JP2007126332A - Water-repellent glass plate, its producing method, and vehicle or glass window using the glass plate - Google Patents
Water-repellent glass plate, its producing method, and vehicle or glass window using the glass plate Download PDFInfo
- Publication number
- JP2007126332A JP2007126332A JP2005320704A JP2005320704A JP2007126332A JP 2007126332 A JP2007126332 A JP 2007126332A JP 2005320704 A JP2005320704 A JP 2005320704A JP 2005320704 A JP2005320704 A JP 2005320704A JP 2007126332 A JP2007126332 A JP 2007126332A
- Authority
- JP
- Japan
- Prior art keywords
- glass plate
- group
- water
- fine particles
- transparent fine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Surface Treatment Of Glass (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Paints Or Removers (AREA)
Abstract
Description
本発明は、高耐久性で且つ撥水性の被膜が表面に形成されたガラス板に関するものである。詳しくは、撥水撥油防汚機能が要求される自動車等の乗り物や建物の窓用ガラス板に関するものである。さらに、それを用いた乗り物及びガラス窓に関するものである。 The present invention relates to a glass plate having a highly durable and water-repellent coating formed on the surface thereof. More specifically, the present invention relates to a glass plate for a vehicle such as a vehicle or a window of a building that requires a water / oil repellent / antifouling function. Furthermore, it relates to a vehicle and a glass window using the same.
一般にフッ化炭素基含有クロロシラン系の吸着剤と非水系の有機溶媒よりなる化学吸着液を用い、液相で化学吸着して単分子膜状の撥水性化学吸着膜を形成できることはすでによく知られている(例えば、特許文献1参照。)。 It is already well known that a chemisorbed liquid consisting of a fluorocarbon group-containing chlorosilane-based adsorbent and a non-aqueous organic solvent can be used for chemical adsorption in the liquid phase to form a monomolecular water-repellent chemisorbed film. (For example, refer to Patent Document 1).
このような溶液中での化学吸着単分子膜の製造原理は、基材表面の水酸基などの活性水素とクロロシラン系の吸着剤のクロロシリル基との脱塩酸反応を用いて単分子膜を形成することにある。
しかしながら、従来の化学吸着膜は吸着剤と基材表面との化学結合のみを用いているため、耐摩耗性や撥水性に乏しいという課題があった。 However, since the conventional chemical adsorption film uses only the chemical bond between the adsorbent and the substrate surface, there is a problem that the wear resistance and water repellency are poor.
本発明は、撥水撥油防汚機能が要求される自動車など乗り物や建物の窓用ガラス板において、耐摩耗性や耐候性等の耐久性、水滴離水性(滑水性ともいう)、防汚性の向上を目的とする。 The present invention relates to a glass plate for vehicles and buildings such as automobiles that require a water and oil repellent and antifouling function, durability such as wear resistance and weather resistance, water droplet separation (also referred to as water slidability), and antifouling. The purpose is to improve performance.
前記課題を解決するための手段として提供される第一の発明は、表面に共有結合した撥水性透明微粒子で覆われていることを特徴とする撥水性ガラス板である。 A first invention provided as means for solving the above-mentioned problems is a water-repellent glass plate characterized by being covered with water-repellent transparent fine particles covalently bonded to the surface.
第二の発明は、第一の発明において、表面に共有結合した撥水性透明微粒子の大部分の表面が撥水性の被膜で被われており、且つ一部分が一端に反応能性官能基を含み他端でSiを介して透明微粒子表面に共有結合している有機膜と一端に反応性官能基を含み他端でSiを介して基材ガラス板に共有結合している有機膜とを介して基材ガラス板表面と共有結合していることを特徴とする撥水性ガラス板である。 According to a second invention, in the first invention, most of the water-repellent transparent fine particles covalently bonded to the surface are covered with a water-repellent coating, and one part includes a reactive functional group at one end. An organic film covalently bonded to the surface of the transparent fine particle through Si at the end and an organic film covalently bonded to the base glass plate through Si at one end and a reactive functional group at the other end It is a water-repellent glass plate characterized by being covalently bonded to the surface of the glass plate.
第三の発明は、第二の発明において、少なくとも撥水性の被膜が透明微粒子表面に共有結合していることを特徴とする撥水性ガラス板である。 A third invention is the water-repellent glass plate according to the second invention, wherein at least the water-repellent film is covalently bonded to the surface of the transparent fine particles.
第四の発明は、第三の発明において、透明微粒子表面の撥水性の被膜が−CF3基を含むことを特徴とする撥水性ガラス板である。 A fourth invention is the water-repellent glass plate according to the third invention, wherein the water-repellent coating on the surface of the transparent fine particles contains a -CF 3 group.
第五の発明は、第二の発明において、一端に反応能性官能基を含み他端でSiを介して透明微粒子表面に共有結合している有機膜が少なくともNを含み一端に反応性官能基を含み他端でSiを介して基材ガラス板に共有結合している有機膜が少なくともOを含み、あるいは一端に反応能性官能基を含み他端でSiを介して透明微粒子表面に共有結合している有機膜が少なくともOを含み一端に反応性官能基を含み他端でSiを介して基材ガラス板に共有結合している有機膜が少なくともNを含み互いに共有結合していることを特徴とする撥水性ガラス板である。 According to a fifth invention, in the second invention, the organic film covalently bonded to the surface of the transparent fine particle through Si at one end and a reactive functional group at one end contains at least N and the reactive functional group at one end. The organic film that is covalently bonded to the base glass plate through Si at the other end contains at least O, or has a reactive functional group at one end and is covalently bonded to the transparent fine particle surface through Si at the other end. The organic film containing at least O, the reactive functional group at one end, and the organic film covalently bonded to the substrate glass plate via Si at the other end are at least N and covalently bonded to each other. It is a water-repellent glass plate characterized.
第六の発明は、第二の発明において、撥水性の被膜、および一端に反応能性官能基を含み他端でSiを介して透明微粒子表面に共有結合している有機膜および/あるいは一端に反応性官能基を含み他端でSiを介して基材ガラス板に共有結合している有機膜が単分子膜であることを特徴とする撥水性ガラス板である。 A sixth invention is the water-repellent coating according to the second invention, and an organic film which has a reactive functional group at one end and is covalently bonded to the surface of the transparent fine particle via Si at the other end and / or at one end. The water-repellent glass plate is characterized in that an organic film containing a reactive functional group and covalently bonded to the base glass plate via Si at the other end is a monomolecular film.
第七の発明は、第一から第七の発明において透明微粒子が透光性のシリカ、アルミナ、あるいはジルコニアであることを特徴とする撥水性ガラス板である。 A seventh invention is a water-repellent glass plate according to the first to seventh inventions, wherein the transparent fine particles are translucent silica, alumina, or zirconia.
第八の発明は、第一の発明から第七の発明において、透明微粒子の大きさが少なくとも可視光の波長より小さいことを特徴とする撥水性ガラス板である。 An eighth invention is a water-repellent glass plate according to the first to seventh inventions, wherein the size of the transparent fine particles is at least smaller than the wavelength of visible light.
第九の発明は、第一の発明乃至第八の発明において、水に対する接触角が150度以上に制御されていることを特徴とする撥水性ガラス板である。 A ninth invention is the water-repellent glass plate according to any one of the first to eighth inventions, wherein a contact angle with respect to water is controlled to 150 degrees or more.
第十の発明は、第一の発明乃至第九の発明において、撥水性ガラスを装着したことを特徴とする乗り物である。 A tenth aspect of the present invention is the vehicle according to any one of the first to ninth aspects, wherein the water-repellent glass is attached.
第十一の発明は、第一の発明乃至第九の発明において、撥水性ガラスを装着したことを特徴とする建物のガラス窓である。 An eleventh aspect of the invention is a glass window for a building according to any one of the first aspect to the ninth aspect, wherein water-repellent glass is attached.
