し、電気炉
で1300℃乃至1700℃で焼結する。装置はハロゲ
ンランプを2個装着した双楕円型赤外線集中加熱装置を
用いることにより大聖の単結晶が得られる。育成条件は
上下回転軸の回転数がそれぞれ40〜60rpmで逆方
向に回転し、成長速度は2〜5 mm / Hで雰囲気
は空気である0種子結晶の方位は背面ラウ加工もしくは
プリセッシ璽ン法で決められる。
In order to improve the quality of the crystals, the rod-shaped raw material must be sintered as densely as possible, and for this purpose aluminum oxide and beryllium oxide powders with as fine particle size as possible are used. ammonium aluminum alum and beryllium sulfate at 900°C to 1200°C.
The material sintered at ℃ is used. 0.05% to 5% by weight of either chromium oxide or iron oxide or both is added to the aluminum oxide or beryllium oxide, produced by a rubber press method, and sintered at 1300°C to 1700°C in an electric furnace. do. The device uses a bielliptical infrared concentrated heating device equipped with two halogen lamps to obtain a single crystal of Daisei. The growth conditions are that the upper and lower rotational axes rotate in opposite directions at 40 to 60 rpm, the growth rate is 2 to 5 mm/H, and the atmosphere is air.The orientation of the seed crystal is back-row processing or precession method. It can be determined by

以下に実施例について本発明を説明する。The invention will be explained below with reference to examples.

[実施例] 酸化アルミニウムと酸化ベリリウムがモル割合でl:1
の粉末に0.5重量パーセントの酸化クロム、3.0重
量パーセントの酸化鉄を添加し。
[Example] Aluminum oxide and beryllium oxide in a molar ratio of 1:1
0.5 weight percent chromium oxide and 3.0 weight percent iron oxide were added to the powder.

1500℃で焼結した原料棒を用い、l、5kWのハロ
ゲンランプを2個用いた双楕円製回転楕円面鏡体で育成
した0種子結晶としてC軸に長い単結晶を回転軸の延長
方向にセットした0回転速度は4Orpmで成長速度は
5 m+a / Hで行なうと個溶限以上の酸化鉄包含
物となったリフラックが生じたが2 +n / Hで行
なうと透明な完全な単結晶が得られた。この単結晶は自
然光でやや茶色を帯びた暗緑色で、電灯光下で赤色を呈
した。
Using a raw material rod sintered at 1500°C, a single crystal long along the C axis is grown as a zero-seed crystal grown in a bielliptic spheroid mirror using two 5kW halogen lamps in the direction of extension of the rotation axis. When the 0 rotation speed was set to 4 Orpm and the growth rate was 5 m+a/H, reflux occurred which resulted in iron oxide inclusions exceeding the solubility limit, but when carried out at 2+n/H, a transparent perfect single crystal was obtained. It was done. This single crystal was dark green with a slight brown tinge under natural light, and red under electric light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の原理を説明する図である。 1・・・・・・回転楕円面鏡体 2・・・…ハロゲンランプ 3・・・・・・棒状原料 4・・・・・・上部回転軸 5・・・・・・種子結晶 6・・・・・・下部回転軸 7・・・・・・石英管 8・・・・・・溶融帯 以   上 FIG. 1 is a diagram explaining the principle of the method of the present invention. 1...Spheroidal mirror body 2...Halogen lamp 3... Rod-shaped raw material 4... Upper rotating shaft 5...Seed crystal 6...Lower rotating shaft 7...Quartz tube 8・・・・・・Melting zone that's all

Claims (1)

【特許請求の範囲】[Claims] (1)酸化アルミニウムと酸化ベリリウムのほぼ等モル
割合の組成物に酸化クロムもしくは酸化鉄の少なくとも
一方を0.05重量パーセントないし5重量パーセント
添加し酸化性雰囲気中で1300℃乃至1700℃の温
度範囲で焼結した棒状高密度焼結体原料に、ハロゲンラ
ンプもしくはキセノンアークランプから発する赤外線を
回転楕円面鏡により集中して空気中にて溶融帯域を形成
し、かつ前記原料を移動させることにより、該溶融帯域
の一方の界面において原料の溶融を行ない、他方の界面
において種子結晶上に結晶育成を行なうことを特徴とす
るアレキサンドライト単結晶の製造法。
(1) 0.05% to 5% by weight of at least one of chromium oxide or iron oxide is added to a composition containing aluminum oxide and beryllium oxide in approximately equimolar proportions, and the temperature range is from 1300°C to 1700°C in an oxidizing atmosphere. By concentrating infrared rays emitted from a halogen lamp or xenon arc lamp on a rod-shaped high-density sintered raw material sintered with a spheroidal mirror to form a molten zone in the air, and moving the raw material, A method for producing an alexandrite single crystal, characterized in that a raw material is melted at one interface of the melting zone, and crystals are grown on a seed crystal at the other interface.
JP5826387A 1987-03-13 1987-03-13 Production of alexandrite single crystal Granted JPS632899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5826387A JPS632899A (en) 1987-03-13 1987-03-13 Production of alexandrite single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5826387A JPS632899A (en) 1987-03-13 1987-03-13 Production of alexandrite single crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13432578A Division JPS5562890A (en) 1978-10-31 1978-10-31 Production of alexandrite single crystal

Publications (2)

Publication Number Publication Date
JPS632899A true JPS632899A (en) 1988-01-07
JPH0361635B2 JPH0361635B2 (en) 1991-09-20

Family

ID=13079275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5826387A Granted JPS632899A (en) 1987-03-13 1987-03-13 Production of alexandrite single crystal

Country Status (1)

Country Link
JP (1) JPS632899A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912521A (en) * 1973-04-30 1975-10-14 Creative Crystals Inc Synthetic crystal and method of making same
JPS5562890A (en) * 1978-10-31 1980-05-12 Seiko Epson Corp Production of alexandrite single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912521A (en) * 1973-04-30 1975-10-14 Creative Crystals Inc Synthetic crystal and method of making same
JPS5562890A (en) * 1978-10-31 1980-05-12 Seiko Epson Corp Production of alexandrite single crystal

Also Published As

Publication number Publication date
JPH0361635B2 (en) 1991-09-20

Similar Documents

Publication Publication Date Title
EP0004974B1 (en) Process for producing a single crystal of ktiopo4 or its analogues
JPS632899A (en) Production of alexandrite single crystal
EP0148946B1 (en) Method of producing a chrysoberyl single crystal
JPS6149280B2 (en)
JPS6042195B2 (en) Chrysoberyl single crystal manufacturing method
JPS60171237A (en) Manufacture of transparent glass body having refractive index gradient
JPS58120597A (en) Chrysoberyl single crystal showing luster effect and its production
JPS6128638B2 (en)
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPH0297490A (en) Production of srb2o4 single crystal
JPS6210960B2 (en)
JPS6129918B2 (en)
US2736659A (en) Method for preparation of highly refractive material
JPS6148498A (en) Process for preparing single crystal of alkali tantalate and crucible therefor
US2760874A (en) Monocrystalline rutile and a method for preparing the same
JPH04338191A (en) Production of single crystal
JPS5938192B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPH01320296A (en) Production of bi12sio20 single crystal
JPH0329758B2 (en)
JPH0471877B2 (en)
JPH0476349B2 (en)
JPS62275097A (en) Macro single crystal of barium tetratitanate and its production
JPS58115090A (en) Synthesis of beryl crystal by f-z process
JPS6149278B2 (en)
JPH05301799A (en) Production of single crystal