JPS6129918B2 - - Google Patents

Info

Publication number
JPS6129918B2
JPS6129918B2 JP12706478A JP12706478A JPS6129918B2 JP S6129918 B2 JPS6129918 B2 JP S6129918B2 JP 12706478 A JP12706478 A JP 12706478A JP 12706478 A JP12706478 A JP 12706478A JP S6129918 B2 JPS6129918 B2 JP S6129918B2
Authority
JP
Japan
Prior art keywords
raw material
star
material rod
oxide
molten zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12706478A
Other languages
Japanese (ja)
Other versions
JPS5556099A (en
Inventor
Akihiko Kawachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP12706478A priority Critical patent/JPS5556099A/en
Publication of JPS5556099A publication Critical patent/JPS5556099A/en
Publication of JPS6129918B2 publication Critical patent/JPS6129918B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明はあらかじめ焼結した原料棒に赤外線を
集光して単結化を行なうスタールビー及びスター
サフアイヤの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing star ruby and star sapphire in which a raw material rod that has been sintered in advance is subjected to singulation by concentrating infrared rays.

本発明の目的は大型高品質のスタールビー及び
スターサフアイヤを得ることにある。
The object of the present invention is to obtain large-sized, high-quality star rubies and star sapphires.

本発明の他の目的は容易に歩留りよくスタール
ビー及びスターサフアイヤを得ることにある。
Another object of the present invention is to easily obtain star ruby and star sapphire with good yield.

