JP2007118276A - Single-layer fine particle film, cumulated fine particle film and manufacturing method of them - Google Patents

Single-layer fine particle film, cumulated fine particle film and manufacturing method of them Download PDF

Info

Publication number
JP2007118276A
JP2007118276A JP2005311031A JP2005311031A JP2007118276A JP 2007118276 A JP2007118276 A JP 2007118276A JP 2005311031 A JP2005311031 A JP 2005311031A JP 2005311031 A JP2005311031 A JP 2005311031A JP 2007118276 A JP2007118276 A JP 2007118276A
Authority
JP
Japan
Prior art keywords
film
fine particles
fine particle
organic film
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005311031A
Other languages
Japanese (ja)
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagawa University NUC
Original Assignee
Kagawa University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagawa University NUC filed Critical Kagawa University NUC
Priority to JP2005311031A priority Critical patent/JP2007118276A/en
Publication of JP2007118276A publication Critical patent/JP2007118276A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a single-layer fine particle film having a uniform thickness in a particle size level. <P>SOLUTION: The manufacturing method of the single-layer fine particle film has a process for bringing the surface of a base material into contact with a chemical adsorbing liquid, which is prepared by mixing a first alkoxysilane compound, a silanol condensing catalyst and a non-aqueous organic solvent, and reacting the alkoxysilane compound with the surface of the base material to form a first reactive organic film on the surface of the base material, a process for dispersing fine particles in the chemical adsorbing liquid, which is prepared by mixing a second alkoxysilane compound, the silanol condensing catalyst and the non-aqueous organic solvent, and reacting the alkoxysilane compound with the surfaces of the fine particles to form a second reactive organic film on the surfaces of the fine particles and a process for bringing the fine particles coated with the second reactive organic film into contact with the surface of the base material on which the first reactive organic film is formed to react them. By this manufacturing method, the single-layer fine particle film 17 wherein the fine particles of one film layer formed on the surface of the base material are mutually bonded by a covalent bond through the first organic film formed on the surfaces of the fine particles and the second organic film formed on the surface of the base material is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、微粒子の積層膜に関するものである。さらに詳しくは、表面に熱反応性または光反応性、あるいはラジカル反応性またはイオン反応性を付与した金属や金属酸化物よりなる無機微粒子、高分子や高分子ミセルよりなる有機微粒子、あるいは有機−無機ハイブリッド微粒子の積層膜に関するものである。 The present invention relates to a laminated film of fine particles. In more detail, inorganic fine particles made of metal or metal oxide, thermal fine or photoreactive, or radical or ionic reactivity on the surface, organic fine particles made of polymer or polymer micelle, or organic-inorganic The present invention relates to a laminated film of hybrid fine particles.

本発明において、「無機微粒子」には、導体微粒子、半導体微粒子、絶縁体微粒子、磁気微粒子、蛍光体微粒子、光吸収微粒子、光透過微粒子、顔料微粒子が含まれている。「有機微粒子」には、有機蛍光体微粒子、有機光吸収微粒子、有機光透過微粒子、有機顔料微粒子、薬物微粒子が含まれている。「有機−無機ハイブリッド微粒子」には、DDS(Drug Delivery System)用薬物微粒子、化粧用微粒子、有機−無機ハイブリッド顔料微粒子が含まれている。   In the present invention, “inorganic fine particles” include conductor fine particles, semiconductor fine particles, insulator fine particles, magnetic fine particles, phosphor fine particles, light absorbing fine particles, light transmitting fine particles, and pigment fine particles. “Organic fine particles” include organic phosphor fine particles, organic light absorbing fine particles, organic light transmitting fine particles, organic pigment fine particles, and drug fine particles. The “organic-inorganic hybrid fine particles” include drug fine particles for DDS (Drug Delivery System), fine particles for cosmetics, and organic-inorganic hybrid pigment fine particles.

従来から、両親媒性の有機分子を用い、水面上で分子を並べて基板表面に単分子膜を累積するラングミュアー・ブロジッェット(LB)法が知られている。また、界面活性剤を溶かした溶液中で化学吸着法を用いて単分子膜を累積する化学吸着(CA)法が知られている。   Conventionally, a Langmuir-Bloget (LB) method is known in which amphiphilic organic molecules are used, molecules are arranged on the water surface, and a monomolecular film is accumulated on the substrate surface. Further, a chemical adsorption (CA) method is known in which a monomolecular film is accumulated using a chemical adsorption method in a solution in which a surfactant is dissolved.

しかしながら、任意の基材表面に微粒子を1層のみ並べた粒子サイズレベルで均一厚みの被膜(以下、単層微粒子膜という。)や微粒子を1層のみ並べた膜を複数層累積した被膜(以下、累積微粒子膜という。)及びそれらの製造方法は未だ開発、提供されていなかった。   However, a film having a uniform thickness (hereinafter referred to as a single-layer fine particle film) at a particle size level in which only one layer of fine particles is arranged on an arbitrary substrate surface, or a film in which a plurality of films in which only one layer of fine particles is arranged (hereinafter referred to as a single layer). And the manufacturing method thereof have not yet been developed or provided.

従来から、電気機能、磁気機能、光機能等、各種機能を持ったミクロンサイズあるいはナノサイズの微粒子は数々開発製造されている。それら微粒子が持つ本来の機能を有効に利用するには、微粒子を均一な膜厚の被膜にする必要があるが、それら微粒子を用いて粒子サイズレベルで均一厚みの被膜を製造するという思想はなかった。   Conventionally, many micron-sized or nano-sized fine particles having various functions such as an electric function, a magnetic function, and an optical function have been developed and manufactured. In order to effectively use the original functions of these fine particles, it is necessary to make the fine particles into a uniform film thickness, but there is no idea of using these fine particles to produce a uniform thickness film at the particle size level. It was.

本発明は、微粒子を用い、各種微粒子本来の機能を損なうことなく、任意の基材表面に微粒子を1層のみ並べた粒子サイズレベルで均一厚みの被膜(単層微粒子膜)や微粒子を1層のみ並べた膜を複数層累積した被膜(累積微粒子膜)及びそれらの製造方法を提供することを目的とする。   The present invention uses fine particles, and does not impair the original functions of various fine particles, and a single layer of fine particles (single-layer fine particle film) or fine particles with a particle size level in which only one layer of fine particles is arranged on the surface of an arbitrary substrate. An object of the present invention is to provide a film (cumulative fine particle film) obtained by accumulating a plurality of layers in which only the films are arranged, and a method for producing them.

前記課題を解決するための手段として提供される第一の発明は、基材表面に1層形成された微粒子の膜が基材表面に形成された第1の有機膜と微粒子表面に形成された第2の有機膜を介して互いに共有結合していることを特徴とする単層微粒子膜である。 A first invention provided as a means for solving the above-described problems is that a fine particle film formed on one surface of a base material is formed on a first organic film formed on the base material surface and the surface of the fine particles. A single-layer fine particle film characterized by being covalently bonded to each other via a second organic film.

第二の発明は、第一の発明において、基材表面に形成された第1の有機被膜と微粒子表面に形成された第2の有機膜が互いに異なることを特徴とする単層微粒子膜である。 A second invention is a single-layer fine particle film according to the first invention, wherein the first organic film formed on the substrate surface and the second organic film formed on the fine particle surface are different from each other. .

第三の発明は、第一の発明において、共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする単層微粒子膜である。 A third invention is the single-layer fine particle film according to the first invention, wherein the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group.

第四の発明は、第一の発明及び第二の発明において、基材表面に形成された第1の有機被膜と微粒子表面に形成された第2の有機膜が単分子膜で構成されていることを特徴とする単層微粒子膜である。 According to a fourth invention, in the first invention and the second invention, the first organic film formed on the surface of the substrate and the second organic film formed on the surface of the fine particles are formed of a monomolecular film. This is a single-layer fine particle film.

第五の発明は、基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された微粒子を洗浄除去することを特徴とする単層微粒子膜の製造方法である。 In the fifth invention, the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the substrate surface. And forming a first reactive organic film on the surface of the base material, and a chemical adsorption solution prepared by mixing fine particles with at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. A step of dispersing and reacting the alkoxysilane compound with the surface of the fine particles to form a second reactive organic film on the surface of the fine particles; and a second reaction on the surface of the substrate on which the first reactive organic film is formed. A method of producing a single-layer fine particle film, comprising: a step of contacting and reacting fine particles coated with a reactive organic film; and a step of cleaning and removing the excessive fine particles coated with a second reactive organic film Ah .

第六の発明は、基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触ささせてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程、および微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて微粒子表面に第2の反応性の有機膜を形成する工程の後に、それぞれ基材および微粒子表面を有機溶剤で洗浄して基材及び微粒子表面に共有結合した第1及び第2の反応性の単分子膜を形成することを特徴とする請求項5記載の単層微粒子膜の製造方法である。 In a sixth aspect of the invention, the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, whereby the alkoxysilane compound and the substrate surface are brought into contact with each other. A step of forming a first reactive organic film on the surface of the substrate by reacting, and a chemical adsorption solution prepared by mixing fine particles with at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent After the step of dispersing the alkoxysilane compound and the surface of the fine particles to form a second reactive organic film on the fine particle surface, the substrate and the fine particle surface are washed with an organic solvent, respectively. 6. The method for producing a single-layer fine particle film according to claim 5, wherein the first and second reactive monomolecular films covalently bonded to each other are formed.

第七の発明は、第五の発明において、第1の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むか、第1の反応性の有機膜がイミノ基を含み第2の反応性の有機膜がエポキシ基を含むことを特徴とする単層微粒子膜の製造方法である。 According to a seventh invention, in the fifth invention, the first reactive organic film contains an epoxy group and the second reactive organic film contains an imino group, or the first reactive organic film is an imino A method for producing a single-layer fine particle film, wherein the second reactive organic film containing a group contains an epoxy group.

第八の発明は、第六の発明において、第1の反応性の単分子膜がエポキシ基を含み第2の反応性の単分子膜がイミノ基を含むか、第1の反応性の単分子膜がイミノ基を含み第2の反応性の単分子膜がエポキシ基を含むことを特徴とする単層微粒子膜の製造方法である。 According to an eighth invention, in the sixth invention, the first reactive monomolecular film contains an epoxy group and the second reactive monomolecular film contains an imino group, or the first reactive monomolecular film A method for producing a single-layer fine particle film, wherein the film contains an imino group and the second reactive monomolecular film contains an epoxy group.