第十二の発明は、少なくともエポキシ基、または、イミノ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液にガラス板を接触させエポキシ基またはイミノ基を含むアルコキシシラン化合物とガラス板表面を反応させる工程を含むことを特徴とする反応性ガラス板の製造方法である。 According to a twelfth aspect of the present invention, an epoxy group or imino group is prepared by bringing a glass plate into contact with a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an epoxy group or imino group, a silanol condensation catalyst, and a non-aqueous organic solvent. It is a manufacturing method of the reactive glass plate characterized by including the process of reacting the alkoxysilane compound containing this, and the glass plate surface.
第十三の発明は、少なくともイミノ基、または、エポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に透明微粒子を分散しイミノ基、または、エポキシ基を含むアルコキシシラン化合物と透明微粒子表面を反応させる工程を含むことを特徴とする反応性透明微粒子の製造方法である。 In a thirteenth invention, transparent fine particles are dispersed in a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an imino group or an epoxy group, a silanol condensation catalyst, and a non-aqueous organic solvent, and an imino group or A method for producing reactive transparent fine particles, comprising a step of reacting an alkoxysilane compound containing an epoxy group with the surface of the transparent fine particles.
第十四の発明は、少なくともエポキシ基、または、イミノ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液にガラス板を接触させエポキシ基、または、イミノ基を含むアルコキシシラン化合物とガラス板表面を反応させてエポキシ基、または、イミノ基を含む反応性ガラス板を製造する工程と、イミノ基、または、エポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に透明微粒子を分散してイミノ基、または、エポキシ基を含むアルコキシシラン化合物と透明微粒子表面を反応させてイミノ基、または、エポキシ基を含む反応性透明微粒子を製造する工程と、前記エポキシ基を含む反応性ガラス板と前記イミノ基を含む反応性透明微粒子、または、イミノ基を含む反応性ガラス板と前記エポキシ基を含む反応性透明微粒子を接触させ、加熱して前記反応性ガラス板と前記反応性透明微粒子を結合させる工程と、フッ化炭素基とトリクロロシリルキを含むクロロシラン化合物と非水系の有機溶媒を混合するかあるいはフッ化炭素基とアルコキシシリルキを含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液と表面に透明微粒子を結合させたガラス板を接触させて撥水性被膜を形成する工程とを含むことを特徴とする撥水性ガラス板の製造方法である。 In the fourteenth aspect of the invention, at least an epoxy group or an alkoxysilane compound containing an imino group, a silanol condensation catalyst, and a non-aqueous organic solvent are mixed to bring a glass plate into contact with an epoxy group, or A process of producing an epoxy group or a reactive glass plate containing an imino group by reacting an alkoxysilane compound containing an imino group with the surface of the glass plate, an alkoxysilane compound containing an imino group or an epoxy group, and a silanol condensation catalyst Transparent fine particles are dispersed in a chemisorbed liquid prepared by mixing a non-aqueous organic solvent with an imino group or an epoxy group by reacting an alkoxysilane compound containing an imino group or an epoxy group with the surface of the transparent fine particle. A process for producing reactive transparent fine particles containing, a reactive glass plate containing the epoxy group, and an imino group. A step of bringing the reactive transparent fine particles or reactive glass plate containing imino groups into contact with the reactive transparent fine particles containing epoxy groups and heating to bond the reactive glass plate and the reactive transparent fine particles; Prepared by mixing a chlorosilane compound containing a fluorocarbon group and trichlorosilyl group and a non-aqueous organic solvent, or mixing an alkoxysilane compound containing a fluorocarbon group and alkoxysilyl group, a silanol condensation catalyst, and a non-aqueous organic solvent. And a step of forming a water-repellent film by bringing the chemically adsorbed liquid into contact with a glass plate having transparent fine particles bonded to the surface thereof.
第十五の発明は、第十四の発明において、少なくともエポキシ基、または、イミノ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液にガラス板を接触させエポキシ基、または、イミノ基を含むアルコキシシラン化合物とガラス板表面を反応させてエポキシ基、または、イミノ基を含む反応性ガラス板を製造する工程と、イミノ基、または、エポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に透明微粒子を分散してイミノ基、または、エポキシ基を含むアルコキシシラン化合物と透明微粒子表面を反応させてイミノ基、または、エポキシ基を含む反応性透明微粒子を製造する工程と、前記エポキシ基を含む反応性ガラス板と前記イミノ基を含む反応性透明微粒子、またはイミノ基を含む反応性ガラス板と前記エポキシ基を含む反応性透明微粒子を接触させ、加熱して前記反応性ガラス板と前記反応性透明微粒子を結合させる工程と、フッ化炭素基とトリクロロシリルキを含むクロロシラン化合物と非水系の有機溶媒を混合するか、あるいは、フッ化炭素基とアルコキシシリルキを含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液と表面に透明微粒子を結合させたガラス板を接触させて撥水性被膜を形成する工程において、余分な化学吸着液を洗浄除去することを特徴とする撥水性ガラス板の製造方法である。 According to a fifteenth invention, in the fourteenth invention, a glass plate is attached to a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an epoxy group or an imino group, a silanol condensation catalyst, and a non-aqueous organic solvent. A step of producing an epoxy group or a reactive glass plate containing an imino group by reacting an alkoxysilane compound containing an epoxy group or imino group with a glass plate surface, and an imino group or an epoxy group Dispersing transparent fine particles in a chemical adsorption solution prepared by mixing an alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and reacting the surface of the transparent fine particles with an alkoxysilane compound containing an imino group or an epoxy group. A process for producing reactive transparent fine particles containing an imino group or an epoxy group, and a reactive glass containing the epoxy group A plate and the reactive transparent fine particle containing the imino group, or a reactive glass plate containing the imino group and the reactive transparent fine particle containing the epoxy group are brought into contact with each other and heated to bring the reactive glass plate and the reactive transparent fine particle into contact with each other. Step of bonding, chlorosilane compound containing fluorocarbon group and trichlorosilyl group and non-aqueous organic solvent are mixed, or alkoxysilane compound containing fluorocarbon group and alkoxysilyl group, silanol condensation catalyst and non-aqueous type In the process of forming a water-repellent coating by contacting a chemical adsorption solution prepared by mixing organic solvents with a glass plate having transparent fine particles bonded to the surface, excess chemical adsorption solution is washed away. It is a manufacturing method of a water-repellent glass plate.
第十六の発明は、第十二乃至第十五の発明において、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする請求項9〜12に記載の撥水性ガラス板の製造方法である。
The sixteenth invention is the twelfth to fifteenth invention, wherein at least selected from a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, an aminoalkylalkoxysilane compound as a co-catalyst for the silanol condensation catalyst. The method for producing a water-repellent glass sheet according to
以下、上記発明の要旨を記載すれば、本発明は、少なくともエポキシ基、または、イミノ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液にガラス板を接触させエポキシ基、または、イミノ基を含むアルコキシシラン化合物とガラス板表面を反応させてエポキシ基またはイミノ基を含む反応性ガラス板を製造する工程と、イミノ基、または、エポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に透明微粒子を分散してイミノ基またはエポキシ基を含むアルコキシシラン化合物と透明微粒子表面を反応させてイミノ基、または、エポキシ基を含む反応性透明微粒子を製造する工程と、前記エポキシ基を含む反応性ガラス板と前記イミノ基を含む反応性透明微粒子、またはイミノ基を含む反応性ガラス板と前記エポキシ基を含む反応性透明微粒子を接触させ、加熱して前記反応性ガラス板と前記反応性透明微粒子を結合させる工程と、フッ化炭素基とトリクロロシリルキを含むクロロシラン化合物と非水系の有機溶媒を混合するか、あるいは、フッ化炭素基とアルコキシシリルキを含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液と表面に透明微粒子を結合させたガラス板を接触させて撥水性被膜を形成する工程とにより、表面に共有結合した撥水性透明微粒子で覆われている高耐久性で且つ水滴離水性(滑水性ともいう)に優れた撥水性ガラス板を提供することを要旨とする。 Hereinafter, the gist of the above invention will be described. The present invention relates to a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an epoxy group or an imino group, a silanol condensation catalyst, and a non-aqueous organic solvent. A reactive glass plate containing an epoxy group or an imino group by reacting an alkoxysilane compound containing an epoxy group or an imino group with a glass plate surface, and an alkoxy containing an imino group or an epoxy group Transparent fine particles are dispersed in a chemical adsorption solution prepared by mixing a silane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the surface of the transparent fine particles is reacted with an alkoxysilane compound containing an imino group or an epoxy group. Or the process of manufacturing the reactive transparent fine particle containing an epoxy group, and the reactive glass containing the said epoxy group And the reactive transparent fine particle containing the imino group, or the reactive glass plate containing the imino group and the reactive transparent fine particle containing the epoxy group are brought into contact with each other and heated to bond the reactive glass plate and the reactive transparent fine particle. Or a step of mixing a chlorosilane compound containing a fluorocarbon group and trichlorosilyl group and a non-aqueous organic solvent, or an alkoxysilane compound containing a fluorocarbon group and alkoxysilyl group, a silanol condensation catalyst, and a non-aqueous type solvent. It is covered with water-repellent transparent fine particles covalently bonded to the surface by contacting a chemical adsorption solution prepared by mixing an organic solvent with a glass plate having transparent fine particles bonded to the surface to form a water-repellent coating. The gist of the invention is to provide a water-repellent glass plate that is highly durable and excellent in water-drop separation (also referred to as water slidability).