スタールビー及びスターサフアイヤの主要組成
は酸化アルミニウムで、若干の酸化クローム、酸
化鉄、酸化ニツケル等が含まれたコランダムであ
る。この中に酸化チタン(ルチル)の針状結晶が
混入しているとカポツシヨン型に研磨した混合に
6条の星彩線が現われる。これがスタールビー、
スターサフアイヤと呼ばれている。コランダムは
六方晶である為に針状微結晶が六角柱面に平行に
分布しており柱面の両対面に平行な三方向に並ん
でいる。従つて互いに120度に交差している為に
点光源が当ると6条のスターが現われる。これは
人口的にも作られている。通常はベルヌイ法と呼
ばれる方法で作られる。これは普通のルビー、サ
フアイヤの合成に用いられる方法である。粉未原
料を酸水素炎中に落下させながら溶融し、結晶成
長を行なうものである。この場合の粉未はガンマ
アルミナと酸化チタンの混合物が用いられる。ス
ターの生成は結晶育成後熱処理を行なうことによ
りコランダム結晶中の酸化チタンを微結晶化する
ことより行なわれる。この方法は水素の熱焼熱を
利用する為に2050度以上の高温が容易に得られ、
コランダムと酸化チタンの固溶も比較的容易に行
なわれる。しかし原料粉未を落下させ、溶融させ
る方法である為にコランダム中への酸化チタンの
固溶がややもすると不均一となつてしまう。従つ
てコランダム中に生成する針状微結晶の分布が不
均一となる為に6条の星彩線が必ずしも彩やかに
現われず、濃い部分、淡い部分あるいは濃い線、
薄い線となつたり星彩線の中には欠けてしまうも
のも現われてくる。即ち完全なスターはベルヌイ
法ではなかなか得られなかつた。これを完全なも
のにする為に酸化チタンを均一に含有したコラン
ダムの焼結棒を作製し赤外線で溶融結晶化させる
方法が考えられた。第1図に焼結原料棒を用いる
方法について説明する。回転楕円面鏡1内の一焦
点にハロゲンランプ2あるいはキセノンアークラ
ンプを設置し、それから発する赤外線を集光せし
めて溶融帯3を形成し、除々に原料棒4を降下さ
せて結晶5を得る。10,11a各々上回転軸、
下回転軸である。得られた結晶を更に熱処理する
ことにより針状微結晶を生成させる。この方法に
よりほぼ完全なスターの生じるスタールビー及び
スターサフアイヤを得ることができる。しかしな
がら原料棒4の作製が完全に行なわれていないと
酸化チタンが均一に分布せず、又原料棒の焼結が
十分に行なわれてないと溶融帯3中に泡を発生さ
せ溶融帯3が不完全となり結晶化が損われたり、
結晶中に気泡が発生してしまう。これを防ぐには
原料がポイントとなる。特に主成分である酸化ア
ルミニウムの性質が非常に重要である。ベルヌー
イ法に用いられる粉未は必ずしも本方法に有効と
は限らない。通常、焼結に用いられる酸化アルミ
ニウムは主としてバイヤー法により得られる水酸
化アルミニウムを出発原料として焼成し、脱アル
カリ、粉砕などの処理を経て作られたアルフア酸
化アルミニウムが用いられる。しかし粉砕処理は
特殊工程となり不純物が入り易く本発明の目的に
適しているとは言い難い。本発明者はハロゲン化
アルミニウムを気相反応で酸化した酸化アルミニ
ウムが本発明目的に合致した原料粉未であること
を見出した。AlCl3やAlBr3等のハロゲン化アル
ミニウムと酸素の混合ガスを1000℃付近に加熱し
た反応管中に吹き出すと微細な酸化アルミニウム
が得られる。この酸化アルミニウムは粒子が非常
に微細であり、かつ個々の微粒子は完全に結晶面
の発達した微結晶である。従つて粒子は互に凝集
しあうことはなく、2次粒子はすべり易い為に非
常に焼結し易い。この原料を用いることにより原
料棒は低温で高密度に焼結でき酸化クロム、酸化
第二鉄、酸化ニツケル、酸化チタン等を均一に固
溶することができ、溶融帯中に気泡を生ずること
もなく従つて結晶中に気泡を含有することがない
為に完全な結晶を得ることができ、完全なスター
の生じるスタールビー及びスターサフアイヤを得
ることができる。特に本原料は微結晶の原因とな
る酸化チタンを固溶しやすい為に酸化チタンが均
一に分布し、従来しばしば見られたスターの欠損
は全く生じなくなつた。その様子を第2図に示
す。第2図aは従来しばしば見られたスターの欠
けた結晶である。第2図bは本発明方法によるス
タールビーである。
The main composition of star ruby and star sapphire is aluminum oxide, and corundum containing some chromium oxide, iron oxide, nickel oxide, etc. When acicular crystals of titanium oxide (rutile) are mixed in, six star lines appear in the mixture polished into a capsule shape. This is Star Ruby
It is called Star Sahuaiya. Since corundum is a hexagonal crystal, the acicular microcrystals are distributed parallel to the hexagonal cylindrical surface and arranged in three directions parallel to both sides of the cylindrical surface. Therefore, since they intersect with each other at 120 degrees, a six-striped star appears when a point light source hits them. This is also created artificially. It is usually made using a method called the Bernoulli method. This is the method used to synthesize ordinary rubies and saphires. This method involves dropping unpowdered raw materials into an oxyhydrogen flame and melting them to grow crystals. The powder used in this case is a mixture of gamma alumina and titanium oxide. Stars are formed by microcrystallizing titanium oxide in corundum crystals by heat treatment after crystal growth. This method uses the thermal sintering heat of hydrogen, so high temperatures of over 2050 degrees can be easily obtained.
Solid solution of corundum and titanium oxide is also relatively easily achieved. However, since the method involves dropping raw material powder and melting it, the solid solution of titanium oxide in corundum becomes uneven. Therefore, because the distribution of needle-shaped microcrystals generated in corundum is uneven, the six star lines do not necessarily appear colorfully, and there are dark areas, pale areas, dark lines,
Some of the star lines become thinner and missing. In other words, it was difficult to obtain a perfect star using the Bernoulli method. In order to perfect this, a method was devised in which a sintered bar of corundum uniformly containing titanium oxide was prepared and then melted and crystallized using infrared rays. A method using a sintered raw material rod will be explained in FIG. A halogen lamp 2 or a xenon arc lamp is installed at one focal point within the spheroidal mirror 1, and the infrared rays emitted from the lamp are focused to form a molten zone 3, and the raw material rod 4 is gradually lowered to obtain a crystal 5. 10, 11a each upper rotation axis,
This is the lower rotation axis. The obtained crystals are further heat-treated to produce needle-like microcrystals. By this method, star rubies and star sapphires with almost perfect stars can be obtained. However, if the raw material rod 4 is not completely prepared, the titanium oxide will not be distributed uniformly, and if the raw material rod is not sintered sufficiently, bubbles will be generated in the molten zone 3. It becomes incomplete and crystallization is impaired,
Bubbles are generated in the crystal. The key to preventing this is the raw material. In particular, the properties of aluminum oxide, the main component, are very important. The powder used in the Bernoulli method is not necessarily effective for this method. Usually, the aluminum oxide used for sintering is alpha aluminum oxide, which is produced by sintering aluminum hydroxide obtained by the Bayer process as a starting material and subjecting it to treatments such as dealkalization and pulverization. However, the pulverization process is a special process and is easily contaminated with impurities, so it is difficult to say that it is suitable for the purpose of the present invention. The present inventor has discovered that aluminum oxide obtained by oxidizing aluminum halide through a gas phase reaction is a raw material powder that meets the purpose of the present invention. Fine aluminum oxide can be obtained by blowing a mixed gas of aluminum halide, such as AlCl 3 or AlBr 3 , and oxygen into a reaction tube heated to around 1000°C. This aluminum oxide has very fine particles, and each fine particle is a microcrystal with completely developed crystal faces. Therefore, the particles do not aggregate with each other, and the secondary particles are slippery and therefore very easy to sinter. By using this raw material, the raw material rod can be sintered to high density at low temperatures, and chromium oxide, ferric oxide, nickel oxide, titanium oxide, etc. can be uniformly dissolved in solid solution, and bubbles can be prevented from forming in the melting zone. Since no air bubbles are contained in the crystal, perfect crystals can be obtained, and star rubies and star sapphires with perfect stars can be obtained. In particular, this raw material easily dissolves titanium oxide, which causes microcrystals, in solid solution, so titanium oxide is distributed uniformly, and the star defects that were often seen in the past no longer occur. The situation is shown in Figure 2. Figure 2a shows a crystal lacking a star, which has often been seen in the past. FIG. 2b shows a star ruby obtained by the method of the present invention.

