JPH05163013A - Production of highly pure crystalline silica - Google Patents

Production of highly pure crystalline silica

Info

Publication number
JPH05163013A
JPH05163013A JP34978891A JP34978891A JPH05163013A JP H05163013 A JPH05163013 A JP H05163013A JP 34978891 A JP34978891 A JP 34978891A JP 34978891 A JP34978891 A JP 34978891A JP H05163013 A JPH05163013 A JP H05163013A
Authority
JP
Japan
Prior art keywords
crystalline silica
silica
particles
highly pure
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34978891A
Other languages
Japanese (ja)
Other versions
JP3170016B2 (en
Inventor
Kunihiko Nakamura
邦彦 中村
Hatsushi Inoue
初志 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP34978891A priority Critical patent/JP3170016B2/en
Publication of JPH05163013A publication Critical patent/JPH05163013A/en
Application granted granted Critical
Publication of JP3170016B2 publication Critical patent/JP3170016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To provide crystalline silica reduced in the content of silanol groups and useful as a raw material for highly pure quartz glass, and to provide a method for its production. CONSTITUTION:Highly pure amorphous silica fine powder and crystalline silica fine powder having a particle diameter of <=10mum in an amount of >=10wt.% are mixed with each other, granulated and heated to produce granular sintered crystalline silica. The crystalline silica granules thus produced are highly pure, contain a small amount of silanol groups and are useful as a raw material for highly pure and highly heat-resistant quartz glass.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高純度でシラノ−ル基
含有量の少ない合成結晶質シリカの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a synthetic crystalline silica having a high purity and a low content of silanol groups.

【0002】[0002]

【従来の技術】溶融法による石英ガラスの原料として
は、従来より天然の水晶粉が用いられてきたが、近年に
なってこの石英ガラスが電子部品等の材料として使用さ
れるようになり、より高純度の石英ガラスを得る必要か
ら、その原料として高純度の合成シリカ粉の使用が検討
されている。
2. Description of the Related Art Although natural quartz powder has been used as a raw material for quartz glass by the melting method, in recent years, quartz glass has come to be used as a material for electronic parts and the like. Since it is necessary to obtain high-purity quartz glass, use of high-purity synthetic silica powder as a raw material thereof is being studied.

【0003】しかしながら、合成シリカは一般的に非晶
質であり、数百ppm以上のシラノ−ル基を含むため
に、天然の水晶粉に比較して溶融して得られる石英ガラ
ス製品の高温粘性が低いと言う欠点を有する。
However, since synthetic silica is generally amorphous and contains several hundred ppm or more of silanol groups, the high temperature viscosity of fused silica products obtained by melting is higher than that of natural quartz powder. Has the drawback of being low.

【0004】この欠点を解決する方法として、すでに本
発明者らは、高純度合成シリカ中のシラノ−ル基含有量
を低減させる方法として、非晶質シリカを結晶化させる
ことにより効率的にシラノ−ル基を低減させる方法を提
案している(特願平2−418,013号)。
As a method for solving this drawback, the present inventors have already been able to efficiently crystallize amorphous silica by crystallizing amorphous silica as a method for reducing the content of silanol groups in high-purity synthetic silica. A method for reducing the number of radicals has been proposed (Japanese Patent Application No. 2-418,013).

【0005】非晶質シリカを結晶化させる具体的手段と
して、たとえば、特開平3−8,708号公報には、非
晶質シリカ微粒子を造粒したものを、クリストバライト
結晶粒子と混合した後、加熱して粒子状のクリストバラ
イト結晶粒子に焼結せしめる方法が提案されている。こ
の方法によれば、非晶質シリカを結晶化させることがで
きるが、非晶質シリカ微粒子を造粒した後に結晶質シリ
カと混合するために、非晶質微粒シリカの造粒粒子と結
晶質シリカの接触がル−ズで接触面積も少なく、結晶粒
子混合の効果が少ない。したがって、非晶質シリカ微粒
子の造粒粒子間の焼結によるネッキングが比較的発生し
にくい1,200℃以下の温度で効率よく結晶化するた
めには、結晶質シリカの混合割合を50重量%以上必要
とする。結晶質シリカの混合割合が少ないと、高温で長
時間の加熱を必要とし、生産効率的に問題がある。
As a concrete means for crystallizing the amorphous silica, for example, in Japanese Patent Laid-Open No. 3-8708, after agglomerated amorphous silica fine particles are mixed with cristobalite crystal particles, A method has been proposed in which the particles are heated and sintered into cristobalite crystal particles. According to this method, the amorphous silica can be crystallized, but since the amorphous silica fine particles are granulated and then mixed with the crystalline silica, the granulated particles of the amorphous fine silica and the crystalline silica are mixed. The contact of silica is loose, the contact area is small, and the effect of mixing crystal particles is small. Therefore, in order to efficiently crystallize at a temperature of 1,200 ° C. or less at which necking due to sintering between the granulated particles of the amorphous silica particles is relatively difficult to occur, the mixing ratio of the crystalline silica is 50% by weight. More than required. When the mixing ratio of crystalline silica is low, heating at high temperature for a long time is required, which causes a problem in production efficiency.