また、前記高耐久性で且つ水滴離水性に優れた撥水性ガラス板を窓ガラスとして装着した自動車であって、前記撥水性ガラス板の表面が、ガラス板表面に共有結合した撥水性透明微粒子で被われており、水に対する接触角が150度以上に制御されている自動車などの乗り物、または、建物のガラス窓を提供することを要旨とする。 The water-repellent glass plate mounted with the highly durable and water-repellent water-repellent glass plate as a window glass, wherein the surface of the water-repellent glass plate is made of water-repellent transparent fine particles covalently bonded to the glass plate surface. The gist of the invention is to provide a vehicle such as an automobile or a glass window of a building that is covered and whose water contact angle is controlled to 150 degrees or more.
このとき、表面に共有結合した撥水性透明微粒子の大部分の表面が撥水性の被膜で被われており、且つ一部分が一端に反応能性官能基を含み他端でSiを介して透明微粒子表面に共有結合している有機膜と一端に反応性官能基を含み他端でSiを介して基材ガラス板に共有結合している有機膜とを介してガラス板表面と共有結合していると、耐久性を向上させる上で都合がよい。 At this time, the surface of most of the water-repellent transparent fine particles covalently bonded to the surface is covered with a water-repellent coating, and one part contains a reactive functional group at one end and the other surface through Si at the other end When covalently bonded to the glass plate surface via an organic film covalently bonded to the organic film and a reactive functional group at one end and an organic film covalently bonded to the base glass plate via Si at the other end It is convenient for improving durability.
また、少なくとも撥水性の被膜が透明微粒子表面に共有結合していると耐久性と撥水性を向上させる上で都合がよい。
さらに、透明微粒子表面の撥水性の被膜が−CF3基を含んでいると撥水性を向上させる上で都合がよい。
In addition, it is convenient to improve durability and water repellency when at least the water-repellent coating is covalently bonded to the surface of the transparent fine particles.
Furthermore, it is convenient for improving the water repellency that the water-repellent coating on the surface of the transparent fine particles contains —CF 3 groups.
さらにまた、一端に反応能性官能基を含み他端でSiを介して透明微粒子表面に共有結合している有機膜が少なくともNを含み一端に反応性官能基を含み他端でSiを介して基材ガラス板に共有結合している有機膜が少なくともOを含み、あるいは、一端に反応能性官能基を含み他端でSiを介して透明微粒子表面に共有結合している有機膜が少なくともOを含み一端に反応性官能基を含み他端でSiを介して基材ガラス板に共有結合している有機膜が少なくともNを含み互いに共有結合していると耐久性を向上させる上で都合がよい。 Furthermore, the organic film covalently bonded to the surface of the transparent fine particle via Si at one end and containing a reactive functional group at one end contains at least N and contains a reactive functional group at one end via Si at the other end. The organic film covalently bonded to the substrate glass plate contains at least O, or the organic film covalently bonded to the surface of the transparent fine particle via Si at one end and a reactive functional group at the other end is at least O. It is convenient for improving the durability when the organic film having a reactive functional group at one end and being covalently bonded to the base glass plate through Si at the other end and at least N is covalently bonded to each other. Good.
また、撥水性の被膜、および、一端に反応能性官能基を含み他端でSiを介して透明微粒子表面に共有結合している有機膜、一端に反応性官能基を含み他端でSiを介して基材ガラス板に共有結合している有機膜の少なくとも1つが単分子膜であると撥水性と耐久性を向上させる上で都合がよい。 In addition, a water-repellent film, an organic film having a reactive functional group at one end and covalently bonding to the surface of the transparent fine particle through Si at the other end, Si having a reactive functional group at one end and Si at the other end When at least one of the organic films covalently bonded to the base glass plate is a monomolecular film, it is convenient to improve water repellency and durability.
さらに、透明微粒子として透光性で且つ硬度が高いシリカ、アルミナ、あるいは、ジルコニアを用いると撥水性被膜の耐摩耗性を向上する上で都合がよい。 Furthermore, it is convenient to improve the wear resistance of the water-repellent coating by using light-transmitting and high hardness silica, alumina, or zirconia as the transparent fine particles.
また、透明微粒子の大きさが少なくとも可視光の波長より小さいと透明性を向上させる上で都合がよい。 Further, when the size of the transparent fine particles is at least smaller than the wavelength of visible light, it is convenient for improving the transparency.
また、製造時、少なくともエポキシ基、または、イミノ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液にガラス板を接触させエポキシ基またはイミノ基を含むアルコキシシラン化合物とガラス板表面を反応させてエポキシ基、または、イミノ基を含む反応性ガラス板を製造する工程と、イミノ基、または、エポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に透明微粒子を分散しイミノ基、または、エポキシ基を含むアルコキシシラン化合物と透明微粒子表面を反応させてイミノ基、または、エポキシ基を含む反応性透明微粒子を製造する工程と、前記エポキシ基を含む反応性ガラス板と前記イミノ基を含む反応性透明微粒子、または、イミノ基を含む反応性ガラス板と前記エポキシ基を含む反応性透明微粒子を接触させ、加熱して前記反応性ガラス板と前記反応性透明微粒子を結合させる工程と、フッ化炭素基とトリクロロシリルキを含むクロロシラン化合物と非水系の有機溶媒を混合するかあるいはフッ化炭素基とアルコキシシリルキを含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液と表面に透明微粒子を結合させたガラス板を接触させて撥水性被膜を形成する工程において、余分な化学吸着液を洗浄除去すると、撥水性と透明性、耐久性を向上させる上で都合がよい。 In addition, at the time of production, a glass plate is brought into contact with a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an epoxy group or imino group, a silanol condensation catalyst, and a non-aqueous organic solvent, and contains an epoxy group or imino group. A process of producing an epoxy group or an imino group-containing reactive glass plate by reacting an alkoxysilane compound and the glass plate surface; an imino group or an alkoxysilane compound containing an epoxy group; a silanol condensation catalyst; and a non-aqueous system. Reactive transparent particles containing imino groups or epoxy groups by dispersing transparent fine particles in a chemical adsorption solution prepared by mixing organic solvents and reacting the surface of the transparent fine particles with an alkoxysilane compound containing imino groups or epoxy groups. A step of producing fine particles, a reactive glass plate containing the epoxy group and a reactivity containing the imino group A step of bringing the reactive glass plate containing bright fine particles or imino groups into contact with the reactive transparent fine particles containing the epoxy group and heating to bond the reactive glass plate and the reactive transparent fine particles; Chemistry made by mixing a chlorosilane compound containing a trichlorosilyl group and a non-aqueous organic solvent, or a mixture of an alkoxysilane compound containing a fluorocarbon group and an alkoxysilyl group, a silanol condensation catalyst, and a non-aqueous organic solvent. In the process of forming a water-repellent film by contacting the adsorbent with a glass plate with transparent fine particles bonded to the surface, it is convenient to improve the water repellency, transparency, and durability by washing and removing excess chemical adsorbent. Is good.