第九の発明は、基材表面に層状に累積され微粒子が微粒子表面に形成された有機被膜を介して層間で互いに共有結合していることを特徴とする累積微粒子膜である。 According to a ninth aspect of the present invention, there is provided a cumulative fine particle film characterized in that the fine particles are accumulated in layers on the surface of the substrate and are covalently bonded to each other through an organic film formed on the fine particle surface.

第十の発明は、第九の発明において、微粒子表面に形成された有機被膜が2種類有り、第1の有機膜が形成された微粒子と第2の有機膜が形成された微粒子とが交互に積層されていることを特徴とする累積微粒子膜である。 According to a tenth aspect, in the ninth aspect, there are two types of organic coatings formed on the surface of the fine particles, and the fine particles on which the first organic film is formed and the fine particles on which the second organic film is formed alternately It is a cumulative fine particle film characterized by being laminated.

第十一の発明は、第十の発明において、第1の有機膜と第2の有機膜が反応して共有結合を形成していることを特徴とする累積微粒子膜である。
第十二の発明は、第九の発明において、共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする累積微粒子膜である。
An eleventh invention is the cumulative fine particle film according to the tenth invention, wherein the first organic film and the second organic film react to form a covalent bond.
A twelfth invention is the cumulative fine particle film according to the ninth invention, wherein the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group.

第十三の発明は、少なくとも基材表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、第1の微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて第1の微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された第1の微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の微粒子を洗浄除去して第1の単層微粒子膜を形成する工程と、第2の微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて第2の微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1の単層微粒子膜が形成された基材表面に第3の反応性の有機膜で被覆された第2の微粒子を接触させて反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の微粒子を洗浄除去して第2の単層微粒子膜を形成する工程とを含むことを特徴とする累積微粒子膜の製造方法である。 In the thirteenth invention, at least the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the substrate surface. Forming a first reactive organic film on the surface of the base material, and chemical adsorption formed by mixing the first fine particles with at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent A step of dispersing the alkoxysilane compound and the surface of the fine particles to form a second reactive organic film on the surface of the first fine particles, and a substrate on which the first reactive organic film is formed; A step of bringing the first fine particles coated with the second reactive organic film into contact with the surface for reaction; and washing and removing the first fine particles coated with the extra second reactive organic film First single layer particulate film A step of forming, and dispersing the second fine particles in a chemical adsorption solution prepared by mixing at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and reacting the surface of the alkoxysilane compound with the fine particles. Forming a third reactive organic film on the surface of the second fine particles, and forming a third reactive organic film on the surface of the substrate on which the first single-layer fine particle film coated with the second reactive organic film is formed. A step of bringing the second fine particles coated with the reactive organic film into contact with each other and reacting, and the second fine particles coated with the extra third reactive organic film are removed by washing. And a step of forming a layer fine particle film.

第十四の発明は、第十三の発明において、第1の反応性の有機膜と第3の反応性の有機膜が同じものであることを特徴とする累積微粒子膜の製造方法である。 A fourteenth aspect of the invention is a method for producing a cumulative fine particle film according to the thirteenth aspect of the invention, wherein the first reactive organic film and the third reactive organic film are the same.

第十五の発明は、第十三の発明において、単層微粒子膜を形成する工程の後、同様に第1の単層微粒子膜を形成する工程と第2の単層微粒子膜を形成する工程を繰り返し行うことを特徴とする多層構造の累積微粒子膜の製造方法である。 According to a fifteenth aspect, in the thirteenth aspect, after the step of forming the single-layer fine particle film, a step of similarly forming the first single-layer fine particle film and a step of forming the second single-layer fine particle film Is a method for producing a cumulative fine particle film having a multilayer structure.

第十六の発明は、第十三の発明において、第1〜3の反応性の有機膜を形成する工程の後に、それぞれ基材あるいは微粒子表面を有機溶剤で洗浄して基材や微粒子表面に共有結合した第1〜3の反応性の単分子膜を形成することを特徴とする累積微粒子膜の製造方法である。 According to a sixteenth aspect, in the thirteenth aspect, after the step of forming the first to third reactive organic films, the substrate or the surface of the fine particles is washed with an organic solvent, respectively, to form the surface of the substrate or the fine particles. A method for producing a cumulative fine particle film, comprising forming a covalently bonded first to third reactive monomolecular film.

第十七の発明は、第十三の発明において、第1および3の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むか、第1および3の反応性の有機膜がイミノ基を含み第2の反応性の有機膜がエポキシ基を含むことを特徴とする累積微粒子膜の製造方法である。 According to a seventeenth aspect, in the thirteenth aspect, the first and third reactive organic films contain an epoxy group and the second reactive organic film contains an imino group, or the first and third reactions The method for producing a cumulative fine particle film is characterized in that the conductive organic film contains an imino group and the second reactive organic film contains an epoxy group.

第十八の発明は、第五の発明及び第十三の発明において、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする単層微粒子膜および累積微粒子膜の製造方法である。 The eighteenth invention uses a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound in place of the silanol condensation catalyst in the fifth invention and the thirteenth invention. A method for producing a single-layer fine particle film and a cumulative fine particle film.

第十九の発明は、第五の発明及び第十三の発明において、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする単層微粒子膜および累積微粒子膜の製造方法である。 The nineteenth invention is selected from the ketimine compound, organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound as a co-catalyst for the silanol condensation catalyst in the fifth invention and the thirteenth invention. A method for producing a single-layer fine particle film and a cumulative fine particle film, wherein at least one of them is used in combination.

以下、本願発明の要旨を記載する。
本発明は、基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された微粒子を洗浄除去する工程とにより、基材表面に1層形成された微粒子の膜が基材表面に形成された第1の有機膜と微粒子表面に形成された第2の有機膜を介して互いに共有結合している単層微粒子膜を提供することを要旨とする。
Hereinafter, the gist of the present invention will be described.
In the present invention, the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the substrate surface are reacted. A step of forming a first reactive organic film on the surface of the substrate, and dispersing the fine particles in a chemical adsorption solution prepared by mixing at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. A step of reacting the alkoxysilane compound with the surface of the fine particles to form a second reactive organic film on the surface of the fine particles, and a second reactive property on the surface of the substrate on which the first reactive organic film is formed. The fine particles formed on the surface of the base material by the step of bringing the fine particles coated with the organic film into contact with each other and the step of washing and removing the fine particles coated with the extra second reactive organic film There is summarized as providing a first organic layer and second organic film monolayer particulate film is covalently bonded to each other through the formed microparticle surface formed on the substrate surface.

このとき、基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程、および微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて微粒子表面に第2の反応性の有機膜を形成する工程の後に、それぞれ基材および微粒子表面を有機溶剤で洗浄して基材及び微粒子表面に共有結合した第1及び第2の反応性の単分子膜を形成すると単層微粒子膜の膜厚制御を容易にできて都合がよい。   At this time, the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the substrate surface are reacted to form a group. A step of forming a first reactive organic film on the surface of the material, and dispersing fine particles in a chemical adsorption solution prepared by mixing at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. After the step of reacting the alkoxysilane compound with the fine particle surface to form a second reactive organic film on the fine particle surface, the substrate and the fine particle surface were washed with an organic solvent, respectively, and covalently bonded to the base material and the fine particle surface. It is convenient to form the first and second reactive monomolecular films because the thickness of the single-layer fine particle film can be easily controlled.

さらに、第1の反応性の有機膜にエポキシ基を含め第2の反応性の有機膜にイミノ基を含めておくか、第1の反応性の有機膜にイミノ基を含め第2の反応性の有機膜にエポキシ基を含めておくと、基材表面に共有結合した単層微粒子膜を作製する上で都合がよい。
また、第1の反応性の単分子膜にエポキシ基を含め第2の反応性の単分子膜がイミノ基を含めておくか、第1の反応性の単分子膜がイミノ基を含め第2の反応性の単分子膜がエポキシ基を含めておくと基材表面に共有結合した単層微粒子膜を作製する上で都合がよい。
Further, an epoxy group is included in the first reactive organic film and an imino group is included in the second reactive organic film, or an imino group is included in the first reactive organic film. Including an epoxy group in the organic film is convenient for producing a single-layer fine particle film covalently bonded to the substrate surface.
In addition, the first reactive monomolecular film includes an epoxy group and the second reactive monomolecular film includes an imino group, or the first reactive monomolecular film includes an imino group and the second reactive monomolecular film includes an imino group. When the reactive monomolecular film includes an epoxy group, it is convenient to produce a single-layer fine particle film covalently bonded to the substrate surface.

さらにまた、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると製膜時間を短縮する上で都合がよい。
また、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いるとさらに製膜時間を短縮できて都合がよい。
Furthermore, it is convenient to use a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound in place of the silanol condensation catalyst for shortening the film formation time.
In addition, the use of a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound as a co-catalyst as a co-catalyst for the silanol condensation catalyst can further reduce the film formation time. convenient.

またここで、微粒子表面に形成された第1の有機被膜と基材表面に形成された第2の有機膜が互いに異ならせておけば、単層微粒子膜を基材表面に1層のみ結合させる上で都合がよい。
さらに、共有結合としてエポキシ基とイミノ基の反応で形成された−N−C−の結合を用いると、基材に対して密着強度が優れた単層微粒子膜を提供する上で都合がよい。
また、微粒子表面に形成された第1の有機被膜と基材表面に形成された第2の有機膜が単分子膜で構成されていると膜厚均一性を改善する上で都合がよい。
Here, if the first organic film formed on the fine particle surface and the second organic film formed on the substrate surface are different from each other, only one layer of the single-layer fine particle film is bonded to the substrate surface. Convenient above.
Furthermore, the use of —N—C— bond formed by the reaction of an epoxy group and an imino group as a covalent bond is advantageous in providing a single-layer fine particle film having excellent adhesion strength to a substrate.
In addition, it is convenient to improve the film thickness uniformity when the first organic film formed on the surface of the fine particles and the second organic film formed on the surface of the substrate are formed of a monomolecular film.