【0006】[0006]

【発明が解決しようとする課題】したがって本発明は、
結晶質シリカの混合割合が0.01重量%以上で非晶質
シリカを効率的に結晶化する高純度結晶質シリカの製造
方法を提供することを目的とする。
Therefore, the present invention is
It is an object of the present invention to provide a method for producing high-purity crystalline silica that efficiently crystallizes amorphous silica when the mixing ratio of crystalline silica is 0.01% by weight or more.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、非晶
質シリカの微粒子と結晶質シリカの微粒子とを混合した
のち造粒したものを加熱して、粒子状の結晶質シリカに
焼結せしめることを特徴とする結晶質シリカ粒子の製造
方法である。
[Means for Solving the Problems] That is, according to the present invention, fine particles of amorphous silica and fine particles of crystalline silica are mixed and then granulated and heated to be sintered into crystalline silica particles. This is a method for producing crystalline silica particles.

【0008】非晶質シリカ微粒子を造粒したものを、ク
リストバライト結晶粒子と混合した後、加熱して粒子状
のクリストバライト結晶粒子に焼結せしめる従来の方法
では、非晶質造粒体の周囲で結晶シリカと接触し、その
接触点から結晶が成長するために、非晶質造粒体が完全
に結晶化されるためには、少なくとも非晶質造粒体の半
径に相当するだけの結晶成長を必要とする。
In the conventional method in which agglomerated amorphous silica fine particles are mixed with cristobalite crystal particles and then heated to sinter into granular cristobalite crystal particles, the amorphous granules are surrounded by In order to completely crystallize the amorphous granules because the crystals grow from the contact point with the crystalline silica, the crystal growth corresponding to at least the radius of the amorphous granules. Need.

【0009】しかし、本発明のように非晶質シリカ微粒
子を凝集粒子に造粒する前に、結晶質シリカ微粒子と予
め均一に混合した後に混合微粒子を凝集粒子に造粒すれ
ば、造粒体中に微細な結晶粒子を内包させることができ
る。したがって、造粒体が完全に結晶化されるのに必要
な結晶成長距離は非晶質造粒体の半径以下となり、結晶
成長に必要な加熱時間が大幅に短縮され、結晶化が非常
に効率的に行えるものと考えられる。しかも、結晶質シ
リカの添加量が少量でよいので、生産効率的にも有利で
ある。結晶質シリカの粒子径をさらに小さくすれば、さ
らに添加量を低減せしめることが可能である。
However, before the amorphous silica fine particles are granulated into the agglomerated particles as in the present invention, if the mixed fine particles are granulated into the agglomerated particles after being uniformly mixed with the crystalline silica fine particles in advance, the granules Fine crystal particles can be included therein. Therefore, the crystal growth distance required for complete crystallization of the granules is less than or equal to the radius of the amorphous granules, the heating time required for crystal growth is greatly shortened, and crystallization is very efficient. It is thought to be something that can be done. In addition, since the amount of crystalline silica added may be small, it is advantageous in terms of production efficiency. If the particle size of the crystalline silica is further reduced, the addition amount can be further reduced.

【0010】以下、本発明の高純度結晶質シリカの製造
方法について、具体的に説明する。本発明において使用
できる結晶核となる結晶質シリカ微粉としては、水晶、
クリストバライト、トリジマイト等、結晶質のシリカで
あれば特に制限はない。使用量は、結晶質シリカ微粉の
粒子径を小さくすることにより、減少することが可能で
あるが、実質的に0.01重量%以上であることが好ま
しい。これより少ないと結晶化が実質的に充分に進まな
い。
The method for producing high-purity crystalline silica of the present invention will be specifically described below. The crystalline silica fine powder to be a crystal nucleus that can be used in the present invention, quartz,
There is no particular limitation as long as it is crystalline silica such as cristobalite or tridymite. The amount used can be reduced by reducing the particle size of the crystalline silica fine powder, but it is preferably substantially 0.01% by weight or more. If it is less than this range, crystallization does not proceed sufficiently substantially.