また、シラノール縮合触媒の代わりに、あるいは、助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを単独あるいは混合して用いると、アルコキシシラン化合物を用いる場合にも、反応時間を短縮できて好都合である。 Further, instead of a silanol condensation catalyst, or as a cocatalyst, at least one selected from ketimine compounds, or organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, aminoalkylalkoxysilane compounds, alone or in combination, The use of an alkoxysilane compound is advantageous because the reaction time can be shortened.
以上説明したとおり、本発明によれば、撥水撥油防汚機能が要求される自動車や建物の窓用ガラス板において、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性ともいう)、防汚性に優れた撥水性ガラス板およびそれを用いた自動車を提供できる効果がある。 As described above, according to the present invention, in glass plates for automobiles and buildings that require water and oil repellent and antifouling functions, durability such as abrasion resistance and weather resistance, water droplet separation (both water slidability) It has the effect of providing a water-repellent glass plate excellent in antifouling property and an automobile using the same.
本発明は、少なくともエポキシ基、または、イミノ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液にガラス板を接触させエポキシ基、または、イミノ基を含むアルコキシシラン化合物とガラス板表面を反応させてエポキシ基、または、イミノ基を含む反応性ガラス板を製造する工程と、イミノ基、または、エポキシ基を含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に透明微粒子を分散しイミノ基、または、エポキシ基を含むアルコキシシラン化合物と透明微粒子表面を反応させてイミノ基、または、エポキシ基を含む反応性透明微粒子を製造する工程と、前記エポキシ基を含む反応性ガラス板と前記イミノ基を含む反応性透明微粒子、または、イミノ基を含む反応性ガラス板と前記エポキシ基を含む反応性透明微粒子を接触させ、加熱して前記反応性ガラス板と前記反応性透明微粒子を結合させる工程と、フッ化炭素基とトリクロロシリルキを含むクロロシラン化合物と非水系の有機溶媒を混合するか、あるいは、フッ化炭素基とアルコキシシリルキを含むアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液と表面に透明微粒子を結合させたガラス板を接触させて撥水性被膜を形成する工程とにより、表面に共有結合した撥水性透明微粒子で覆われている撥水性ガラス板を提供するものである。 In the present invention, a glass plate is brought into contact with a chemical adsorption solution prepared by mixing an alkoxysilane compound containing at least an epoxy group or imino group, a silanol condensation catalyst, and a non-aqueous organic solvent. A process for producing a reactive glass plate containing an epoxy group or an imino group by reacting the alkoxysilane compound containing the glass plate surface, an alkoxysilane compound containing an imino group or an epoxy group, a silanol condensation catalyst and a non-aqueous system Dispersion of transparent fine particles in a chemisorbed liquid prepared by mixing organic solvents with the reaction of an alkoxysilane compound containing an imino group or epoxy group with the surface of the transparent fine particle to react with an imino group or an epoxy group A step of producing transparent fine particles, a reactive glass plate containing the epoxy group and a reactivity containing the imino group A step of bringing the reactive glass plate containing bright fine particles or imino groups into contact with the reactive transparent fine particles containing the epoxy group and heating to bond the reactive glass plate and the reactive transparent fine particles; Prepared by mixing a chlorosilane compound containing a trichlorosilyl group and a nonaqueous organic solvent, or mixing an alkoxysilane compound containing a fluorocarbon group and an alkoxysilyl group, a silanol condensation catalyst, and a nonaqueous organic solvent. A water-repellent glass plate covered with water-repellent transparent fine particles covalently bonded to the surface is provided by contacting the chemically adsorbed liquid with a glass plate having transparent fine particles bonded to the surface to form a water-repellent coating. Is.
したがって、本発明には、撥水撥油防汚機能が要求される自動車や建物の窓用ガラス板において、耐摩耗性および耐候性等の耐久性、水滴離水性(滑水性ともいう)、防汚性に優れた撥水性ガラス板や雨天走行時に車外視認性に優れた自動車を提供できる作用がある。また、建築物の窓においても同様な効果が得られる窓を提供することが可能となる。 Therefore, in the present invention, for glass plates for automobiles and buildings that require water and oil repellent and antifouling functions, durability such as wear resistance and weather resistance, water droplet water separation (also referred to as water slidability), It has the effect of providing a water-repellent glass plate with excellent dirtiness and an automobile with excellent visibility outside the vehicle when running in the rain. In addition, it is possible to provide a window that can achieve the same effect in a building window.
以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら制限されるものではない。 Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not restrict | limited at all by these Examples.
なお、本発明に関するガラスには、自動車等の乗り物や建物の窓用ガラス板があるが、代表例として以下自動車の窓ガラスを取り上げて説明する。 In addition, although the glass regarding this invention has the glass plate for vehicles, such as vehicles, and a window of a building, the window glass of a motor vehicle is taken up and demonstrated as a typical example below.
まず、自動車用窓ガラスに用いるガラス板1を用意し、よく洗浄して乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、一端にエポキシ基を含み他端にアルコキシシリル基を含む薬剤、例えば、下記化学式(化1)に示す薬剤が99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナートが1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサン溶媒に合計1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。
First, the
この吸着液を前記ガラス板1表面に塗布し、普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、前記ガラス板1の表面には水酸基2が多数含まれているの(図1(a))で、前記化学吸着剤の−Si(OCH3)基と前記水酸基2がシラノール縮合触媒の存在下で脱アルコール(この場合は、脱CH3OH)反応し、下記化学式(化2)に示したような結合を形成し、ガラス表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3が約1ナノメートル程度の膜厚で形成される。
This adsorbed liquid was applied to the surface of the
その後、クロロホルム等の塩素系溶媒で洗浄すると、表面に反応性のエポキシ基を表面に有する化学吸着単分子膜で被われたガラス板4を製造できた(図1(b))。
Thereafter, when the substrate was washed with a chlorine-based solvent such as chloroform, a
洗浄せずに空気中に取り出し放置すると、溶媒が蒸発しガラス板表面に残った化学吸着剤がガラス板表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成された。なお、この被膜でも、反応性はほとんど変わらなかった。 If it is taken out and left in the air without washing, the solvent is evaporated and the chemical adsorbent remaining on the surface of the glass plate reacts with moisture in the air on the surface of the glass plate, and the particle surface is made of the above-mentioned chemical adsorbent. A polymer film was formed. Even with this coating, the reactivity was hardly changed.
一方、可視光の波長より小さな平均粒径が100nm程度のアルミナ微粒子5を用意し、よく乾燥した。次に、化学吸着剤として機能部位にエポキシ基と反応するイミノ基(−NH)を含み他端にアルコキシシリル基を含む薬剤、例えば、末端にアミノ基を含む下記化学式((化3)に示す薬剤が99重量%、シラノール縮合触媒の代わりに有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーンとジメチルホルムアミドを同量混合した溶媒、例えば、ヘキサメチルジシロキサン50%とジメチルホルムアミド50%の溶液に合計1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。
On the other hand,
この吸着液に前記無水のアルミナ微粒子を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、アルミナ微粒子5の表面には水酸基6が多数含まれているの(図2(a))で、前記化学吸着剤の−Si(OCH3)基と前記水酸基が酢酸の存在下で脱アルコール(この場合は、脱CH3OH)反応し、下記化学式(化4)に示したような結合を形成し、微粒子表面全面に亘り表面と化学結合したアミノ基7を含む化学吸着単分子膜8が約1ナノメートル程度の膜厚で形成される。
The adsorbed liquid was mixed with the anhydrous alumina fine particles and stirred and reacted in ordinary air (
その後、塩素系溶媒であるクロロホルムかn−メチルピロリディノンを添加して撹拌洗浄すると、実施例1と同様に、表面に反応性の官能基、例えばアミノ基を有する化学吸着単分子膜で被われたアルミナ微粒子9を形成できた(図2(b))。なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒は沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等が利用できた。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。
Thereafter, when chloroform or n-methylpyrrolidinone as a chlorinated solvent is added and washed with stirring, as in Example 1, the surface is coated with a chemisorbed monomolecular film having a reactive functional group such as an amino group on the surface. The broken
なお、この処理により形成された単分子膜は、実施例1と同様に、ナノメートルレベルの膜厚で極めて薄いため、アルミナ微粒子の粒子径や表面形状を損なうことはなかった。
なお、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が粒子表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成されたアルミナ微粒子が得られた。
In addition, since the monomolecular film formed by this treatment was extremely thin with a film thickness of nanometer level as in Example 1, the particle diameter and surface shape of the alumina fine particles were not impaired.