さらに、本発明は、少なくとも基材表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、第1の微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて第1の微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された第1の微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の微粒子を洗浄除去して第1の単層微粒子膜を形成する工程と、第2の微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて第2の微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1の単層微粒子膜が形成された基材表面に第3の反応性の有機膜で被覆された第2の微粒子を接触させて反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の微粒子を洗浄除去して第2の単層微粒子膜を形成する工程とにより、基材表面に層状に累積され微粒子が微粒子表面に形成された有機被膜を介して層間で互いに共有結合している累積微粒子膜を提供することを要旨とする。   Furthermore, the present invention is such that at least the surface of the substrate is brought into contact with a chemical adsorption solution prepared by mixing a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the substrate surface. Forming a first reactive organic film on the surface of the substrate, and a chemical adsorption solution prepared by mixing the first fine particles with at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent A step of forming a second reactive organic film on the surface of the first fine particle by dispersing the alkoxysilane compound and the surface of the fine particle, and a surface of the substrate on which the first reactive organic film is formed The first fine particles coated with the second reactive organic film are brought into contact with each other and reacted, and the first fine particles coated with the extra second reactive organic film are removed by washing. 1 single particle And the second fine particles are dispersed in a chemical adsorption solution prepared by mixing at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to react the alkoxysilane compound with the surface of the fine particles. A step of forming a third reactive organic film on the surface of the second fine particles, and a surface of the substrate on which the first single-layer fine particle film coated with the second reactive organic film is formed. A step of bringing the second fine particles coated with the third reactive organic film into contact with each other, and a second step of removing the second fine particles coated with the extra third reactive organic film by washing and removing the second fine particles. The object of the present invention is to provide a cumulative fine particle film in which a single layer fine particle film is formed in a layer form on a substrate surface and the fine particles are covalently bonded to each other through an organic film formed on the fine particle surface. To do.

このとき、第1の反応性の有機膜と第3の反応性の有機膜に同じものを用いると累積微粒子膜の製造方法を単層純化する上で都合がよい。
また、第2の単層微粒子膜を形成する工程の後、同様に第1の単層微粒子膜を形成する工程と第2の単層微粒子膜を形成する工程を繰り返し行えば、多層構造の累積微粒子膜を容易に製造できる。
At this time, it is convenient to purify the accumulated fine particle film as a single layer by using the same one for the first reactive organic film and the third reactive organic film.
Further, after the step of forming the second single-layer fine particle film, if the step of forming the first single-layer fine particle film and the step of forming the second single-layer fine particle film are repeated, the multilayer structure is accumulated. A fine particle film can be easily manufactured.

さらに、第1〜3の反応性の有機膜を形成する工程の後に、それぞれ基材あるいは微粒子表面を有機溶剤で洗浄して基材や微粒子表面に共有結合した第1〜3の反応性の単分子膜を形成すると、累積微粒子膜の膜厚を均一化する上で都合がよい。   Further, after the steps of forming the first to third reactive organic films, the first to third reactive units each having a substrate or fine particle surface washed with an organic solvent and covalently bonded to the substrate or fine particle surface, respectively. Formation of a molecular film is convenient for making the film thickness of the accumulated fine particle film uniform.

さらにまた、第1および3の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むか、第1および3の反応性の有機膜がイミノ基を含み第2の反応性の有機膜がエポキシ基を含んでいると、エポキシ基とイミノ基の反応で層間で共有結合した累積微粒子膜を製造する上で都合がよい。 Furthermore, the first and third reactive organic films contain an epoxy group and the second reactive organic film contains an imino group, or the first and third reactive organic films contain an imino group and the second reactive organic film contains an imino group. When the reactive organic film contains an epoxy group, it is convenient to produce a cumulative fine particle film covalently bonded between the layers by the reaction of the epoxy group and the imino group.

さらにまた、シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いると製膜時間を短縮する上で都合がよい。
また、シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いるとさらに製膜時間を短縮できて都合がよい。
またここで、微粒子表面に形成された有機被膜を2種類用い、第1の有機膜が形成された微粒子と第2の有機膜が形成された微粒子とを交互に積層すると多層の累積微粒子膜を単層純なプロセスで製造する上で都合がよい。
Furthermore, it is convenient to use a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound in place of the silanol condensation catalyst for shortening the film formation time.
In addition, the use of a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound as a co-catalyst as a co-catalyst for the silanol condensation catalyst can further reduce the film formation time. convenient.
Also, here, two kinds of organic coatings formed on the surface of the fine particles are used, and when the fine particles formed with the first organic film and the fine particles formed with the second organic film are alternately laminated, a multilayer cumulative fine particle film is formed. It is convenient for manufacturing by a single layer pure process.

さらに、第1の有機膜と第2の有機膜が反応して共有結合を形成していると密着強度が優れた累積微粒子膜を提供する上で都合がよい。また、共有結合として、エポキシ基とイミノ基の反応で形成された−N−C−の結合を用いると、強度の点で優れた累積微粒子膜を提供する上で都合がよい。   Furthermore, when the first organic film and the second organic film react to form a covalent bond, it is convenient to provide a cumulative fine particle film having excellent adhesion strength. In addition, when a —NC— bond formed by a reaction between an epoxy group and an imino group is used as a covalent bond, it is convenient to provide a cumulative fine particle film excellent in strength.

以上説明したとおり、本発明によれば、微粒子を用い、各種微粒子本来の機能を損なうことなく、任意の基材表面に微粒子を1層のみ並べた粒子サイズレベルで均一厚みの被膜(単層微粒子膜)や微粒子を1層のみ並べた膜を複数層累積した被膜(累積微粒子膜)及びそれらの製造方法を低コストで提供できる格別の効果がある。   As described above, according to the present invention, a coating having a uniform thickness (single-layer fine particles) using fine particles and having a single particle size arranged on the surface of an arbitrary substrate without impairing the original functions of various fine particles. Film) and a film (cumulative fine particle film) obtained by accumulating a plurality of layers in which only one layer of fine particles are arranged and a manufacturing method thereof can be provided at a low cost.

本発明は、少なくとも基材表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、第1の微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて第1の微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された第1の微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の微粒子を洗浄除去して第1の単層微粒子膜を形成する工程と、第2の微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて第2の微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1の単層微粒子膜が形成された基材表面に第3の反応性の有機膜で被覆された第2の微粒子を接触させて反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の微粒子を洗浄除去して第2の単層微粒子膜を形成する工程とにより、基材表面に層状に累積され微粒子が微粒子表面に形成された有機被膜を介して層間で互いに共有結合している累積微粒子膜を提供するものである。 In the present invention, at least the substrate surface is brought into contact with a chemical adsorption solution prepared by mixing a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the substrate surface are reacted. A step of forming a first reactive organic film on the surface of the substrate; and a chemical adsorption solution prepared by mixing the first fine particles with at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent And a step of reacting the alkoxysilane compound with the surface of the fine particles to form a second reactive organic film on the surface of the first fine particles, and a surface of the substrate on which the first reactive organic film is formed. The step of bringing the first fine particles coated with the second reactive organic film into contact with each other and reacting, and the first fine particles coated with the extra second reactive organic film are removed by washing. Shaped single layer fine particle film And dispersing the second fine particles in a chemical adsorption solution prepared by mixing at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and reacting the alkoxysilane compound with the surface of the fine particles. A step of forming a third reactive organic film on the surface of the second fine particle, and a third surface of the base material on which the first single-layer fine particle film coated with the second reactive organic film is formed. A step of contacting and reacting the second fine particles coated with the reactive organic film; and a second single layer by washing and removing the excess second fine particles coated with the third reactive organic film. The step of forming the fine particle film provides a cumulative fine particle film in which the fine particles are accumulated in layers on the surface of the substrate and the fine particles are covalently bonded to each other through an organic film formed on the fine particle surface.

したがって、本発明では、2種類の被膜で被われた2種類の微粒子を用いることにより、各種微粒子本来の機能を損なうことなく、任意の基材表面に微粒子を1層のみの並べた粒子サイズレベルで均一厚みの被膜(単層微粒子膜)や微粒子を1層のみの並べた膜を複数層累積した被膜(累積微粒子膜)提供できたり、それらを簡便で低コストに製造できる方法を提供できる作用がある。   Accordingly, in the present invention, by using two kinds of fine particles covered with two kinds of coatings, a particle size level in which only one layer of fine particles is arranged on the surface of an arbitrary substrate without impairing the original functions of various fine particles. Can provide a film with a uniform thickness (single-layer fine particle film) and a film (cumulative fine particle film) obtained by accumulating a plurality of layers in which only one layer of fine particles is arranged, and a method for producing them easily and at low cost. There is.

以下、本願発明の詳細を実施例を用いて説明するが、本願発明は、これら実施例によって何ら限定されるものではない。   Hereinafter, although the detail of this invention is demonstrated using an Example, this invention is not limited at all by these Examples.

また、本発明に関する単層微粒子膜や累積微粒子膜の微粒子には、表面に親水性の酸化物あるいは水酸化物を含む導電体粒子、半導体粒子、絶縁体粒子、磁性体粒子、蛍光体粒子、光吸収粒子、光透過粒子、顔料粒子、薬用粒子、化粧品用粒子、研磨材粒子、耐摩耗材粒子等があるが、まず、代表例として光透過粒子としてシリカ微粒子を取り上げて説明する。   Further, the fine particles of the single-layer fine particle film and the cumulative fine particle film according to the present invention include conductive particles, semiconductor particles, insulator particles, magnetic particles, phosphor particles containing hydrophilic oxide or hydroxide on the surface, There are light-absorbing particles, light-transmitting particles, pigment particles, medicinal particles, cosmetic particles, abrasive particles, wear-resistant material particles, and the like. First, silica fine particles will be described as light-transmitting particles as representative examples.

まず、大きさが100nm程度の無水のシリカ微粒子1を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、下記式(化1)あるいは(化2)に、示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナート、または有機酸である酢酸を1重量%となるようそれぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサンとジメチルホルムアミド(50:50)混合溶媒に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 First, anhydrous silica fine particles 1 having a size of about 100 nm were prepared and dried well. Next, as a chemical adsorbent, a functional group having a reactive functional group at the functional site, for example, an epoxy group or imino group and an alkoxysilyl group at the other end, for example, the following formula (Chemical Formula 1) or (Chemical Formula 2) For example, 99% by weight of the drug and 1% by weight of dibutyltin diacetylacetonate or acetic acid which is an organic acid as a silanol condensation catalyst were weighed to a silicone solvent such as hexamethyldisiloxane and dimethylformamide (50 50) A chemical adsorption solution was prepared by dissolving in a mixed solvent so as to have a concentration of about 1 wt% (preferably the concentration of the chemical adsorbent is about 0.5 to 3%).