以下に実施例について本発明を説明する。 The invention will be explained below with reference to examples.

実施例 塩化アルミニウムのガスと酸素を混合して1100
℃に加熱した反応管に通して微結晶酸化アルミニ
ウムを得た。この微結晶酸化アルミニウムと酸化
クロム及び酸化チタンを乳鉢で混合した後ゴム製
袋に充填し2000Kg/cm2の静水圧で棒状に成型し
た。この棒状原料を1650℃で2時間焼結した。こ
の原料棒を回転楕円面鏡内にセツトし赤外線を集
中して単結晶化した。得られた単結晶を1300℃で
2時間熱処理して完全なスターの生じるスタール
ビーを得た。
Example Mix aluminum chloride gas and oxygen to 1100
Microcrystalline aluminum oxide was obtained by passing it through a reaction tube heated to ℃. The microcrystalline aluminum oxide, chromium oxide, and titanium oxide were mixed in a mortar, then filled into a rubber bag and molded into a rod shape under a hydrostatic pressure of 2000 kg/cm 2 . This rod-shaped raw material was sintered at 1650°C for 2 hours. This raw material rod was set in a spheroidal mirror and infrared rays were concentrated to form a single crystal. The obtained single crystal was heat-treated at 1300°C for 2 hours to obtain a star ruby with a complete star.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本原理を説明する図であ
る。第2図は本発明の効果を説明する図である。 1……回転楕円面鏡、2……ハロゲンランプ、
3……溶融帯、4……原料棒、5……結晶。
FIG. 1 is a diagram explaining the basic principle of the present invention. FIG. 2 is a diagram illustrating the effects of the present invention. 1...Spheroidal mirror, 2...Halogen lamp,
3...Melting zone, 4...Raw material rod, 5...Crystal.