Note that the reactivity does not substantially change when it is taken out into the air without washing, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air on the particle surface, and the chemical is adsorbed on the particle surface. Alumina fine particles on which an ultrathin polymer film made of an adsorbent was formed were obtained.
次ぎに、前記エポキシ基を有する化学吸着単分子膜で被われたガラス板表面に、前記アミノ基を有する化学吸着単分子膜で被われたアルミナ微粒子をエタノールに分散させて塗布し、エタノールを蒸発させた後、100℃程度で30分程度加熱すると、下記化学化学式(化5)に示したような反応でエポキシ基とアミノ基が付加反応してガラスとアルミナ微粒子が2つの単分子膜を介して結合固定した。
その後さらに、クロロホルム等の有機溶媒で洗浄すると、余分な未反応のアミノ基を有する化学吸着単分子膜で被われたアルミナ微粒子が除去され、ガラス板1表面とアルミナ微粒子5が前記2つの単分子膜を介して1層のみ共有結合したガラス板10が得られた(図3(a))。
Next, the alumina fine particles covered with the chemical adsorption monomolecular film having amino groups are dispersed and applied to the surface of the glass plate covered with the chemical adsorption monomolecular film having the epoxy group, and the ethanol is evaporated. Then, when heated at about 100 ° C. for about 30 minutes, an epoxy group and an amino group undergo an addition reaction by the reaction shown in the following chemical chemical formula (Chemical Formula 5), and the glass and alumina fine particles pass through two monomolecular films. And fixed.
Thereafter, further washing with an organic solvent such as chloroform removes the alumina fine particles covered with the chemisorption monomolecular film having an extra unreacted amino group, and the surface of the
次に、単分子膜を形成すると臨界表面エネルギー10mN/m以下になるフッ化炭素基(機能部位)及びクロロシリル基(活性部位)を含む化学吸着剤、例えばCF3(CF2)7(CH2)2SiCl3を1重量%程度の濃度で非水系溶媒(例えば、脱水したノナン)に溶かして化学吸着溶液(以下吸着溶液という)を調製した。この吸着溶液を、乾燥雰囲気中(相対湿度30%以下が好ましかった。)で前記ガラス板表面に塗布し反応させると、ガラス板4表面のアルミナ微粒子4は多数のアミノ基7で被われているので(図3(a))、前記化学吸着剤のクロロシリル基(SiCl)基と前記アルミナ微粒子表面のアミノ基(−NH2)とで脱塩酸反応が生じ、アルミナ微粒子表面全面に亘り、下記化学式(化6)に示す結合が生成さる。次ぎに、フロン系の溶媒で洗浄すると、前記化学吸着剤よりなる撥水性単分子膜11で被われたガラス板12が得られた。
Next, when a monomolecular film is formed, a chemical adsorbent containing a fluorocarbon group (functional site) and a chlorosilyl group (active site) that has a critical surface energy of 10 mN / m or less, such as CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 was dissolved in a non-aqueous solvent (for example, dehydrated nonane) at a concentration of about 1% by weight to prepare a chemical adsorption solution (hereinafter referred to as an adsorption solution). This adsorption solution, when in a dry atmosphere (a relative humidity of 30% or less were preferred.) In applied to the glass plate surface to react, covered
洗浄せずに空気中に取り出すと、溶媒が蒸発しガラス板表面に残った化学吸着剤がガラス板表面で空気中の水分と反応して、粒子表面に前記化学吸着剤よりなる極薄のポリマー膜が形成された。なお、この被膜でも、撥水性はほとんど変わらなかった。 When taken out into the air without cleaning, the chemical adsorbent remaining on the glass plate surface reacts with moisture in the air when the solvent evaporates, and the ultrathin polymer consisting of the chemical adsorbent on the particle surface. A film was formed. Even with this coating, the water repellency was hardly changed.
この単分子膜の膜厚は、たかだか1nm程度であるため、アルミナ微粒子により形成されたガラス板表面の50nm程度の凸凹はほとんど損なわれることがなかった。また、この凸凹の効果により、このガラス板の見かけ上の水滴接触角は、160度程度となり、超撥水が実現できた。 Since the film thickness of this monomolecular film is at most about 1 nm, the unevenness of about 50 nm on the surface of the glass plate formed by the alumina fine particles was hardly damaged. Also, due to the unevenness effect, the apparent water droplet contact angle of this glass plate was about 160 degrees, and super water repellency was realized.
なお、平坦な基材表面にCF3(CF2)7(CH2)2SiCl3を用いて作成された単分子膜の臨界表面エネルギーは6mN/m程度になり、最大水滴接触角は115度程度であった。 The critical surface energy of a monomolecular film made of CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 on the flat substrate surface is about 6 mN / m, and the maximum water droplet contact angle is 115 degrees. It was about.
一方、アルミナ微粒子はガラスよりも硬度が高く、しかもガラス板表面とは共有結合で結合されているため、直接ガラス板表面にCF3(CF2)7(CH2)2SiCl3を用いて作成された単分子膜に比べて耐摩耗性も大幅に向上できた。
また、できた被膜の厚さは、トータルで100nm程度であるため、透明性が損なわれることもなかった。
On the other hand, alumina fine particles have a higher hardness than glass and are bonded to the glass plate surface by covalent bonds, so they are made directly on the glass plate surface using CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3. Compared to the monomolecular film, the wear resistance was greatly improved.
Further, since the total thickness of the coating film was about 100 nm, the transparency was not impaired.
なお、実施例1同様に、ガラス板表面にアルミナ微粒子が1層のみ共有結合したガラス板を作成後、一端にフッ化炭素基(−CF3)を含み他端にアルコキシシリル基を含む薬剤、例えば、CF3(CF2)7(CH2)2Si(OCH3)3で示す薬剤をを99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナートを1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサン溶媒に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)に溶かして化学吸着液を調製し、ガラス板表面にアルミナ微粒子が1層のみ共有結合したガラス板を漬浸し2時間程度反応させた後、余分な吸着剤を洗浄除去すると、アルコキシシリル基は、アミノ基と脱アルコール反応して、実施例1と同様の撥水性ガラスを製造できた。 As in Example 1, after preparing a glass plate in which only one layer of alumina fine particles was covalently bonded to the surface of the glass plate, a drug containing a fluorocarbon group (—CF 3 ) at one end and an alkoxysilyl group at the other end, For example, 99% by weight of the chemical represented by CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 and 1% by weight of dibutyltin diacetylacetonate, for example, using silanol condensation catalyst Then, a chemical adsorption solution is prepared by dissolving in a silicone solvent, for example, a hexamethyldisiloxane solvent to a concentration of about 1% by weight (preferably the concentration of the chemical adsorbent is about 0.5 to 3%). After immersing a glass plate in which only one layer of alumina fine particles is covalently bonded to the glass plate and reacting for about 2 hours, the excess adsorbent is washed and removed. Thus, the same water-repellent glass as in Example 1 could be produced.