Figure 2007118276
Figure 2007118276

Figure 2007118276
Figure 2007118276

この吸着液に無水のシリカ微粒子1を混入撹拌して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、無水のシリカ微粒子表面には水酸基2が多数含まれているの(図1(a))で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒あるいは酢酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、下記式(化3)あるいは(化4)に、示したような結合を形成し、微粒子表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜3あるいはアミノ基を含む化学吸着膜4が約1ナノメートル程度の膜厚で形成された(図1(b)、1(c))。
なお、ここで、アミノ基を含む吸着剤を使用する場合には、スズ系の触媒では沈殿が生成するので、酢酸等の有機酸を用いた方がよかった。また、アミノ基はイミノ基を含んでいるが、アミノ基以外にイミノ基を含む物質には、ピロール誘導体や、イミダゾール誘導体等がある。さらに、ケチミン誘導体を用いれば、被膜形成後、加水分解により容易にアミノ基を導入できた。
Anhydrous silica fine particles 1 were mixed in the adsorbed liquid and stirred, and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since the surface of the anhydrous silica fine particles contains a large number of hydroxyl groups 2 (FIG. 1 (a)), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are composed of a silanol condensation catalyst or acetic acid. In the presence, dealcoholization (in this case, de-CH 3 OH) was reacted to form a bond as shown in the following formula (Chemical Formula 3) or (Chemical Formula 4) and chemically bonded to the surface over the entire surface of the fine particles. A chemisorption monomolecular film 3 containing an epoxy group or a chemisorption film 4 containing an amino group was formed with a film thickness of about 1 nanometer (FIGS. 1B and 1C).
Here, when an adsorbent containing an amino group is used, since a precipitate is generated with a tin-based catalyst, it is better to use an organic acid such as acetic acid. The amino group contains an imino group, but substances containing an imino group in addition to the amino group include pyrrole derivatives and imidazole derivatives. Furthermore, when a ketimine derivative was used, an amino group could be easily introduced by hydrolysis after film formation.

その後、トリクレン等の塩素系溶媒を添加して撹拌洗浄すると、表面に反応性の官能基、例えばエポキシ基を有する化学吸着単分子膜で被われたシリカ微粒子、あるいはアミノ基を有する化学吸着単分子膜で被われたシリカ微粒子をそれぞれ作製できた。 Thereafter, when a chlorine-based solvent such as trichlene is added and washed with stirring, the silica fine particles 5 covered with a chemical adsorption monomolecular film having a reactive functional group, for example, an epoxy group on the surface, or a chemical adsorption single molecule having an amino group. The silica fine particles 6 covered with the molecular film could be produced respectively.

Figure 2007118276
Figure 2007118276

Figure 2007118276
Figure 2007118276

なお、この被膜はナノメートルレベルの膜厚で極めて薄いため、粒子径を損なうことはなかった。
一方、洗浄せずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発し粒子表面に残った化学吸着剤が表面で空気中の水分と反応して、表面に前記化学吸着剤よりなる極薄のポリマー膜が形成された微粒子が得られた。
Note that this film was extremely thin with a nanometer-level film thickness, so the particle diameter was not impaired.
On the other hand, when taken out into the air without washing, the reactivity does not change substantially, but the chemical adsorbent remaining on the particle surface reacts with the moisture in the air by evaporation of the solvent, and the chemical adsorbent on the surface. Fine particles on which an extremely thin polymer film was formed were obtained.

この方法の特徴は、脱アルコール反応であるため、微粒子が有機、あるいは無機物であったとしても使用可能であり、適用範囲が広い。
なお、微粒子の素材がAuの場合には、末端のSi(OCH)3を−SH、あるいはトリアジンチオール基で置換した薬剤、例えば、H2N(CH2)11−SH、あるいはH2N(CH2)−SH等を用いれば、Sを介してアミノ基を含む単分子膜が形成された金微粒子を製造できた。一方、−SHとメトキシシリル基を両末端にもつ薬剤、例えばHS(CH)3Si(OCH)3をもちいれば、Sを介して表面にメトキシシリル基を含む単分子膜が形成された金微粒子を製造できた。さらに、この金微粒子は、メトキシシリルキを表面に持つため、本実施例の単分子膜形成と同じように基材表面に直接単層金微粒子膜を形成できた。
Since this method is characterized by a dealcoholization reaction, it can be used even if the fine particles are organic or inorganic and has a wide range of applications.
When the fine particle material is Au, the terminal Si (OCH 3 ) 3 is replaced with —SH or a triazine thiol group, for example, H 2 N (CH 2 ) 11 —SH, or H 2 N By using (CH 2 ) 2 —SH or the like, it was possible to produce gold fine particles in which a monomolecular film containing an amino group was formed via S. Meanwhile, agents with -SH and methoxy silyl groups at both terminals, for example, HS (CH 2) 3 Si ( OCH 3) 3 to be used, the monomolecular film containing trimethoxysilyl group to the surface via the S is formed Gold fine particles could be produced. Further, since the gold fine particles have methoxysilyl oxide on the surface, a single-layer gold fine particle film could be directly formed on the substrate surface in the same manner as the monomolecular film formation in this example.

実施例1と同様に、まず、ガラス基材11を用意し、よく乾燥した。次に、化学吸着剤として機能部位に反応性の官能基、例えば、エポキシ基あるいはイミノ基と他端にアルコキシシリル基を含む薬剤、例えば、前記式(化1)あるいは(化2)に、示す薬剤を99重量%、シラノール縮合触媒として、例えば、ジブチル錫ジアセチルアセトナートあるいは酢酸を1重量%となるよう,それぞれ秤量し、シリコーン溶媒、例えば、ヘキサメチルジシロキサン溶媒に1重量%程度の濃度(好ましくい化学吸着剤の濃度は、0.5〜3%程度)になるように溶かして化学吸着液を調製した。 As in Example 1, first, a glass substrate 11 was prepared and thoroughly dried. Next, as a chemical adsorbent, a functional group reactive at the functional site, for example, an epoxy group or imino group and an agent containing an alkoxysilyl group at the other end, for example, the above formula (Formula 1) or (Formula 2) For example, 99% by weight of the drug and 1% by weight of dibutyltin diacetylacetonate or acetic acid as the silanol condensation catalyst are weighed, and the concentration is about 1% by weight in a silicone solvent such as hexamethyldisiloxane solvent ( A chemical adsorbent was prepared by dissolving so that a preferable concentration of the chemical adsorbent was about 0.5 to 3%.

次に、この吸着液に、ガラス基材11を漬浸して普通の空気中で(相対湿度45%)で2時間程度反応させた。このとき、ガラス基材11表面には水酸基12が多数含まれているの(図2(a))で、前記化学吸着剤の−Si(OCH)基と前記水酸基がシラノール縮合触媒あるいは酢酸の存在下で脱アルコール(この場合は、脱CHOH)反応し、前記式(化3)あるいは(化4)に、示したような結合を形成し、ガラス基材11表面全面に亘り表面と化学結合したエポキシ基を含む化学吸着単分子膜13(図2(b))あるいはアミノ基を含む化学吸着膜14(図2(c))が約1ナノメートル程度の膜厚で形成される。 Next, the glass substrate 11 was immersed in this adsorbing solution and reacted in ordinary air (relative humidity 45%) for about 2 hours. At this time, since the surface of the glass substrate 11 contains a large number of hydroxyl groups 12 (FIG. 2 (a)), the -Si (OCH 3 ) group of the chemical adsorbent and the hydroxyl group are composed of a silanol condensation catalyst or acetic acid. In the presence, dealcoholization (in this case, de-CH 3 OH) is reacted to form bonds as shown in the above formula (Chemical Formula 3) or (Chemical Formula 4), and the surface of the glass substrate 11 is entirely covered with the surface. A chemically adsorbed monomolecular film 13 containing chemically bonded epoxy groups (FIG. 2B) or a chemically adsorbed film 14 containing amino groups (FIG. 2C) is formed with a thickness of about 1 nanometer.

その後、トリクレン等の塩素系溶媒を用いて洗浄すると、表面に反応性の官能基、例えばエポキシ基を有する化学吸着単分子膜で被われたガラス基材15、あるいは、アミノ基を有する化学吸着単分子膜で被われたガラス基材16がそれぞれ作製できた。(図2(b)、2(c)) Thereafter, when the substrate is washed with a chlorinated solvent such as trichlene, the glass substrate 15 covered with a chemisorption monomolecular film having a reactive functional group such as an epoxy group on the surface, or a chemisorption monolayer having an amino group is used. Glass substrates 16 covered with molecular films could be produced respectively. (Fig. 2 (b), 2 (c))

なお、この被膜はナノメートルレベルの膜厚で極めて薄いため、ガラス基材の透明性を損なうことはなかった。
一方、塩素系溶媒を用いた洗浄を行わずに空気中に取り出すと、反応性はほぼ変わらないが、溶媒が蒸発しガラス基材表面に残った化学吸着剤が表面で空気中の水分と反応して、単分子膜に比べるとやや膜厚は厚くなるが、表面に前記化学吸着剤よりなる極薄のポリマー膜が形成されたガラス基材が得られた。
In addition, since this film was extremely thin with a film thickness of nanometer level, the transparency of the glass substrate was not impaired.
On the other hand, if it is taken out into the air without washing with a chlorinated solvent, the reactivity will not change substantially, but the chemical adsorbent that has evaporated on the surface of the glass substrate reacts with the moisture in the air. Thus, a glass substrate having an extremely thin polymer film formed of the chemical adsorbent on the surface was obtained although the film thickness was slightly thicker than that of the monomolecular film.

次に、前記エポキシ基を有する化学吸着単分子膜で被われたガラス基材15表面に、アミノ基を有する化学吸着単分子膜で被われたシリカ微粒子(前記アミノ基を有する化学吸着単分子膜で被われたガラス基材表面に、エポキシ基を有する化学吸着単分子膜で被われたシリカ微粒子の組み合わせでもよい。)をアルコールに分散させて塗布し、100℃程度に加熱すると、ガラス基材表面のエポキシ基と接触しているシリカ微粒子表面のアミノ基が下記式(化5)に示したような反応で付加して微粒子とガラス基材は二つの単分子膜を介して結合固化した。なお、このとき、超音波を当てながらアルコールを蒸発させると、被膜の膜厚均一性を向上できた。 Next, on the surface of the glass substrate 15 covered with the chemisorption monomolecular film having an epoxy group, silica fine particles 6 covered with the chemisorption monomolecular film having an amino group (the chemisorption monomolecule having the amino group). The glass substrate surface covered with a film may be a combination of silica fine particles covered with a chemisorption monomolecular film having an epoxy group.) Dispersed in alcohol and heated to about 100 ° C. The amino group on the surface of the silica fine particle in contact with the epoxy group on the surface of the material was added by the reaction shown in the following formula (Chemical Formula 5), and the fine particle and the glass substrate were bonded and solidified through two monomolecular films. . At this time, when the alcohol was evaporated while applying ultrasonic waves, the film thickness uniformity of the coating could be improved.