【0011】本発明において使用できる非晶質シリカ微
粉としては、珪酸ソ−ダ法による湿式合成シリカや、四
塩化珪素を原料とする気相合成シリカ等、高純度の合成
シリカ微粉であればよいが、粒子径が1μm以下のもの
で、焼結性に優れたものが好ましい。
As the amorphous silica fine powder which can be used in the present invention, high-purity synthetic silica fine powder such as wet synthetic silica by the sodium silicate method and vapor phase synthetic silica made from silicon tetrachloride as a raw material may be used. However, those having a particle size of 1 μm or less and having excellent sinterability are preferable.

【0012】非晶質シリカ微粉と結晶質シリカ微粉の混
合方法としては、純水中に分散させて、湿式混合する方
法が好ましい。
As a method for mixing the amorphous silica fine powder and the crystalline silica fine powder, a method of dispersing them in pure water and wet mixing is preferable.

【0013】また、凝集粒子に造粒する方法は任意であ
るが、例えば、スプレ−ドライ法を用いると、湿式混合
したスラリ−を直接造粒乾燥することができ、しかも造
粒粒子径をコントロ−ルすることも可能である。
The method of granulating the agglomerated particles is arbitrary. For example, when the spray drying method is used, the wet-mixed slurry can be directly granulated and dried, and the granulated particle size can be controlled. It is also possible to

【0014】このようにして非晶質シリカの微粒子と結
晶質シリカの微粒子とを混合した後造粒したものを加熱
することにより、焼結、結晶化が起こり、添加した結晶
の種類にかかわらず、クリストバライトが得られるが、
焼成温度としては、1,100℃以上が望ましい。この
温度以下であると、結晶化速度が遅く、実用的ではな
い。
By mixing the fine particles of amorphous silica and the fine particles of crystalline silica in this manner and then heating the granulated material, sintering and crystallization occur, regardless of the kind of the added crystal. , Cristobalite is obtained,
The firing temperature is preferably 1,100 ° C. or higher. When the temperature is lower than this temperature, the crystallization speed is slow and it is not practical.

【0015】このとき、加熱による結晶化を、水分含有
量が20ppm以下、好ましくは10ppm以下の乾燥
ガス気流中で行うことにより、シラノール基をさらに低
減することができる。
At this time, the crystallization by heating is carried out in a dry gas stream having a water content of 20 ppm or less, preferably 10 ppm or less, whereby the silanol groups can be further reduced.

【0016】この様にして得られた合成結晶シリカは、
高純度でしかもシラノ−ル基含有量が天然の水晶と同等
であり、溶融石英原料として望まれる特性を有するもの
である。
The synthetic crystalline silica thus obtained is
It has a high purity and a silanol group content equivalent to that of natural quartz, and has the characteristics desired as a fused silica raw material.

【0017】[0017]

【実施例】以下、実施例及び比較例に基づいて、本発明
を詳細に説明する。 実施例1 メノウ製ボ−ルミルで平均粒径3μmに粉砕したクリス
トバライト1重量部とヒュ−ムドシリカ100重量部と
を、純水200重量部中で混合した後、スプレ−ドライ
法により乾燥を行い、平均粒径200μmの内部にクリ
ストバライトの結晶核を有する非晶質シリカ造粒粒子を
得た。
EXAMPLES The present invention will be described in detail below based on examples and comparative examples. Example 1 1 part by weight of cristobalite crushed to an average particle size of 3 μm with an agate ball mill and 100 parts by weight of fumed silica were mixed in 200 parts by weight of pure water, and then dried by a spray-dry method. Amorphous silica granulated particles having cristobalite crystal nuclei inside with an average particle size of 200 μm were obtained.

【0018】このようにして得られた造粒粒子を1,3
00℃で10時間加熱焼成することにより非晶質相をク
リストバライト相に焼結、結晶化することができた。得
られたクリストバライトのOH基含有量及び結晶化度を
表1に示す。
The granulated particles thus obtained were mixed with 1,3
By heating and firing at 00 ° C. for 10 hours, the amorphous phase could be sintered and crystallized into the cristobalite phase. Table 1 shows the OH group content and crystallinity of the obtained cristobalite.