一方、実施例1とは反対に、同様の方法でガラス板表面にアミノ基を有する化学吸着単分子膜を形成し、アルミナ微粒子表面にエポキシ基を有する化学吸着単分子膜を形成し、同じ反応でガラス板表面にアルミナ微粒子を1層固着させ、最後にCF3(CF2)7(CH2)2SiCl3を反応させると、SiCl基は、エポキシ基とも反応するので、実施例1と同様の撥水性ガラスを製造できた。 On the other hand, in the same manner as in Example 1, a chemisorption monomolecular film having an amino group is formed on the glass plate surface in the same manner, and a chemisorption monomolecular film having an epoxy group is formed on the surface of the alumina fine particles. Then, when one layer of alumina fine particles is fixed on the glass plate surface and finally CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 is reacted, the SiCl group also reacts with the epoxy group. The water-repellent glass can be manufactured.
なお、上記実施例1〜3では、反応性基を含む化学吸着剤として(化1)と(化3)に示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した物質が利用できた。
(1) (CH2OCH)CH2O(CH2)7Si(OCH3)3
(2) (CH2OCH)CH2O(CH2)11Si(OCH3)3
(3) (CH2CHOCH(CH2)2)CH(CH2)2Si(OCH3)3
(4) (CH2CHOCH(CH2)2)CH(CH2)4Si(OCH3)3
(5) (CH2CHOCH(CH2)2)CH(CH2)6Si(OCH3)3
(6) (CH2OCH)CH2O(CH2)7Si(OC2H5)3
(7) (CH2OCH)CH2O(CH2)11Si(OC2H5)3
(8) (CH2CHOCH(CH2)2)CH(CH2)2Si(OC2H5)3
(9) (CH2CHOCH(CH2)2)CH(CH2)4Si(OC2H5)3
(10) (CH2CHOCH(CH2)2)CH(CH2)6Si(OC2H5)3
(11) H2N (CH2)5Si(OCH3)3
(12) H2N (CH2)7Si(OCH3)3
(13) H2N (CH2)9Si(OCH3)3
(14) H2N (CH2)5Si(OC2H5)3
(15) H2N (CH2)7Si(OC2H5)3
(16) H2N (CH2)9Si(OC2H5)3
In Examples 1 to 3, the substances shown in (Chemical Formula 1) and (Chemical Formula 3) were used as chemical adsorbents containing reactive groups, but in addition to the above, the following (1) to ( The substances shown in 16) were available.
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH 2 OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3
ここで、(CH2OCH)−基は、下記式(化7)で表される官能基を表し、(CH2CHOCH(CH2)2)CH−基は、下記式(化8)で表される官能基を表す。 Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Chemical Formula 7), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Chemical Formula 8). Represents a functional group.
また、上記実施例1、3では、フッ化炭素系化学吸着剤としてCF3(CF2)7(CH2)2SiCl3を用いたが、上記のもの以外にも、炭化水素系を含めて下記(21)〜(26)に示した物質が利用できた。
(21) CF3CH2O(CH2)15SiCl3
(22) CF3(CH2)3Si(CH3)2(CH2)15SiCl3
(23) CF3(CF2)5(CH2)2Si(CH3)2(CH2)9SiCl3
(24) CF3(CF2)7(CH2)2Si(CH3)2(CH2)9SiCl3
(25) CF3COO(CH2)15SiCl3
(26) CF3(CF2)5(CH2)2SiCl3
さらにまた、上記実施例2では、フッ化炭素系化学吸着剤としてCF3(CF2)7(CH2)2Si(OCH3)3を用いたが、上記のもの以外にも、下記(31)〜(42)に示した物質が利用できた。
In Examples 1 and 3, CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 was used as the fluorocarbon-based chemical adsorbent, but in addition to the above, hydrocarbons were included. The substances shown in the following (21) to (26) were available.
(21) CF 3 CH 2 O (CH 2 ) 15 SiCl 3
(22) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 SiCl 3
(23) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(24) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3
(25) CF 3 COO (CH 2 ) 15 SiCl 3
(26) CF 3 (CF 2 ) 5 (CH 2 ) 2 SiCl 3
Furthermore, in Example 2 above, CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (OCH 3 ) 3 was used as the fluorocarbon-based chemical adsorbent. The materials shown in () to (42) were available.
(31) CF3CH2O(CH2)15Si(OCH3)3
(32) CF3(CH2)3Si(CH3)2(CH2)15Si(OCH3)3
(33) CF3(CF2)5(CH2)2Si(CH3)2(CH2)9Si(OCH3)3
(34) CF3(CF2)7(CH2)2Si(CH3)2(CH2)9Si(OCH3)3
(35) CF3COO(CH2)15Si(OCH3)3
(36) CF3(CF2)5(CH2)2Si(OCH3)3
(37) CF3CH2O(CH2)15Si(OC2H5)3
(38) CF3(CH2)3Si(CH3)2(CH2)15Si(OC2H5)3
(39) CF3(CF2)5(CH2)2Si(CH3)2(CH2)9Si(OC2H5)3
(40) CF3(CF2)7(CH2)2Si(CH3)2(CH2)9Si(OC2H5)3
(41) CF3COO(CH2)15Si(OC2H5)3
(42) CF3(CF2)5(CH2)2Si(OC2H5)3
(31) CF 3 CH 2 O (CH 2 ) 15 Si (OCH 3 ) 3
(32) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OCH 3 ) 3
(33) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(34) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OCH 3 ) 3
(35) CF 3 COO (CH 2 ) 15 Si (OCH 3 ) 3
(36) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OCH 3 ) 3
(37) CF 3 CH 2 O (CH 2 ) 15 Si (OC 2 H 5 ) 3
(38) CF 3 (CH 2 ) 3 Si (CH 3 ) 2 (CH 2 ) 15 Si (OC 2 H 5 ) 3
(39) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(40) CF 3 (CF 2 ) 7 (CH 2 ) 2 Si (CH 3 ) 2 (CH 2 ) 9 Si (OC 2 H 5 ) 3
(41) CF 3 COO (CH 2 ) 15 Si (OC 2 H 5 ) 3
(42) CF 3 (CF 2 ) 5 (CH 2 ) 2 Si (OC 2 H 5 ) 3
なお、実施例1〜3に置いて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能であった。 In Examples 1 to 3, silanol condensation catalysts include carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates. Is available. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.
また、膜形成溶液の溶媒としては、化学吸着剤がアルコキシシラン系、クロロシラン系何れの場合も、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいは、フッ化炭素系溶媒やシリコーン系溶媒、あるいは、それら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。
In addition, as a solvent for the film-forming solution, an organic chlorine-based solvent, a hydrocarbon-based solvent, a fluorocarbon-based solvent or a silicone-based solvent that does not contain water, regardless of whether the chemical adsorbent is an alkoxysilane-based or chlorosilane-based Alternatively, it was possible to use a mixture thereof. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC.
具体的に使用可能な溶媒は、クロロシラン系の場合は、非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。
さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。
Specific solvents that can be used are non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl in the case of chlorosilane. Examples include silicone, alkyl-modified silicone, polyether silicone, and dimethylformamide.
Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.
また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). In addition, these may be used individually by 1 type and may mix 2 or more types as long as it mixes well. Further, an organic chlorine solvent such as chloroform may be added.
一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.
さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早くでき、製膜時間を数分の一まで短縮できる。 Further, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be further shortened several times, and the film forming time can be reduced to a fraction.
例えば、シラノール触媒であるジブチル錫オキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour. Results were obtained.
さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチル錫ビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を20分程度に短縮できた他は、ほぼ同様の結果が得られた。 Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound Japan Epoxy Resin H3 and silanol catalyst dibutyltin bisacetylacetonate (mixing ratio was 1: 1), and other conditions were the same. The same results were obtained except that the reaction time could be shortened to about 20 minutes.
したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.
さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.
なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.
また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.