Figure 2007118276
そこで、再びアルコールで基材表面を洗浄し、余分で未反応のアミノ基を有する化学吸着単分子膜で被われたシリカ微粒子を洗浄除去すると、ガラス基材表面15に共有結合したアミノ基を有する化学吸着単分子膜で被われたシリカ微粒子が1層のみ並べた状態で、且つ粒子サイズレベルで均一厚みの単層微粒子膜17が形成できた。(図3(a))
Figure 2007118276
Then, the surface of the base material is again washed with alcohol, and the silica fine particles covered with the extraneous unreacted amino group chemically adsorbed monomolecular film are washed and removed to have the amino group covalently bonded to the glass base material surface 15. A single-layer fine particle film 17 having a uniform thickness at the particle size level could be formed in a state where only one layer of silica fine particles covered with the chemisorption monomolecular film was arranged. (Fig. 3 (a))

一方、アミノ基を有する化学吸着単分子膜で被われたガラス基材表面に、エポキシ基を有する化学吸着単分子膜で被われたシリカ微粒子の被膜を形成した場合には、ガラス基材表面に共有結合したエポキシ基を有する化学吸着単分子膜で被われたシリカ微粒子が1層のみ並べた状態で、且つ粒子サイズレベルで均一厚みの単層微粒子膜が形成できた。
ここで、シリカ微粒子の単層微粒子膜が形成されたガラス基材の光透過率を測定すると、シリカ微粒子の単層微粒子膜が形成されていないガラス基材より2%程度光透過率が良くなっていた。つまりこの被膜は、反射防止膜の機能があった。
また、シリカ微粒子の単層微粒子膜の厚みが100nm程度であり、極めて均一性が良かったので、干渉色も全く見えなかった
On the other hand, when a coating of silica fine particles covered with a chemisorption monomolecular film having an epoxy group is formed on the surface of a glass substrate covered with a chemisorption monomolecular film having an amino group, A single-layer fine particle film having a uniform thickness at the particle size level could be formed with only one layer of silica fine particles covered with a chemically adsorbed monomolecular film having a covalently bonded epoxy group.
Here, when the light transmittance of the glass substrate on which the single-layer fine particle film of silica fine particles is formed is measured, the light transmittance is improved by about 2% compared to the glass substrate on which the single-layer fine particle film of silica fine particles is not formed. It was. That is, this coating functioned as an antireflection film.
Further, the thickness of the single layer fine particle film of silica fine particles was about 100 nm, and the uniformity was very good, so no interference color was seen at all.

さらに、微粒子膜の膜厚を厚くしたい場合、実施例3に引き続き、共有結合したアミノ基を有する化学吸着単分子膜で被われたシリカ微粒子が1層のみ並べた状態で、且つ粒子サイズレベルで均一厚みの単層微粒子膜17が形成されたガラス基材表面15に、エポキシ基を有する化学吸着単分子膜で被われたシリカ微粒子をアルコールに分散させて塗布し、100℃程度に加熱すると、アミノ基を有する化学吸着単分子膜で被われたシリカ微粒子の単層微粒子膜が形成されたガラス基材表面のアミノ基と接触しているシリカ微粒子表面のエポキシ基が前記式(化5)に示したような反応で付加して、ガラス基材表面でアミノ基を有する化学吸着単分子膜で被われた微粒子とエポキシ基を有する化学吸着単分子膜で被われたシリカ微粒子は、二つの単分子膜を介して結合固化した。 Further, when it is desired to increase the film thickness of the fine particle film, the silica fine particles covered with the chemically adsorbed monomolecular film having a covalently bonded amino group are arranged in a state where only one layer is arranged, and at the particle size level. When silica fine particles 5 covered with a chemically adsorbed monomolecular film having an epoxy group are dispersed and applied to a glass substrate surface 15 on which a single-layer fine particle film 17 having a uniform thickness is formed and heated to about 100 ° C. The epoxy group on the surface of the silica fine particle in contact with the amino group on the surface of the glass substrate on which the single layer fine particle film of the silica fine particle covered with the chemically adsorbed monomolecular film having an amino group is formed is represented by the above formula (Formula 5). The fine particles covered with the chemically adsorbed monomolecular film having amino groups and the fine silica particles covered with the chemically adsorbed monomolecular film having epoxy groups on the surface of the glass substrate are added by the reaction shown in FIG. One of bound solidified through the monomolecular film.

そこで、再びクロロホルムで基材表面を洗浄し、余分で未反応のエポキシ基を有する化学吸着単分子膜で被われたシリカ微粒子を洗浄除去すると、ガラス基材表面15にアミノ基を有する化学吸着単分子膜で被われた微粒子を介して共有結合した2層目のシリカ微粒子が1層のみ並んだ状態で、且つ粒子サイズレベルで均一厚みの2層構造の単層微粒子膜18が形成できた。(図3(b))
以下同様に、アミノ基を有する化学吸着単分子膜で被われたシリカ微粒子とエポキシ基を有する化学吸着単分子膜で被われたシリカ微粒子を交互に積層すると、多層構造の微粒子の被膜も累積製造できた。
Therefore, again washing the substrate surface with chloroform, extra, when the silica fine particles covered by the chemical adsorption monomolecular film having unreacted epoxy groups washed off, chemisorption single having an amino group on the surface of the glass base material 15 A single-layer fine particle film 18 having a two-layer structure with a uniform thickness at the particle size level was formed with only one layer of the second layer silica fine particles covalently bonded via the fine particles covered with the molecular film. (Fig. 3 (b))
Similarly, when the silica fine particles covered with the chemisorption monomolecular film having amino groups and the silica fine particles covered with the chemisorption monomolecular film having epoxy groups are alternately laminated, the coating of the fine particles having a multilayer structure is also cumulatively produced. did it.

なお、上記実施例1および2では、反応性基を含む化学吸着剤として式(化1)あるいは(化2)に,示した物質を用いたが、上記のもの以外にも、下記(1)〜(16)に示した物質が利用できた。
(1) (CHOCH)CH2O(CH2)Si(OCH)3
(2) (CHOCH)CH2O(CH2)11Si(OCH)3
(3) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(4) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(5) (CHCHOCH(CH)CH(CH2)Si(OCH)3
(6) (CH2OCH)CH2O(CH2)Si(OC)3
(7) (CHOCH)CH2O(CH2)11Si(OC)3
(8) (CHCHOCH(CH)CH(CH2)Si(OC)3
(9) (CHCHOCH(CH)CH(CH2)Si(OC)3
(10) (CHCHOCH(CH)CH(CH2)Si(OC)3
(11) H2N (CH2)Si(OCH)3
(12) H2N (CH2)Si(OCH)3
(13) H2N (CH2)Si(OCH)3
(14) H2N (CH2)Si(OC)3
(15) H2N (CH2)Si(OC)3
(16) H2N (CH2)Si(OC)3
In Examples 1 and 2, the substances shown in the formula (Chemical Formula 1) or (Chemical Formula 2) were used as chemical adsorbents containing reactive groups. In addition to the above, the following (1) The substances shown in (16) were available.
(1) (CH 2 OCH) CH 2 O (CH 2 ) 7 Si (OCH 3 ) 3
(2) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OCH 3 ) 3
(3) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 2 Si (OCH 3 ) 3
(4) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OCH 3) 3
(5) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 6 Si (OCH 3) 3
(6) (CH2OCH) CH 2 O (CH 2) 7 Si (OC 2 H 5) 3
(7) (CH 2 OCH) CH 2 O (CH 2 ) 11 Si (OC 2 H 5 ) 3
(8) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 2 Si (OC 2 H 5) 3
(9) (CH 2 CHOCH ( CH 2) 2) CH (CH 2) 4 Si (OC 2 H 5) 3
(10) (CH 2 CHOCH (CH 2 ) 2 ) CH (CH 2 ) 6 Si (OC 2 H 5 ) 3
(11) H 2 N (CH 2 ) 5 Si (OCH 3 ) 3
(12) H 2 N (CH 2 ) 7 Si (OCH 3 ) 3
(13) H 2 N (CH 2 ) 9 Si (OCH 3 ) 3
(14) H 2 N (CH 2 ) 5 Si (OC 2 H 5 ) 3
(15) H 2 N (CH 2 ) 7 Si (OC 2 H 5 ) 3
(16) H 2 N (CH 2 ) 9 Si (OC 2 H 5 ) 3

ここで、(CHOCH)−基は、下記式(化6)で表される官能基を表し、(CHCHOCH(CH)CH−基は、下記式(化7)で表される官能基を表す。 Here, the (CH 2 OCH) — group represents a functional group represented by the following formula (Formula 6), and the (CH 2 CHOCH (CH 2 ) 2 ) CH— group is represented by the following formula (Formula 7). Represents a functional group.

Figure 2007118276
Figure 2007118276

Figure 2007118276
Figure 2007118276

なお、実施例1および2に置いて、シラノール縮合触媒には、カルボン酸金属塩、カルボン酸エステル金属塩、カルボン酸金属塩ポリマー、カルボン酸金属塩キレート、チタン酸エステル及びチタン酸エステルキレート類が利用可能である。さらに具体的には、酢酸第1錫、ジブチル錫ジラウレート、ジブチル錫ジオクテート、ジブチル錫ジアセテート、ジオクチル錫ジラウレート、ジオクチル錫ジオクテート、ジオクチル錫ジアセテート、ジオクタン酸第1錫、ナフテン酸鉛、ナフテン酸コバルト、2−エチルヘキセン酸鉄、ジオクチル錫ビスオクチリチオグリコール酸エステル塩、ジオクチル錫マレイン酸エステル塩、ジブチル錫マレイン酸塩ポリマー、ジメチル錫メルカプトプロピオン酸塩ポリマー、ジブチル錫ビスアセチルアセテート、ジオクチル錫ビスアセチルラウレート、テトラブチルチタネート、テトラノニルチタネート及びビス(アセチルアセトニル)ジープロピルチタネートを用いることが可能であった。 In Examples 1 and 2, silanol condensation catalysts include carboxylic acid metal salts, carboxylic acid ester metal salts, carboxylic acid metal salt polymers, carboxylic acid metal salt chelates, titanate esters, and titanate ester chelates. Is available. More specifically, stannous acetate, dibutyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, dioctyltin dilaurate, dioctyltin dioctate, dioctyltin diacetate, stannous dioctanoate, lead naphthenate, cobalt naphthenate , Iron 2-ethylhexenoate, dioctyltin bisoctylthioglycolate, dioctyltin maleate, dibutyltin maleate polymer, dimethyltin mercaptopropionate polymer, dibutyltin bisacetylacetate, dioctyltin bisacetyl Laurate, tetrabutyl titanate, tetranonyl titanate and bis (acetylacetonyl) dipropyl titanate could be used.