【0019】なお、OH基含有量はFT−IRで3,6
60cm-1付近のIR吸収を測定することによりLam
bert−Beerの法則から計算した。また、結晶化
度は粉末X線回折法により、2θが20度付近の最大ピ
−クの相対面積から求めた。標準資料として、真比重が
2.33のものを結晶化度100%のクリストバライト
として用いた。
The OH group content is 3,6 by FT-IR.
Lam by measuring the IR absorption around 60 cm -1
Calculated from Bert-Beer's law. The crystallinity was determined from the maximum peak relative area where 2θ was around 20 ° by the powder X-ray diffraction method. As a standard material, one having a true specific gravity of 2.33 was used as cristobalite having a crystallinity of 100%.

【0020】実施例2 実施例1と同様にして、平均粒径が1μmのクリストバ
ライトとヒュ−ムドシリカの混合割合が1:1,000
の平均粒径が200μmの造粒粒子を得た。これを、
1,300℃で10時間加熱することにより非晶質相を
クリストバライト相に焼結、結晶化することができた。
得られたクリストバライトのOH含有量と結晶化度を表
1に示す。
Example 2 In the same manner as in Example 1, the mixing ratio of cristobalite having an average particle size of 1 μm and fumed silica was 1: 1,000.
Granulated particles having an average particle diameter of 200 μm were obtained. this,
By heating at 1,300 ° C. for 10 hours, the amorphous phase could be sintered and crystallized into the cristobalite phase.
Table 1 shows the OH content and crystallinity of the obtained cristobalite.

【0021】実施例3 結晶化のための加熱を水分含有量が10ppmの乾燥ガ
スを石英管を通して匣鉢内に吹き込みながら行う以外
は、実施例2と同様にして、クリストバライト粒子を得
た。得られたクリストバライトのOH含有量と結晶化度
を表1に示す。実施例2と同じ結晶化度でも、OH基量
は、さらに減少している。
Example 3 Cristobalite particles were obtained in the same manner as in Example 2, except that the heating for crystallization was performed while blowing a dry gas having a water content of 10 ppm into the casket through a quartz tube. Table 1 shows the OH content and crystallinity of the obtained cristobalite. Even with the same crystallinity as in Example 2, the amount of OH groups is further reduced.

【0022】比較例1 ヒュ−ムドシリカ100重量部を200重量部の純水と
混合したものを、スプレ−ドライ法により乾燥を行い、
平均粒径が200μmの非晶質シリカ造粒粒子を得た。
これを、1,300℃で10時間加熱焼成し焼結した
が、結晶相は得られなかった。得られた非晶質焼結体の
OH基含有量と結晶化度を表1に示す。
Comparative Example 1 A mixture of 100 parts by weight of fumed silica and 200 parts by weight of pure water was dried by a spray drying method,
Amorphous silica granulated particles having an average particle diameter of 200 μm were obtained.
This was heated and baked at 1,300 ° C. for 10 hours to be sintered, but no crystal phase was obtained. Table 1 shows the OH group content and crystallinity of the obtained amorphous sintered body.

【0023】比較例2 比較例1と同様にして得られた非晶質シリカ造粒粒子1
00重量部と、メノウ製ボ−ルミルを用いて平均粒径3
μmに粉砕したクリストバライト5重量部とをV形混合
機を用いて1時間混合したものを、1,300℃で10
時間加熱焼成し、非晶質相を結晶化した。得られたクリ
ストバライトのOH基含有量と結晶化度を表1に示す。
Comparative Example 2 Amorphous silica granulated particles 1 obtained in the same manner as Comparative Example 1
And an average particle size of 3 using 00 parts by weight of an agate ball mill
A mixture of 5 parts by weight of cristobalite pulverized to μm with a V-type mixer for 1 hour was mixed at 10 ° C. at 10 ° C. for 10 hours.
The material was heated and baked for an hour to crystallize the amorphous phase. Table 1 shows the OH group content and crystallinity of the obtained cristobalite.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明方法によれば、高純度でシラノ−
ル基含有量が少ない結晶質シリカが得られる。この様な
シリカは、高純度、高耐熱性石英ガラス製品の原料とし
て特に有用である。
INDUSTRIAL APPLICABILITY According to the method of the present invention, silanol is highly purified.
A crystalline silica having a low ruthenium content is obtained. Such silica is particularly useful as a raw material for high purity, high heat resistant quartz glass products.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非晶質シリカの微粒子と結晶質シリカの
微粒子とを混合したのち造粒したものを加熱して、粒子
状の結晶質シリカに焼結せしめることを特徴とする結晶
質シリカ粒子の製造方法。
1. Crystalline silica particles characterized by mixing amorphous silica fine particles and crystalline silica fine particles, and then granulating the mixture and heating it to sinter it into particulate crystalline silica. Manufacturing method.
【請求項2】 結晶質シリカ微粒子の粒子径が10μm
以下であり、かつ、添加混合量が非晶質シリカ微粒子に
対して0.01重量%以上であることを特徴とする請求
項1記載の結晶質シリカ粒子の製造方法。
2. The crystalline silica fine particles have a particle diameter of 10 μm.
The method for producing crystalline silica particles according to claim 1, wherein the content is less than or equal to 0.01% by weight with respect to the amorphous silica particles.
【請求項3】 加熱による結晶化を、水分含有量が20
ppm以下の乾燥ガス気流中で行うことを特徴とする請
求項1記載の結晶質シリカの製造方法。
3. Crystallization by heating to a water content of 20
The method for producing crystalline silica according to claim 1, wherein the method is performed in a dry gas flow of ppm or less.
JP34978891A 1991-12-10 1991-12-10 Method for producing high-purity crystalline silica Expired - Fee Related JP3170016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34978891A JP3170016B2 (en) 1991-12-10 1991-12-10 Method for producing high-purity crystalline silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34978891A JP3170016B2 (en) 1991-12-10 1991-12-10 Method for producing high-purity crystalline silica