また、上記3つの実施例では、アルミナ微粒子を例として説明したが、本発明は、表面に活性水素、すなわち水酸基の水素やアミノ基、あるいは、イミノ基の水素などを含んだ微粒子で有れば、どのような微粒子にでも適用可能であった。 In the above three embodiments, the alumina fine particles have been described as an example. However, the present invention is not limited as long as the surface contains active hydrogen, that is, fine particles containing hydrogen of a hydroxyl group, an amino group, or hydrogen of an imino group. It was applicable to any fine particles.
具体的には、ガラスより堅い透明微粒子として、アルミナ以外に、シリカやジルコニア等が適用可能であることは言うまでもない。 Specifically, it goes without saying that silica, zirconia, and the like can be applied as transparent fine particles harder than glass in addition to alumina.
実施例1で作成したガラス板と同条件で作成した水滴接触角が160度程度(実用上、水滴接触角が150以上であれば同様の効果が得られた。)の撥水性ガラス板を乗用車のフロント窓ガラス(ウインドシールドともいう、傾斜角略45度)、サイド窓ガラス(傾斜角略70度)、リア窓ガラス(傾斜角略30度)として装着し、雨天走行実験を試みた。 A water-repellent glass plate having a water droplet contact angle of about 160 degrees (similar effect was obtained if the water droplet contact angle was 150 or more for practical use) prepared under the same conditions as the glass plate prepared in Example 1 was used for passenger cars. A front window glass (also referred to as a windshield, tilt angle of about 45 degrees), a side window glass (tilt angle of about 70 degrees), and a rear window glass (tilt angle of about 30 degrees) were mounted, and a rainy running experiment was attempted.
まず、停車中の雨水滴の付着状況を確認したが、直径5mm程度以上の水滴の付着はどのガラスもほとんど無かった。 First, the state of attachment of rain water droplets while stopped was confirmed, but there was almost no glass with any water droplets having a diameter of about 5 mm or more.
次に、走行実験を試みたが、まずスピードが、45Km/時の場合、雨水滴の付着状況を確認した。直径2mm程度以上の水滴の付着は、サイド窓ガラス、リア窓ガラスともほとんど無かった。また、フロント窓ガラスでは、走行時、雨水滴が連続して多量に付着したが、直径2mm程度以上の水滴は上後方向にすばやく移動し、その後飛散して視界を妨げるほどには残らなかった。さらに速度を上げて60Km/時になると、直径2mm程度以上の水滴は瞬時に飛散してほぼ完全に除去された。 Next, a running experiment was attempted. First, when the speed was 45 km / hour, the adhesion of raindrops was confirmed. There was almost no adhesion of water droplets having a diameter of about 2 mm or more on the side window glass and the rear window glass. Also, on the windshield, a large amount of raindrops adhered continuously during traveling, but water droplets with a diameter of about 2 mm or more moved quickly upward and rearward, and did not remain so as to scatter and obstruct visibility. . When the speed was further increased to 60 km / hour, water droplets having a diameter of about 2 mm or more were instantaneously scattered and almost completely removed.
なお、走行実験中ドアミラーを用い、サイド窓ガラス板を透して後方の視界状況を確認したが、雨水滴による視界のゆがみや視認性の劣化はほとんど感じられなかった。 In the running experiment, the rear view was confirmed through a side window glass plate using a door mirror, but there was almost no visual distortion or visibility deterioration due to raindrops.
また、晴天時、被膜の有無による社外視認性を比較してみたが、被膜の透明度が、波長400〜700nmの光に対して97%以上であったため、被膜なしの自動車に比べ視認性の劣化は全く感じられなかった。また、ワイパーに対する耐摩耗性も、ガラスそのままで撥水性被膜を形成した場合に比べ、アルミナ微粒子は硬度が高いので大幅に改善できた。 In addition, we compared external visibility with or without a coating in fine weather, but the transparency of the coating was 97% or more with respect to light with a wavelength of 400 to 700 nm. Was not felt at all. In addition, the wear resistance against the wiper can be significantly improved because the alumina fine particles have a higher hardness than when the water-repellent coating is formed with the glass as it is.
以上の実験より、本発明の自動車が、雨天時の安全運転に格別の効果を発揮することが確認できた。 From the above experiments, it was confirmed that the automobile of the present invention exerts a special effect on safe driving in rainy weather.
参考として、各種実験で得た水滴に対する接触角(他の物質を用いて得たデータも含めている。)と転落角の関係を図3に示す。このデータより明らかなように、水滴接触角が150度以上なら、窓ガラス表面に接触したほとんどの水滴は自然に流れ落ちることが判る。 As a reference, FIG. 3 shows the relationship between the contact angle (including data obtained using other substances) with respect to water droplets obtained in various experiments and the falling angle. As is clear from this data, it can be seen that, when the water droplet contact angle is 150 degrees or more, most water droplets in contact with the window glass surface flow down naturally.
1 ガラス板
2 水酸基
3 エポキシ基を含む単分子膜
4 エポキシ基を含む化学吸着単分子膜で被われたガラス板
5 アルミナ微粒子
6 水酸基
7 アミノ基
8 アミノ基を含む化学吸着単分子膜
9 アミノ基を含む化学吸着単分子膜で被われたアルミナ微粒子
10 アルミナ微粒子が2つの単分子膜を介して1層のみ共有結合したガラス板
11 撥水性単分子膜
12 撥水性単分子膜で覆われたガラス板
1
4 Glass plate covered with chemisorption monomolecular film containing
Alumina fine particles covered with a chemisorbed monolayer containing 9 amino groups
10 A glass plate in which only one layer of alumina fine particles is covalently bonded through two monomolecular films 11 Water repellent monomolecular film
12 Glass plate covered with water-repellent monomolecular film
Claims (16)