また、膜形成溶液の溶媒としては、水を含まない有機塩素系溶媒、炭化水素系溶媒、あるいはフッ化炭素系溶媒やシリコーン系溶媒、あるいはそれら混合物を用いることが可能であった。なお、洗浄を行わず、溶媒を蒸発させて粒子濃度を上げようとする場合には、溶媒の沸点は50〜250℃程度がよい。さらに、吸着剤がアルコキシシラン系の場合で且つ溶媒を蒸発させて有機被膜を形成する場合には、前記溶媒に加え、メタノール、エタノール、プロパノール等のアルコール系溶媒、あるいはそれら混合物が使用できた。 Further, as a solvent for the film-forming solution, it is possible to use an organic chlorine-based solvent, a hydrocarbon-based solvent, a fluorinated carbon-based solvent, a silicone-based solvent, or a mixture thereof that does not contain water. In addition, when it is going to raise particle concentration by evaporating a solvent, without wash | cleaning, the boiling point of a solvent is good at about 50-250 degreeC. Further, when the adsorbent is an alkoxysilane type and the organic film is formed by evaporating the solvent, an alcohol type solvent such as methanol, ethanol, propanol, or a mixture thereof can be used in addition to the solvent.

具体的に使用可能なものは、クロロシラン系非水系の石油ナフサ、ソルベントナフサ、石油エーテル、石油ベンジン、イソパラフィン、ノルマルパラフィン、デカリン、工業ガソリン、ノナン、デカン、灯油、ジメチルシリコーン、フェニルシリコーン、アルキル変性シリコーン、ポリエーテルシリコーン、ジメチルホルムアミド等を挙げることができる。 Specifically usable are chlorosilane-based non-aqueous petroleum naphtha, solvent naphtha, petroleum ether, petroleum benzine, isoparaffin, normal paraffin, decalin, industrial gasoline, nonane, decane, kerosene, dimethyl silicone, phenyl silicone, alkyl modified Examples thereof include silicone, polyether silicone, and dimethylformamide.

また、フッ化炭素系溶媒には、フロン系溶媒や、フロリナート(3M社製品)、アフルード(旭ガラス社製品)等がある。なお、これらは1種単層独で用いても良いし、良く混ざるものなら2種以上を組み合わせてもよい。さらに、クロロホルム等有機塩素系の溶媒を添加しても良い。 Fluorocarbon solvents include fluorocarbon solvents, Fluorinert (product of 3M), Afludo (product of Asahi Glass). These may be used alone or in combination of two or more if mixed well. Further, an organic chlorine solvent such as chloroform may be added.

一方、上述のシラノール縮合触媒の代わりに、ケチミン化合物又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いた場合、同じ濃度でも処理時間を半分〜2/3程度まで短縮できた。 On the other hand, when a ketimine compound or organic acid, aldimine compound, enamine compound, oxazolidine compound, aminoalkylalkoxysilane compound is used instead of the above-mentioned silanol condensation catalyst, the treatment time is reduced to about half to 2/3 even at the same concentration. did it.

さらに、シラノール縮合触媒とケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を混合(1:9〜9:1範囲で使用可能だが、通常1:1前後が好ましい。)して用いると、処理時間をさらに数倍早く(30分程度まで)でき、製膜時間を数分の一まで短縮できる。 Furthermore, a silanol condensation catalyst and a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound can be used in a range of 1: 9 to 9: 1. )), The processing time can be increased several times faster (up to about 30 minutes), and the film forming time can be reduced to a fraction of a minute.

例えば、シラノール触媒であるジブチル錫オキサイドをケチミン化合物であるジャパンエポキシレジン社のH3に置き換え、その他の条件は同一にしてみたが、反応時間を1時間程度にまで短縮できた他は、ほぼ同様の結果が得られた。 For example, dibutyltin oxide, which is a silanol catalyst, was replaced with H3 from Japan Epoxy Resin, which is a ketimine compound, and the other conditions were the same, but the reaction time was reduced to about 1 hour. Results were obtained.

さらに、シラノール触媒を、ケチミン化合物であるジャパンエポキシレジン社のH3と、シラノール触媒であるジブチル錫ビスアセチルアセトネートの混合物(混合比は1:1)に置き換え、その他の条件は同一にしてみたが、反応時間を30分程度に短縮できた他は、ほぼ同様の結果が得られた。 Furthermore, the silanol catalyst was replaced with a mixture of ketimine compound Japan Epoxy Resin H3 and silanol catalyst dibutyltin bisacetylacetonate (mixing ratio is 1: 1), and other conditions were the same. The same results were obtained except that the reaction time could be shortened to about 30 minutes.

したがって、以上の結果から、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物がシラノール縮合触媒より活性が高いことが明らかとなった。 Therefore, the above results revealed that ketimine compounds, organic acids, aldimine compounds, enamine compounds, oxazolidine compounds, and aminoalkylalkoxysilane compounds are more active than silanol condensation catalysts.

さらにまた、ケチミン化合物や有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物の内の1つとシラノール縮合触媒を混合して用いると、さらに活性が高くなることが確認された。 Furthermore, it was confirmed that the activity is further increased when one of a ketimine compound, an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is mixed with a silanol condensation catalyst.

なお、ここで、利用できるケチミン化合物は特に限定されるものではないが、例えば、2,5,8−トリアザ−1,8−ノナジエン、3,11−ジメチル−4,7,10−トリアザ−3,10−トリデカジエン、2,10−ジメチル−3,6,9−トリアザ−2,9−ウンデカジエン、2,4,12,14−テトラメチル−5,8,11−トリアザ−4,11−ペンタデカジエン、2,4,15,17−テトラメチル−5,8,11,14−テトラアザ−4,14−オクタデカジエン、2,4,20,22−テトラメチル−5,12,19−トリアザ−4,19−トリエイコサジエン等がある。 Here, the ketimine compound that can be used is not particularly limited. For example, 2,5,8-triaza-1,8-nonadiene, 3,11-dimethyl-4,7,10-triaza-3 , 10-tridecadiene, 2,10-dimethyl-3,6,9-triaza-2,9-undecadiene, 2,4,12,14-tetramethyl-5,8,11-triaza-4,11-pentadeca Diene, 2,4,15,17-tetramethyl-5,8,11,14-tetraaza-4,14-octadecadiene, 2,4,20,22-tetramethyl-5,12,19-triaza- 4,19-trieicosadiene and the like.

また、利用できる有機酸としても特に限定されるものではないが、例えば、ギ酸、あるいは酢酸、プロピオン酸、ラク酸、マロン酸等があり、ほぼ同様の効果があった。 Further, the organic acid that can be used is not particularly limited, but there are, for example, formic acid, acetic acid, propionic acid, lactic acid, malonic acid, and the like, which have almost the same effects.

上記実施例1〜4では、シリカ微粒子とガラス基材を例として説明したが、本発明は、表面に活性水素、すなわち水酸基の水素やアミノ基あるいはイミノ基の水素などを含んだ微粒子で有れば、どのような微粒子や基材にでも適用可能である。 In the above Examples 1 to 4, the silica fine particles and the glass substrate have been described as examples. However, the present invention may be fine particles containing active hydrogen on the surface, that is, hydrogen of a hydroxyl group, hydrogen of an amino group or imino group. For example, it can be applied to any fine particle or substrate.

具体的には、「無機微粒子」として、導体微粒子、半導体微粒子、絶縁体微粒子、磁気微粒子、蛍光体微粒子、光吸収微粒子、光透過微粒子、顔料微粒子、「有機微粒子」として、有機蛍光体微粒子、有機光吸収微粒子、有機光透過微粒子、有機顔料微粒子、薬物微粒子、「有機−無機ハイブリッド微粒子」として、DDS(Drug Delivery System)用薬物微粒子、化粧用微粒子、有機−無機ハイブリッド顔料微粒子等の積層体に、また、「基材」には樹脂板、金属板、セラミックス板等に適用可能である。 Specifically, as “inorganic fine particles”, conductive fine particles, semiconductor fine particles, insulator fine particles, magnetic fine particles, fluorescent fine particles, light absorbing fine particles, light transmitting fine particles, pigment fine particles, “organic fine particles”, organic fluorescent fine particles, Organic light-absorbing fine particles, organic light-transmitting fine particles, organic pigment fine particles, drug fine particles, and “organic-inorganic hybrid fine particles” such as drug fine particles for DDS (Drug Delivery System), cosmetic fine particles, organic-inorganic hybrid pigment fine particles, etc. In addition, the “substrate” can be applied to a resin plate, a metal plate, a ceramic plate, and the like.

本発明の第1の実施例における微粒子表面の反応を分子レベルまで拡大した概念図であり、(a)は反応前の微粒子表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。FIG. 2 is a conceptual diagram in which the reaction on the surface of the fine particles in the first embodiment of the present invention is expanded to the molecular level, (a) is a view of the surface of the fine particles before the reaction, and (b) is a monomolecular film containing an epoxy group. (C) shows a view after a monomolecular film containing an amino group is formed. 本発明の第2の実施例におけるガラス基材表面の反応を分子レベルまで拡大した概念図であり、(a)は反応前の表面の図、(b)は、エポキシ基を含む単分子膜が形成された後の図、(c)は、アミノ基を含む単分子膜が形成された後の図を示す。It is the conceptual diagram which expanded reaction of the glass substrate surface in the 2nd Example of this invention to the molecular level, (a) is the figure of the surface before reaction, (b) is a monomolecular film containing an epoxy group. The figure after formation, (c) shows the figure after the monomolecular film containing an amino group is formed. 本発明の第3および第4の実施例におけるガラス基材表面の反応を分子レベルまで拡大した概念図であり、(a)は単層微粒子膜が形成された基材表面の図、(b)は、単層微粒子膜が2層形成された基材表面の図を示す。It is the conceptual diagram which expanded the reaction of the glass substrate surface in the 3rd and 4th Example of this invention to a molecular level, (a) is a figure of the substrate surface in which the single layer fine particle film was formed, (b) These show the figure of the base-material surface in which two single-layer fine particle films | membranes were formed.

符号の説明Explanation of symbols

1 シリカ微粒子
2 水酸基
3 エポキシ基を含む単分子膜
4 アミノ基を含む単分子膜
エポキシ基を含む単分子膜で被われたシリカ微粒子
アミノ基を含む単分子膜で被われたシリカ微粒子
11 ガラス基材
12 水酸基
13 エポキシ基を含む単分子膜
14 アミノ基を含む単分子膜
15 エポキシ基を含む単分子膜で被われたガラス基材
16 アミノ基を含む単分子膜で被われたガラス基材
17 単層微粒子膜
18 2層構造の単層微粒子膜
DESCRIPTION OF SYMBOLS 1 Silica fine particle 2 Hydroxyl group 3 Monomolecular film containing an epoxy group 4 Monomolecular film containing an amino group
Silica fine particles covered with monomolecular film containing 5 epoxy groups
Silica fine particles covered with monomolecular film containing 6 amino group 11 Glass substrate 12 Hydroxyl group
13 Monomolecular film containing an epoxy group 14 Monomolecular film containing an amino group
Glass substrate covered with a monomolecular film containing 15 epoxy groups
Glass substrate covered with monomolecular film containing 16 amino groups
17 single layer fine particle film
18 Single-layer fine particle film of two-layer structure

Claims (19)

基材表面に1層形成された微粒子の膜が基材表面に形成された第1の有機膜と微粒子表面に形成された第2の有機膜を介して互いに共有結合していることを特徴とする単層微粒子膜。 A film of fine particles formed on one surface of a substrate is covalently bonded to each other via a first organic film formed on the surface of the substrate and a second organic film formed on the surface of the particles. Single layer fine particle film. 基材表面に形成された第1の有機被膜と微粒子表面に形成された第2の有機膜が互いに異なることを特徴とする請求項1記載の単層微粒子膜。 The single-layer fine particle film according to claim 1, wherein the first organic film formed on the surface of the substrate and the second organic film formed on the surface of the fine particle are different from each other. 共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする請求項1記載の単層微粒子膜。 The single-layer fine particle film according to claim 1, wherein the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group. 基材表面に形成された第1の有機被膜と微粒子表面に形成された第2の有機膜が単分子膜で構成されていることを特徴とする請求項1および2記載の単層微粒子膜。 The single-layer fine particle film according to claim 1 or 2, wherein the first organic film formed on the substrate surface and the second organic film formed on the fine particle surface are formed of a monomolecular film. 基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された微粒子を洗浄除去することを特徴とする単層微粒子膜の製造方法。 The substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to cause the alkoxysilane compound and the substrate surface to react with each other. A step of forming a first reactive organic film; and an alkoxysilane compound by dispersing fine particles in a chemical adsorption liquid prepared by mixing at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. Forming a second reactive organic film on the surface of the fine particle by reacting the surface of the fine particle with the second reactive organic film on the surface of the substrate on which the first reactive organic film is formed A method for producing a single-layer fine particle film, comprising the step of bringing the fine particles into contact with each other and reacting, and removing the fine particles coated with an extra second reactive organic film. 基材表面を少なくとも第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程、および微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて微粒子表面に第2の反応性の有機膜を形成する工程の後に、それぞれ基材および微粒子表面を有機溶剤で洗浄して基材及び微粒子表面に共有結合した第1及び第2の反応性の単分子膜を形成することを特徴とする請求項5記載の単層微粒子膜の製造方法。 The substrate surface is brought into contact with a chemical adsorption solution prepared by mixing at least a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to cause the alkoxysilane compound and the substrate surface to react with each other. A step of forming a first reactive organic film; and an alkoxysilane compound by dispersing fine particles in a chemical adsorption solution prepared by mixing at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent. After the step of reacting the surface of the fine particles with the surface of the fine particles to form the second reactive organic film on the surface of the fine particles, the first and 6. The method for producing a single-layer fine particle film according to claim 5, wherein a second reactive monomolecular film is formed. 第1の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むか、第1の反応性の有機膜がイミノ基を含み第2の反応性の有機膜がエポキシ基を含むことを特徴とする請求項5記載の単層微粒子膜の製造方法。 The first reactive organic film contains an epoxy group and the second reactive organic film contains an imino group, or the first reactive organic film contains an imino group and the second reactive organic film is 6. The method for producing a single-layer fine particle film according to claim 5, comprising an epoxy group. 第1の反応性の単分子膜がエポキシ基を含み第2の反応性の単分子膜がイミノ基を含むか、第1の反応性の単分子膜がイミノ基を含み第2の反応性の単分子膜がエポキシ基を含むことを特徴とする請求項6記載の単層微粒子膜の製造方法。 The first reactive monolayer contains an epoxy group and the second reactive monolayer contains an imino group, or the first reactive monolayer contains an imino group and the second reactive monolayer The method for producing a monolayer fine particle film according to claim 6, wherein the monomolecular film contains an epoxy group. 基材表面に層状に累積され微粒子が微粒子表面に形成された有機被膜を介して層間で互いに共有結合していることを特徴とする累積微粒子膜。 A cumulative fine particle film characterized in that the fine particles are accumulated in layers on the surface of a base material and are covalently bonded to each other through an organic film formed on the fine particle surface. 微粒子表面に形成された有機被膜が2種類有り、第1の有機膜が形成された微粒子と第2の有機膜が形成された微粒子とが交互に積層されていることを特徴とする請求項9記載の累積微粒子膜。 10. There are two types of organic coatings formed on the surface of the fine particles, and the fine particles on which the first organic film is formed and the fine particles on which the second organic film is formed are alternately laminated. The cumulative particulate film described. 第1の有機膜と第2の有機膜が反応して共有結合を形成していることを特徴とする請求項10記載の累積微粒子膜。 The cumulative fine particle film according to claim 10, wherein the first organic film and the second organic film react to form a covalent bond. 共有結合が、エポキシ基とイミノ基の反応で形成された−N−C−の結合であることを特徴とする請求項9記載の累積微粒子膜。 The cumulative fine particle film according to claim 9, wherein the covalent bond is a —N—C— bond formed by a reaction between an epoxy group and an imino group. 少なくとも基材表面を第1のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液に接触させてアルコキシシラン化合物と基材表面を反応させて基材表面に第1の反応性の有機膜を形成する工程と、第1の微粒子を少なくとも第2のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて第1の微粒子表面に第2の反応性の有機膜を形成する工程と、第1の反応性の有機膜の形成された基材表面に第2の反応性の有機膜で被覆された第1の微粒子を接触させて反応させる工程と、余分な第2の反応性の有機膜で被覆された第1の微粒子を洗浄除去して第1の単層微粒子膜を形成する工程と、第2の微粒子を少なくとも第3のアルコキシシラン化合物とシラノール縮合触媒と非水系の有機溶媒を混合して作成した化学吸着液中に分散させてアルコキシシラン化合物と微粒子表面を反応させて第2の微粒子表面に第3の反応性の有機膜を形成する工程と、第2の反応性の有機膜で被覆された第1の単層微粒子膜が形成された基材表面に第3の反応性の有機膜で被覆された第2の微粒子を接触させて反応させる工程と、余分な第3の反応性の有機膜で被覆された第2の微粒子を洗浄除去して第2の単層微粒子膜を形成する工程とを含むことを特徴とする累積微粒子膜の製造方法。 At least the base material surface is brought into contact with a chemical adsorption solution prepared by mixing a first alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to cause the alkoxysilane compound and the base material surface to react with each other. A step of forming a reactive organic film, and a first fine particle dispersed in a chemical adsorption solution prepared by mixing at least a second alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent to obtain an alkoxy A step of forming a second reactive organic film on the surface of the first fine particle by reacting the silane compound with the surface of the fine particle; and a second reactivity on the surface of the substrate on which the first reactive organic film is formed. A step of bringing the first fine particles coated with the organic film into contact with each other, and a first single layer fine particle film by washing and removing the first fine particles coated with the extra second reactive organic film Forming the step and The second fine particles are dispersed in a chemical adsorption solution prepared by mixing at least a third alkoxysilane compound, a silanol condensation catalyst, and a non-aqueous organic solvent, and the alkoxysilane compound and the surface of the fine particles are reacted to produce the second fine particles. A step of forming a third reactive organic film on the surface, and a third reactive organic film on the surface of the substrate on which the first single-layer fine particle film coated with the second reactive organic film is formed. A step of contacting and reacting the second fine particles coated with the film, and a second single-layer fine particle film formed by washing and removing the second fine particles coated with the extra third reactive organic film And a process for producing the cumulative fine particle film. 第1の反応性の有機膜と第3の反応性の有機膜が同じものであることを特徴とする請求項13記載の累積微粒子膜の製造方法。 14. The method according to claim 13, wherein the first reactive organic film and the third reactive organic film are the same. 第2の単層微粒子膜を形成する工程の後、同様に第1の単層微粒子膜を形成する工程と第2の単層微粒子膜を形成する工程を繰り返し行うことを特徴とする請求項13記載の多層構造の累積微粒子膜の製造方法。 14. The step of forming the first single-layer fine particle film and the step of forming the second single-layer fine particle film are similarly performed after the step of forming the second single-layer fine particle film. A method for producing a cumulative fine particle film having a multilayer structure as described. 第1〜3の反応性の有機膜を形成する工程の後に、それぞれ基材あるいは微粒子表面を有機溶剤で洗浄して基材や微粒子表面に共有結合した第1〜3の反応性の単分子膜を形成することを特徴とする請求項13記載の累積微粒子膜の製造方法。 After the steps of forming the first to third reactive organic films, the first to third reactive monomolecular films in which the substrate or the surface of the fine particles are washed with an organic solvent and covalently bonded to the surface of the substrate or the fine particles, respectively. The method of manufacturing a cumulative fine particle film according to claim 13, wherein: 第1および3の反応性の有機膜がエポキシ基を含み第2の反応性の有機膜がイミノ基を含むか、第1および3の反応性の有機膜がイミノ基を含み第2の反応性の有機膜がエポキシ基を含むことを特徴とする請求項13記載の累積微粒子膜の製造方法。 The first and third reactive organic films contain an epoxy group and the second reactive organic film contains an imino group, or the first and third reactive organic films contain an imino group and the second reactivity The method according to claim 13, wherein the organic film contains an epoxy group. シラノール縮合触媒の代わりに、ケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物を用いることを特徴とする請求項5および13に記載の単層微粒子膜および累積微粒子膜の製造方法。 14. The single-layer fine particle film and cumulative fine particles according to claim 5, wherein a ketimine compound, or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, or an aminoalkylalkoxysilane compound is used instead of the silanol condensation catalyst. A method for producing a membrane. シラノール縮合触媒に助触媒としてケチミン化合物、又は有機酸、アルジミン化合物、エナミン化合物、オキサゾリジン化合物、アミノアルキルアルコキシシラン化合物から選ばれる少なくとも1つを混合して用いることを特徴とする請求項5および13に記載の単層微粒子膜および累積微粒子膜の製造方法。





















14. The method according to claim 5, wherein at least one selected from a ketimine compound or an organic acid, an aldimine compound, an enamine compound, an oxazolidine compound, and an aminoalkylalkoxysilane compound is used as a co-catalyst for the silanol condensation catalyst. The manufacturing method of the single-layer fine particle film and cumulative fine particle film of description.





















JP2005311031A 2005-10-26 2005-10-26 Single-layer fine particle film, cumulated fine particle film and manufacturing method of them Pending JP2007118276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311031A JP2007118276A (en) 2005-10-26 2005-10-26 Single-layer fine particle film, cumulated fine particle film and manufacturing method of them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311031A JP2007118276A (en) 2005-10-26 2005-10-26 Single-layer fine particle film, cumulated fine particle film and manufacturing method of them

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007198341A Division JP2007290406A (en) 2007-07-31 2007-07-31 Single-layer fine particle film, cumulated fine particle film and manufacturing method of them

Publications (1)

Publication Number Publication Date
JP2007118276A true JP2007118276A (en) 2007-05-17

Family

ID=38142651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311031A Pending JP2007118276A (en) 2005-10-26 2005-10-26 Single-layer fine particle film, cumulated fine particle film and manufacturing method of them

Country Status (1)

Country Link
JP (1) JP2007118276A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128605A (en) * 2005-11-04 2007-05-24 Kagawa Univ Magnetic recording medium, its manufacturing method and magnetic recording and reading device using the same
WO2008111536A1 (en) * 2007-03-09 2008-09-18 Kazufumi Ogawa Patterned fine particle film and process for producing patterned fine particle film
WO2008111533A1 (en) * 2007-03-09 2008-09-18 Kazufumi Ogawa Patterned insulating fine particle film, electronic component using the patterned insulating fine particle film, micromachine, optical component, and process for producing patterned insulating fine particle film
WO2008149931A1 (en) * 2007-06-06 2008-12-11 Kazufumi Ogawa Phosphor paste, method for producing the same, phosphor film using the phosphor paste, and method for producing phosphor film
WO2008149470A1 (en) * 2007-06-07 2008-12-11 Kazufumi Ogawa Monolayer fluor fine particle film, fluor fine particle film-layered body, and manufacturing method thereof and display device and photoreceptor and sensor, which are made by using them
WO2008149934A1 (en) * 2007-06-06 2008-12-11 Kazufumi Ogawa Film of fluorescent-substance fine particles, process for producing the same, and display, photosensitive material, and sensor each employing film of fluorescent-substance fine particles
WO2008149471A1 (en) * 2007-06-07 2008-12-11 Kazufumi Ogawa Fluor fine particle, manufacturing method thereof, and fluor covering film using them
WO2008149469A1 (en) * 2007-06-07 2008-12-11 Kazufumi Ogawa Pattern-like fluor fine particle film and manufacturing method thereof
WO2009001471A1 (en) * 2007-06-22 2008-12-31 Kazufumi Ogawa Fine silicon particle and method of manufacture and solar cell using the fine silicon particle and method of manufacture
WO2009022436A1 (en) * 2007-08-16 2009-02-19 Kazufumi Ogawa Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
JP2014024990A (en) * 2012-07-27 2014-02-06 Ishikawa Prefecture Adhesive, composite film material, and film formation method
US8951627B2 (en) 2007-06-06 2015-02-10 Empire Technology Development Llc Fluorescent fine particle films and display devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337654A (en) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd Production of chemisorption film, and chemisorption fluid used therefor
JPH10279705A (en) * 1997-04-09 1998-10-20 Mitsubishi Chem Corp Flame-retardant polyester elastomer sheet and its use
JP2002127354A (en) * 2000-10-24 2002-05-08 Fuji Photo Film Co Ltd Method and apparatus for offset printing
JP2003145042A (en) * 2001-11-08 2003-05-20 Matsushita Electric Ind Co Ltd Production method of coating film
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2004010849A (en) * 2002-06-11 2004-01-15 Asahi Denka Kogyo Kk Curing composition for optical material
JP2004149659A (en) * 2002-10-30 2004-05-27 Asahi Glass Co Ltd Photochromic pigment, film-forming composition and article having photochromic film
JP2005280020A (en) * 2004-03-29 2005-10-13 Kazufumi Ogawa Mold, its production method, and molding produced by using it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337654A (en) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd Production of chemisorption film, and chemisorption fluid used therefor
JPH10279705A (en) * 1997-04-09 1998-10-20 Mitsubishi Chem Corp Flame-retardant polyester elastomer sheet and its use
JP2002127354A (en) * 2000-10-24 2002-05-08 Fuji Photo Film Co Ltd Method and apparatus for offset printing
JP2003168606A (en) * 2001-01-24 2003-06-13 Matsushita Electric Ind Co Ltd Fine particle array, its manufacturing method and device using the method
JP2003145042A (en) * 2001-11-08 2003-05-20 Matsushita Electric Ind Co Ltd Production method of coating film
JP2004010849A (en) * 2002-06-11 2004-01-15 Asahi Denka Kogyo Kk Curing composition for optical material
JP2004149659A (en) * 2002-10-30 2004-05-27 Asahi Glass Co Ltd Photochromic pigment, film-forming composition and article having photochromic film
JP2005280020A (en) * 2004-03-29 2005-10-13 Kazufumi Ogawa Mold, its production method, and molding produced by using it

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007128605A (en) * 2005-11-04 2007-05-24 Kagawa Univ Magnetic recording medium, its manufacturing method and magnetic recording and reading device using the same
WO2008111536A1 (en) * 2007-03-09 2008-09-18 Kazufumi Ogawa Patterned fine particle film and process for producing patterned fine particle film
WO2008111533A1 (en) * 2007-03-09 2008-09-18 Kazufumi Ogawa Patterned insulating fine particle film, electronic component using the patterned insulating fine particle film, micromachine, optical component, and process for producing patterned insulating fine particle film
US9200012B2 (en) 2007-03-09 2015-12-01 Empire Technology Development Llc Patterned fine particle film structures
US8568862B2 (en) 2007-03-09 2013-10-29 Empire Technology Development Llc Patterned fine particle film structures
US20100183880A1 (en) * 2007-06-06 2010-07-22 Kazufumi Ogawa Fluorescent fine particle films
JP2008303278A (en) * 2007-06-06 2008-12-18 Kagawa Univ Phosphor fine particle film, method for producing the same, display using the phosphor fine particle film, photoreceptor, and sensor
JP2008303277A (en) * 2007-06-06 2008-12-18 Kagawa Univ Phosphor paste, its production method, phosphor film using the phosphor paste and its production method
WO2008149934A1 (en) * 2007-06-06 2008-12-11 Kazufumi Ogawa Film of fluorescent-substance fine particles, process for producing the same, and display, photosensitive material, and sensor each employing film of fluorescent-substance fine particles
US9580645B2 (en) 2007-06-06 2017-02-28 Empire Technology Development Llc Fluorescent pastes and films
US8715530B2 (en) 2007-06-06 2014-05-06 Empire Technology Development Llc Fluorescent pastes and films
US8455092B2 (en) * 2007-06-06 2013-06-04 Empire Technology Development Llc Fluorescent fine particle films
WO2008149931A1 (en) * 2007-06-06 2008-12-11 Kazufumi Ogawa Phosphor paste, method for producing the same, phosphor film using the phosphor paste, and method for producing phosphor film
US8951627B2 (en) 2007-06-06 2015-02-10 Empire Technology Development Llc Fluorescent fine particle films and display devices
WO2008149471A1 (en) * 2007-06-07 2008-12-11 Kazufumi Ogawa Fluor fine particle, manufacturing method thereof, and fluor covering film using them
WO2008149469A1 (en) * 2007-06-07 2008-12-11 Kazufumi Ogawa Pattern-like fluor fine particle film and manufacturing method thereof
WO2008149470A1 (en) * 2007-06-07 2008-12-11 Kazufumi Ogawa Monolayer fluor fine particle film, fluor fine particle film-layered body, and manufacturing method thereof and display device and photoreceptor and sensor, which are made by using them
WO2009001471A1 (en) * 2007-06-22 2008-12-31 Kazufumi Ogawa Fine silicon particle and method of manufacture and solar cell using the fine silicon particle and method of manufacture
US8623500B2 (en) 2007-08-16 2014-01-07 Empire Technology Development Llc Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
US9330807B2 (en) 2007-08-16 2016-05-03 Empire Technology Development Llc Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
WO2009022436A1 (en) * 2007-08-16 2009-02-19 Kazufumi Ogawa Conductive paste and method for manufacturing the same, wiring using the conductive paste and method for manufacturing the same
JP2014024990A (en) * 2012-07-27 2014-02-06 Ishikawa Prefecture Adhesive, composite film material, and film formation method

Similar Documents

Publication Publication Date Title
JP2007118276A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
JP5087764B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP2007117827A (en) Pattern-like fine particle film and its production method
WO2008068873A1 (en) Monolayer nanoparticle film, multilayer nanoparticle film, and manufacturing method thereof
JP5050190B2 (en) Fine particles and production method thereof
JP2007119545A (en) Fine particle film and method for producing the same
JP5487460B2 (en) Silicon fine particles, production method thereof, solar cell using the same, and production method thereof
JP4868496B2 (en) Solar cell and manufacturing method thereof
JP4848502B2 (en) WIRING, MANUFACTURING METHOD THEREOF, AND ELECTRONIC COMPONENT AND ELECTRONIC DEVICE USING THEM
JP5167528B2 (en) Chemisorption solution
JP2007173518A (en) Optical sensor and manufacturing method thereof
JP2007220883A (en) Wiring and its manufacturing method, and electronic parts and electronic apparatus using the same
JP2007161912A (en) Adhesion method and biochemical chip produced by the method and optical part
US9200012B2 (en) Patterned fine particle film structures
JP4993700B2 (en) Protective film and method for producing the same
JP5071955B2 (en) Electrode, manufacturing method thereof, lead wiring using the same, connecting method thereof, electronic component and electronic device using the same
JP2007127847A (en) Antireflection film, its manufacturing method and optical apparatus using same
JP2007290406A (en) Single-layer fine particle film, cumulated fine particle film and manufacturing method of them
JP2007128605A (en) Magnetic recording medium, its manufacturing method and magnetic recording and reading device using the same
JP2008221369A (en) Particulate membrane and method of manufacturing the same
JP2010129619A (en) Solar cell using silicon particulate, optical sensor, and method of manufacturing them
JP2009037786A (en) Conductive paste and manufacturing method, thereof wiring and manufacturing method thereof, and electronic component and electronic apparatus using them
JP5288432B2 (en) Insulating fine particle film, manufacturing method thereof, and capacitor using insulating fine particle film
JP2007161913A (en) Adhesion method and biochemical chip produced by the method and optical part
JP2007142006A (en) Insulator particulate film, its manufacturing method, and capacitor using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070904

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071012

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080929