Claims (1)

【特許請求の範囲】[Claims] 1 回転楕円鏡体と、前記回転楕円鏡体内で各々
逆方向に回転し又上下動しうる上回転軸と下回転
軸、及び加熱ランプを有する赤外線集中加熱炉を
用いたスタールビー及びスターサフアイヤの製造
方法において、ハロゲン化アルミニウムと酸素を
加熱した反応管中に吹き出して得られた微細な酸
化アルミニウムと、針状微結晶を形成するために
添加される酸化クロム、酸化第二鉄、酸化ニツケ
ル、酸化チタン等の少なくとも一種の添加材とを
混合した後焼結して原料棒を形成し、前記回転楕
円鏡体内の1焦点に前記加熱ランプを配置し、他
の焦点に前記原料棒が配置されるように前記上回
転軸に前記原料棒の1端を支持し他端を前記下回
転軸に載置し、前記加熱ランプの赤外線を用いて
前記原料棒に溶融帯を形成するとともに、前記原
料棒を長手方向に移動させることにより前記溶融
帯を前記原料棒に沿つて移動させ、同時に溶融帯
下部に単結晶を形成して成り、その後前記単結晶
に熱処理を施し前記添加剤の針状微結晶を生成さ
せて成るスタールビー及びスターサフアイヤの製
造方法。
1 Star Ruby and Star Sapphire using an infrared concentrated heating furnace having a spheroidal body, upper and lower rotational shafts that rotate in opposite directions and move up and down within the spheroidal body, and a heating lamp. In the production method, fine aluminum oxide obtained by blowing aluminum halide and oxygen into a heated reaction tube, and chromium oxide, ferric oxide, and nickel oxide added to form needle-like microcrystals. , and at least one additive material such as titanium oxide is mixed and sintered to form a raw material rod, the heating lamp is placed at one focal point in the spheroidal body, and the raw material rod is placed at another focal point. One end of the raw material rod is supported on the upper rotating shaft and the other end is placed on the lower rotating shaft so that a molten zone is formed on the raw material rod using the infrared rays of the heating lamp, and the By moving the raw material rod in the longitudinal direction, the molten zone is moved along the raw material rod, and at the same time, a single crystal is formed in the lower part of the molten zone, and then the single crystal is heat-treated to form a needle-like shape of the additive. A method for producing star ruby and star sapphire by producing microcrystals.
JP12706478A 1978-10-16 1978-10-16 Production of star ruby or star sapphire Granted JPS5556099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12706478A JPS5556099A (en) 1978-10-16 1978-10-16 Production of star ruby or star sapphire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12706478A JPS5556099A (en) 1978-10-16 1978-10-16 Production of star ruby or star sapphire

Publications (2)

Publication Number Publication Date
JPS5556099A JPS5556099A (en) 1980-04-24
JPS6129918B2 true JPS6129918B2 (en) 1986-07-10

Family

ID=14950686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12706478A Granted JPS5556099A (en) 1978-10-16 1978-10-16 Production of star ruby or star sapphire

Country Status (1)

Country Link
JP (1) JPS5556099A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58116813A (en) * 1981-12-29 1983-07-12 Seiko Epson Corp Surface acoustic wave device
JPS5935097A (en) * 1982-08-23 1984-02-25 Seiko Epson Corp Preparation of star corundum

Also Published As

Publication number Publication date
JPS5556099A (en) 1980-04-24

Similar Documents

Publication Publication Date Title
US2291534A (en) Method of making refractories
JP2006206342A (en) Quartz glass crucible whose inner surface is semi-crystallized, its manufacturing method and application
JPS6129918B2 (en)
JPS62105936A (en) Production of quartz glass
US3925583A (en) Composite quartz glass body
US4218282A (en) Method of preparation of chrysoberyl and beryl single crystals
JPH0575703B2 (en)
JPS6128637B2 (en)
JPH01126238A (en) Quartz glass member
JP2000159593A (en) Production of silica glass crucible
US2936216A (en) Method of making monocrystalline calcium titanate
JPS5938193B2 (en) Manufacturing method of corundum single crystal that emits starry colors
JPS6042195B2 (en) Chrysoberyl single crystal manufacturing method
JPS6052117B2 (en) Beryl single crystal manufacturing method
US2860998A (en) Metal titanate composition
JPH05163013A (en) Production of highly pure crystalline silica
JPH04300296A (en) Production of barium titanate single crystal
JPH0361635B2 (en)
JPH05170430A (en) Production of magnesia single crystal
JPH04154613A (en) Synthetic silica powder having high purity
JPS6149280B2 (en)
JPH038708A (en) Production of silica feedstock
US3822338A (en) Method of preparing massive monocrystalline yttriium titanate
JPH04310530A (en) Production of synthetic quartz crucible
US2760874A (en) Monocrystalline rutile and a method for preparing the same