Publications (2)

Publication Number Publication Date
JPH05163013A true JPH05163013A (en) 1993-06-29
JP3170016B2 JP3170016B2 (en) 2001-05-28

Family

ID=18406121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34978891A Expired - Fee Related JP3170016B2 (en) 1991-12-10 1991-12-10 Method for producing high-purity crystalline silica

Country Status (1)

Country Link
JP (1) JP3170016B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769307A1 (en) * 1997-10-02 1999-04-09 Samsung Electronics Co Ltd SILICA GLASS COMPOSITION AND PROCESS FOR MANUFACTURING SILICA GLASS USING THE SAME
WO2003054089A1 (en) * 2001-12-21 2003-07-03 Degussa Ag Granules based on pyrogenically prepared silicon dioxide, a process for their preparation and their use
JP2007126332A (en) * 2005-11-04 2007-05-24 Kagawa Univ Water-repellent glass plate, its producing method, and vehicle or glass window using the glass plate
CN113307275A (en) * 2021-03-05 2021-08-27 武汉大学 Preparation method of high-purity crystalline silica particles

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769307A1 (en) * 1997-10-02 1999-04-09 Samsung Electronics Co Ltd SILICA GLASS COMPOSITION AND PROCESS FOR MANUFACTURING SILICA GLASS USING THE SAME
WO2003054089A1 (en) * 2001-12-21 2003-07-03 Degussa Ag Granules based on pyrogenically prepared silicon dioxide, a process for their preparation and their use
JP2007126332A (en) * 2005-11-04 2007-05-24 Kagawa Univ Water-repellent glass plate, its producing method, and vehicle or glass window using the glass plate
CN113307275A (en) * 2021-03-05 2021-08-27 武汉大学 Preparation method of high-purity crystalline silica particles

Also Published As

Publication number Publication date
JP3170016B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
JP3415157B2 (en) Heating of fine powder
EP0335875B1 (en) Vitreous silica
CN1012641B (en) Method for fabricating articles which include high silica glass bodies and articles formed thereby
JPH0475848B2 (en)
JPH0940434A (en) High purity quartz glass and production thereof
JPS62176928A (en) Production of quartz glass powder
JPH04219310A (en) Production of non-sintered cristobalite particle
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
JP2839725B2 (en) Method for producing high-purity crystalline silica
JPH05163013A (en) Production of highly pure crystalline silica
CN105645419A (en) Industrialized production method of cordierite structure material with ultralow heat expansion coefficient
JPH02307830A (en) Production of quartz glass powder
JPH04154613A (en) Synthetic silica powder having high purity
JPH0912322A (en) High-purity transparent quartz glass and its production
JPH038708A (en) Production of silica feedstock
JP3342536B2 (en) MgO.SiO2 porcelain powder and method for producing the same
JPS5848487B2 (en) Method for producing high purity silicon carbide powder
JPH0283224A (en) Production of synthetic quartz glass powder
JP3526591B2 (en) Manufacturing method of synthetic quartz glass
JP3457010B2 (en) Method for producing cristobalite quartz glass powder
JPH02225313A (en) Production of silica raw material
RU2171223C1 (en) Method for production special-destination liquid glass
JP2800134B2 (en) Manufacturing method of porous ceramics
RU2181691C2 (en) Method of water glass production
JPS6296308A (en) Production of siliceous spherule

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010213

LAPS Cancellation because of no payment of annual fees