10. A window glass of a building equipped with the water-repellent glass according to claim 1.
16. The co-catalyst used for the silanol condensation catalyst is a ketimine compound, or at least one selected from organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds. A method for producing the water-repellent glass plate as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005320704A JP4792575B2 (en) | 2005-11-04 | 2005-11-04 | Water-repellent glass plate, method for producing the same, and vehicle or glass window using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005320704A JP4792575B2 (en) | 2005-11-04 | 2005-11-04 | Water-repellent glass plate, method for producing the same, and vehicle or glass window using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007126332A true JP2007126332A (en) | 2007-05-24 |
JP4792575B2 JP4792575B2 (en) | 2011-10-12 |
Family
ID=38149288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005320704A Active JP4792575B2 (en) | 2005-11-04 | 2005-11-04 | Water-repellent glass plate, method for producing the same, and vehicle or glass window using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4792575B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008136268A1 (en) * | 2007-04-27 | 2008-11-13 | Kazufumi Ogawa | Water-repellent glass plates, windowpanes of vehicles and buildings made by using the same, and process for production of water-repellent glass plates |
WO2008149954A1 (en) * | 2007-06-06 | 2008-12-11 | Kazufumi Ogawa | Phosphor fine particle film, method for producing the same, and display device using phosphor fine particle film |
JP2009088388A (en) * | 2007-10-02 | 2009-04-23 | Kagawa Univ | Solar energy utilization device and its manufacturing method |
WO2009075040A1 (en) * | 2007-12-12 | 2009-06-18 | Kazufumi Ogawa | Solar energy utilization device and method for manufacturing the same |
WO2009084119A1 (en) * | 2007-12-27 | 2009-07-09 | Kazufumi Ogawa | Solar energy utilizing apparatus and method of manufacturing the same |
WO2009084117A1 (en) * | 2007-12-27 | 2009-07-09 | Kazufumi Ogawa | Light-reflection coating composition and light-reflection coating film using the same |
WO2009084118A1 (en) * | 2007-12-27 | 2009-07-09 | Kazufumi Ogawa | Water-repellent, oil-repellent, and soil-resistant light reflection plate, method of manufacturing the same, and tunnel, road sign, display board, vehicle, and building using the same |
US8455092B2 (en) | 2007-06-06 | 2013-06-04 | Empire Technology Development Llc | Fluorescent fine particle films |
US8715530B2 (en) | 2007-06-06 | 2014-05-06 | Empire Technology Development Llc | Fluorescent pastes and films |
CN104016595A (en) * | 2014-05-30 | 2014-09-03 | 北京化工大学常州先进材料研究院 | Method of preparing glass with surface solvent response property by photopolymerization |
US8952100B2 (en) | 2008-11-11 | 2015-02-10 | Styron Europe Gmbh | Process to remove silanol from the preparation of a modified polymer |
US9447284B2 (en) | 2007-05-01 | 2016-09-20 | Empire Technology Development Llc | Water repellent glass plates |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5487418B2 (en) * | 2006-07-05 | 2014-05-07 | 国立大学法人 香川大学 | Water repellent / oil repellent / anti-fouling light reflecting plate, manufacturing method thereof, tunnel, road sign, display board, vehicle, building using the same. |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05163013A (en) * | 1991-12-10 | 1993-06-29 | Nippon Steel Chem Co Ltd | Production of highly pure crystalline silica |
JPH10146920A (en) * | 1991-01-23 | 1998-06-02 | Matsushita Electric Ind Co Ltd | Article with water-and oil-repellent film and forming method thereof |
JP2001287971A (en) * | 2000-03-31 | 2001-10-16 | Matsushita Electric Ind Co Ltd | Antifouling film, method for producing the same, antifouling glass for automobile using the same film, method for producing the same glass and automobile using the same glass |
-
2005
- 2005-11-04 JP JP2005320704A patent/JP4792575B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10146920A (en) * | 1991-01-23 | 1998-06-02 | Matsushita Electric Ind Co Ltd | Article with water-and oil-repellent film and forming method thereof |
JPH05163013A (en) * | 1991-12-10 | 1993-06-29 | Nippon Steel Chem Co Ltd | Production of highly pure crystalline silica |
JP2001287971A (en) * | 2000-03-31 | 2001-10-16 | Matsushita Electric Ind Co Ltd | Antifouling film, method for producing the same, antifouling glass for automobile using the same film, method for producing the same glass and automobile using the same glass |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008136268A1 (en) * | 2007-04-27 | 2008-11-13 | Kazufumi Ogawa | Water-repellent glass plates, windowpanes of vehicles and buildings made by using the same, and process for production of water-repellent glass plates |
US9447284B2 (en) | 2007-05-01 | 2016-09-20 | Empire Technology Development Llc | Water repellent glass plates |
US8715530B2 (en) | 2007-06-06 | 2014-05-06 | Empire Technology Development Llc | Fluorescent pastes and films |
WO2008149954A1 (en) * | 2007-06-06 | 2008-12-11 | Kazufumi Ogawa | Phosphor fine particle film, method for producing the same, and display device using phosphor fine particle film |
JP2008302564A (en) * | 2007-06-06 | 2008-12-18 | Kagawa Univ | Phosphor fine particle film and its forming method, and display device using phsphor fine particle film |
US9580645B2 (en) | 2007-06-06 | 2017-02-28 | Empire Technology Development Llc | Fluorescent pastes and films |
US8951627B2 (en) | 2007-06-06 | 2015-02-10 | Empire Technology Development Llc | Fluorescent fine particle films and display devices |
US8455092B2 (en) | 2007-06-06 | 2013-06-04 | Empire Technology Development Llc | Fluorescent fine particle films |
JP2009088388A (en) * | 2007-10-02 | 2009-04-23 | Kagawa Univ | Solar energy utilization device and its manufacturing method |
WO2009075040A1 (en) * | 2007-12-12 | 2009-06-18 | Kazufumi Ogawa | Solar energy utilization device and method for manufacturing the same |
US8658888B2 (en) | 2007-12-12 | 2014-02-25 | Empire Technology Development Llc | Solar energy utilization device and method for manufacturing the same |
WO2009084118A1 (en) * | 2007-12-27 | 2009-07-09 | Kazufumi Ogawa | Water-repellent, oil-repellent, and soil-resistant light reflection plate, method of manufacturing the same, and tunnel, road sign, display board, vehicle, and building using the same |
WO2009084117A1 (en) * | 2007-12-27 | 2009-07-09 | Kazufumi Ogawa | Light-reflection coating composition and light-reflection coating film using the same |
WO2009084119A1 (en) * | 2007-12-27 | 2009-07-09 | Kazufumi Ogawa | Solar energy utilizing apparatus and method of manufacturing the same |
US8952100B2 (en) | 2008-11-11 | 2015-02-10 | Styron Europe Gmbh | Process to remove silanol from the preparation of a modified polymer |
CN104016595A (en) * | 2014-05-30 | 2014-09-03 | 北京化工大学常州先进材料研究院 | Method of preparing glass with surface solvent response property by photopolymerization |
Also Published As
Publication number | Publication date |
---|---|
JP4792575B2 (en) | 2011-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4792575B2 (en) | Water-repellent glass plate, method for producing the same, and vehicle or glass window using the same | |
JP4670057B2 (en) | Method for producing water and oil repellent antifouling glass plate | |
JP5487418B2 (en) | Water repellent / oil repellent / anti-fouling light reflecting plate, manufacturing method thereof, tunnel, road sign, display board, vehicle, building using the same. | |
EP2344597B1 (en) | Silica coating for enhanced hydrophilicity | |
JP5347124B2 (en) | Water and oil repellent and antifouling antireflection film, method for producing the same, lens, glass plate and glass formed therewith, optical device using them, solar energy utilization device, display | |
JP3588364B2 (en) | Surface treated substrate and surface treatment method for substrate | |
JP4654443B2 (en) | Manufacturing method of solar energy utilization device | |
JP5092130B2 (en) | Water and oil repellent antifouling glass plate, method for producing the same and automobile using the same | |
JP5526393B2 (en) | Water repellent / oil repellent / antifouling composite film forming solution, method for producing water / oil repellent / antifouling composite film using the same, and water / oil repellent / antifouling composite film using the same | |
JP5347125B2 (en) | Water / oil repellent / antifouling antireflection film and method for producing the same, lens, glass plate, glass, optical device, solar energy utilization device and display | |
JP5331977B2 (en) | Manufacturing method of solar energy utilization device | |
JP5050190B2 (en) | Fine particles and production method thereof | |
US20010031364A1 (en) | Anti-contaminant coating film, producing method thereof, anti-contaminant glass for automobile, producing method thereof, and automobile employing the glass | |
JP5347123B2 (en) | Water and oil repellent antifouling glass plate, method for producing the same, vehicle and building using the same | |
JP5343271B2 (en) | Water repellent and oil repellent antifouling glass plate, production method thereof, automobile and electromagnetic cooker using the same | |
JP5326086B2 (en) | Solar energy utilization apparatus and manufacturing method thereof | |
JP2008246959A (en) | Water-repellent and oil-repellent anti-staining reflecting plate, its manufacturing method, and tunnel, road sign, sign board, vehicle and building using the water and oil repellent anti-staining reflecting plate | |
JP2000144121A (en) | Surface treating agent, water drop slipping off base material using the same and its production | |
JP5167528B2 (en) | Chemisorption solution | |
JP5343226B2 (en) | Water-repellent glass plate, vehicle and building window glass using the same, and method for producing water-repellent glass plate | |
WO2009104236A1 (en) | Water repellent, oil repellent antifouling glass plate, process for producing the same and automobile utilizing the glass plate | |
US9447284B2 (en) | Water repellent glass plates | |
JP4929459B2 (en) | Method for producing water and oil repellent antifouling glass plate | |
JP6031653B2 (en) | Water / oil repellent composite film forming solution, method for producing water / oil repellent composite film using the same, and water / oil repellent composite film produced using the method | |
WO2009107191A1 (en) | Water repellent, oil repellent antifouling glass plate, process for producing the same, and vehicle and building utilizing the glass plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080930 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100319 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100422 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100619 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110628 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |