JPS6328874A - Reactor - Google Patents

Reactor

Info

Publication number
JPS6328874A
JPS6328874A JP17172786A JP17172786A JPS6328874A JP S6328874 A JPS6328874 A JP S6328874A JP 17172786 A JP17172786 A JP 17172786A JP 17172786 A JP17172786 A JP 17172786A JP S6328874 A JPS6328874 A JP S6328874A
Authority
JP
Japan
Prior art keywords
film
forming gas
nozzle
upstream
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17172786A
Other languages
Japanese (ja)
Inventor
Toru Den
透 田
Kazuaki Omi
近江 和明
Masao Sugata
菅田 正夫
Noriko Kurihara
栗原 紀子
Hiroyuki Sugata
裕之 菅田
Kuniji Osabe
長部 国志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17172786A priority Critical patent/JPS6328874A/en
Publication of JPS6328874A publication Critical patent/JPS6328874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To facilitate film-forming reaction, etc., by providing means of setting differential pressure between the upstream and downstream sides of a contracting-expanding nozzle attached to the inside of a reactor so as to prevent the flowing back of a film-forming gas, etc., and also to make an injection stream supersonic. CONSTITUTION:A film forming gas-feeding ring 4 is located on the downstream side of the contracting-expanding nozzle 1 attached to the 1-side of a reaction chamber 3, and an upstream chamber 8 is integral provided to the upstream side. A non-film- forming gas is supplied to the upstream chamber 8 and, while supplied with a film- forming gas from the film forming gas-feeding ring 4, the inside of the reaction chamber 3 is evacuated, so that pressure ratio between the upstream and downstream sides of the nozzle 1 is properly regulated. The above non-film-forming gas is spurted through the nozzle 1 into the reaction chamber 3 in a supersonic flow. When microwaves are sent from a microwave generator 13, microwave discharge takes place in the nozzle 1 and plasma is induced. Then, the active species, electrons, etc., produced by the above plasma are sent through the nozzle 1 in the form of a jet, which is brought into contact with the film-forming gas and activate it. The activated film-forming gas is allowed to adhere to the substrate 6, so that film formation can be carried out.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マイクロ波によって誘起されるプラズマを利
用して、例えば成膜、エツチング、微粒子の生成等を行
う反応装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a reaction apparatus that performs, for example, film formation, etching, and generation of fine particles using plasma induced by microwaves.

[従来の技術] 従来、マイクロ波によるプラズマを利用する反応装置と
しては、空胴共振器内へマイクロ波を供給して、電子サ
イクロトロン共鳴を生じさせることによってプラズマを
誘起し、誘起されたプラズマを空胴共振器外へと送り出
して、例えば成膜ガスをこれと接触させて成膜を行うも
の等が知られている。
[Prior Art] Conventionally, a reaction device that utilizes microwave plasma has been designed to induce plasma by supplying microwaves into a cavity resonator to generate electron cyclotron resonance, and to generate the induced plasma. It is known that a film is formed by sending the gas out of the cavity resonator and bringing it into contact with, for example, a film forming gas.

[発明が解決しようとする問題点] しかしながら、上記従来の反応装置で、空胴共振器外へ
と送り出されたプラズマに成膜ガスを接触させると、成
膜ガスの一部が空胴共振器内へと逆流し、そのマイクロ
波導入窓に膜付着を生じる問題がある。マイクロ波導入
窓への膜付着量が増大すると、マイクロ波が空胴共振器
内へ導入されにくくなって、プラズマが誘起されなくな
ることから、従来の反応装置では長時間の連続反応処理
が困難である。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional reaction apparatus, when the film-forming gas is brought into contact with the plasma sent out outside the cavity resonator, a part of the film-forming gas is absorbed into the cavity resonator. There is a problem in that the microwaves flow back into the interior and form a film on the microwave introduction window. As the amount of film adhering to the microwave introduction window increases, it becomes difficult for microwaves to be introduced into the cavity resonator, and plasma is no longer induced, making it difficult to perform long-term continuous reaction processing with conventional reaction equipment. be.

また、プラズマ中には多くの活性種が存在するが、この
活性種が分子や原子同志の衝突の繰り返しによって活性
を失いやすく、活性種を利用する反応を行いにくいとい
う問題もある。即ち、この活性種を利用する反応をプラ
ズマ中で行わざるを得す、例えばプラズマCVD等で問
題とされているようなプラズマダメージが避けられない
のが現状である。
Furthermore, although there are many active species in plasma, there is also the problem that these active species tend to lose their activity due to repeated collisions between molecules and atoms, making it difficult to carry out reactions that utilize the active species. That is, the current situation is that reactions using these active species must be performed in plasma, and plasma damage, which is a problem in plasma CVD, for example, cannot be avoided.

[問題点を解決するための手段] 上記問題点を解決するための手段を、本発明の一実施例
に対応する第1図で説明すると、本発明は、マイクロ波
によるプラズマを内部に誘起し得る縮小拡大ノズル1の
上流側と下流側間に差圧を形成可能に構成されている反
応装置とするという手段を講じているものである。
[Means for Solving the Problems] Means for solving the above problems will be explained with reference to FIG. 1, which corresponds to an embodiment of the present invention. The reactor is configured to be able to form a differential pressure between the upstream and downstream sides of the contraction/expansion nozzle 1.

本発明において縮小拡大ノズル1とは、第1図に示され
るように、流入口1aから徐々に開口面積が絞られての
ど部1bとなり、再び開口面積が拡大して流出口1cと
なっているものをいう。
In the present invention, the contracting/expanding nozzle 1 is defined as having an opening area gradually narrowed from an inlet 1a to become a throat part 1b, and then expanded again to become an outlet 1c, as shown in FIG. say something

[作 用] 一般に、中性の分子、原子を、上流側と下流側間に差圧
を形成したノズルから噴出させる場合、上流側の圧力と
温度をpo、toとし、下流側の圧力と温度をP、 T
とし、比熱比をγとすると、次の関係が成立する。
[Function] Generally, when neutral molecules or atoms are ejected from a nozzle that has a differential pressure between the upstream and downstream sides, the pressure and temperature on the upstream side are po and to, and the pressure and temperature on the downstream side are P, T
and the specific heat ratio is γ, the following relationship holds true.

また、ノズルから噴出する流れのマツハ数をNとすると
、次の関係が成立する。
Further, when the Matsuhah number of the flow ejected from the nozzle is N, the following relationship holds true.

上記(1)式と(2)式から、圧力比P/POを小さく
すれば、つまり圧力差を大きくとれば、噴出する流れの
温度Tは低下し、マツハ数は増大する。即ち、流れ中の
分子、原子の並進力が高められ、これらの衝突回数が減
少されることになる。
From the above equations (1) and (2), if the pressure ratio P/PO is made smaller, that is, if the pressure difference is made larger, the temperature T of the ejected flow will be lowered and the Matsuha number will be increased. That is, the translational force of molecules and atoms in the flow is increased, and the number of collisions between them is reduced.

ノズルの径をDとし、到達最大マツハ数をMTとすると
、次の関係が成立する。
When the diameter of the nozzle is D and the maximum Matsuha number reached is MT, the following relationship holds true.

MToe (PD)O’    ・= ・= (3)上
記(3)式からすれば、Dが大きいとMTも増加するが
、実際には下流側の排気能力の制約を受ける。下流側の
排気速度をSとすると、次の関係が成立する。
MToe (PD)O' ・= ・= (3) According to the above equation (3), when D is large, MT also increases, but in reality, it is limited by the exhaust capacity on the downstream side. If the exhaust speed on the downstream side is S, the following relationship holds true.

So、4 MTOC億     ・・・・・・(4)上記(4)式
からすれば、MTを大きくするためにはDを小さくしな
ければならず、結局111Tを大きくするには限度があ
る。
So, 4 MTOC billion (4) According to the above equation (4), in order to increase MT, D must be decreased, and after all, there is a limit to increasing 111T.

ところで、縮小拡大ノズルlの場合、のど部1bの断面
積をA−流出口1cの断面積をAとすると次の関係が成
立し、噴出される流れを、超音速にまで加速することが
できる。
By the way, in the case of the contraction/expansion nozzle l, if the cross-sectional area of the throat portion 1b is A and the cross-sectional area of the outlet 1c is A, the following relationship holds true, and the ejected flow can be accelerated to supersonic speed. .

縮小拡大ノズル1を用いて噴出される流れを超音速にま
で加速すれば、流れの温度を大きく下げると共に並進力
を極めて高いものとすることができ、分子、原子同志の
衝突回数を大幅に減少させることができる。従って、縮
小拡大ノズル1内でプラズマを誘起させれば、活性種を
、その延命を図りつつ噴出させることができ、活性種を
用いた反応が行いやすくなる。また、縮小拡大ノズル1
から送り出されるプラズマに成膜ガス等を接触させるよ
うにすれば、縮小拡大ノズル1からの噴流によって成膜
ガス等の逆流を防止することができる。更に、超音速の
噴出流とすることによって流れを指向性の良いビーム流
とすることができ、特定債域での反応等が行いやすくな
る。
By accelerating the ejected flow to supersonic speed using the contraction/expansion nozzle 1, the temperature of the flow can be significantly lowered and the translational force can be made extremely high, greatly reducing the number of collisions between molecules and atoms. can be done. Therefore, by inducing plasma within the contraction/expansion nozzle 1, the active species can be ejected while extending their lifespan, making it easier to carry out reactions using the active species. Also, the reduction/expansion nozzle 1
By bringing the film-forming gas or the like into contact with the plasma sent out from the nozzle 1, it is possible to prevent the film-forming gas or the like from flowing back due to the jet flow from the contraction/expansion nozzle 1. Furthermore, by making the jet flow supersonic, the flow can be made into a beam flow with good directionality, making it easier to perform reactions in specific areas.

[実施例] 第1図は、本発明を成膜用の反応装置とした場合の一実
施例で、図中1が縮小拡大ノズルである。
[Example] FIG. 1 shows an example in which the present invention is used as a reaction apparatus for film formation, and numeral 1 in the figure is a contraction/expansion nozzle.

縮小拡大ノズル1は、ポンプ2で排気可能な反応室3の
一側に取付けられている。縮小拡大ノズルlの下流側に
は、成膜ガス供給環4が位置している。この成膜ガス供
給環4は、内周面に多数の孔5が形成された環状の管で
、孔5から成膜ガスを噴出させるものである。また、縮
小拡大ノズル1と相対向する反応室3の他側には、基体
6を保持した基体ホルダー7が設けられている。
The contraction/expansion nozzle 1 is attached to one side of a reaction chamber 3 that can be evacuated by a pump 2. A film forming gas supply ring 4 is located downstream of the contraction/expansion nozzle l. The film-forming gas supply ring 4 is an annular tube having a large number of holes 5 formed on its inner circumferential surface, from which the film-forming gas is ejected. Further, on the other side of the reaction chamber 3 facing the contraction/expansion nozzle 1, a substrate holder 7 holding a substrate 6 is provided.

縮小拡大ノズルlの上流側は、縮小拡大ノズル1と一体
に形成された上流室8となっており、そこには非成膜ガ
スが供給されるようになっている。ここで、前記成膜ガ
スとは、活性化されることによって成膜能を生じるガス
のことで、例えばジシランガスや5iHaガス等である
。また、非成膜ガスとは、それ自身のみでは成膜能を生
じないガスで、例えばH2,82,Ar等のガスである
The upstream side of the contraction/expansion nozzle 1 is an upstream chamber 8 formed integrally with the contraction/expansion nozzle 1, into which a non-film forming gas is supplied. Here, the film-forming gas is a gas that produces a film-forming ability when activated, and is, for example, disilane gas or 5iHa gas. Further, the non-film-forming gas is a gas that does not produce a film-forming ability by itself, and is, for example, a gas such as H2, 82, Ar, or the like.

縮小拡大ノズル1の下流側、即ち上流室8側には、アイ
ソレーター9、パワーモニター10、スリースタブチュ
ーナー11を介在させた導波管12を介してマイクロ波
発生装置13が接続されている。
A microwave generator 13 is connected to the downstream side of the contraction/expansion nozzle 1, that is, to the upstream chamber 8 side, via a waveguide 12 with an isolator 9, a power monitor 10, and a three-stub tuner 11 interposed therebetween.

また、導波管同軸変換器14から縮小拡大ノズル1の中
心部に沿って内袖15が延ばされている。縮小拡大ノズ
ル1とこの内軸工5は、電気的良導体で構成された同軸
型となっている。
Further, an inner sleeve 15 extends from the waveguide coaxial converter 14 along the center of the contraction/expansion nozzle 1 . The contraction/expansion nozzle 1 and the inner shaft 5 are of a coaxial type made of a good electrical conductor.

上流室8には非成膜ガスを、また成膜ガス供給環4から
は成膜ガスを供給しつつ、反応室3内をポンプ2で排気
して拡大ノズル1の上流側と下流側の圧力比を適切に調
整すると、非成膜ガスは、縮小拡大ノズル1から反応室
3へと超音速の流れとして噴出される。これと共にマイ
クロ波発生装置13からマイクロ波を送ると、縮小拡大
ノズル1内でマイクロ波放電を生じ、これによってプラ
ズマが誘起される。このプラズマで生成された活性種や
エレクトロン等は縮小拡大ノズル1かも噴流として送り
出され、活性状態のまま、成膜ガス供給環4から送り出
される成膜ガスと接し、これを活性化させる。活性化さ
れた成膜ガスは、基体6へと流れてそこに付着成膜する
ことになる。
While supplying a non-film-forming gas to the upstream chamber 8 and a film-forming gas from the film-forming gas supply ring 4, the reaction chamber 3 is evacuated by the pump 2 to maintain the pressure on the upstream and downstream sides of the enlarged nozzle 1. When the ratio is adjusted appropriately, the non-film forming gas is ejected from the contraction/expansion nozzle 1 into the reaction chamber 3 as a supersonic flow. At the same time, when microwaves are sent from the microwave generator 13, microwave discharge is generated within the contraction/expansion nozzle 1, thereby inducing plasma. Activated species, electrons, etc. generated by this plasma are also sent out as a jet from the contraction/expansion nozzle 1, and while in an active state, come into contact with the film forming gas sent out from the film forming gas supply ring 4 and activate it. The activated film forming gas flows to the substrate 6 and forms a film thereon.

第2図ないし第6図は、縮小拡大ノズル1内でマイクロ
波によるプラズマを発生させる場合の他の実施例を各々
示すものである。
2 to 6 show other embodiments in which plasma is generated by microwaves within the contraction/expansion nozzle 1. In FIG.

第2図のものは、縮小拡大ノズル1の上面中央部と下部
が、各々電気的良導体の導体部16で、他の部分が、電
気的絶縁体の絶縁部17となった、製作容易な分割ノズ
ル型となっている。導体部16へのマイクロ波の供給は
1図示されるように、同軸ケーブル19で行うこともで
きる。
The one in Fig. 2 is divided into parts that are easy to manufacture, with the center and lower parts of the top surface of the contraction/expansion nozzle 1 being a conductor part 16 of good electrical conductivity, and the other part being an insulating part 17 of an electrical insulator. It is a nozzle type. Microwaves can also be supplied to the conductor portion 16 using a coaxial cable 19, as shown in FIG.

第3図のものは、縮小拡大ノズル1の上下が導体部16
で、中間部分が絶縁部17となっており、中心部には、
電気的良導体の内軸15が設けられている。これは、上
下の導体部16間の間隔が大きいときでもマイクロ波放
電を発生させやすい利点がある。
In the one in Fig. 3, the upper and lower parts of the contraction/expansion nozzle 1 are the conductor parts
The middle part is an insulating part 17, and the center part is
An inner shaft 15 that is a good electrical conductor is provided. This has the advantage of easily generating microwave discharge even when the distance between the upper and lower conductor parts 16 is large.

第4図のものは、縮小拡大ノズル1の上部に、流れ方向
に直角に帯状の導体部16を設け、下部は全体を導体部
16とし、他の部分は絶縁部17としたものである。こ
れは、上方の導体部16の流れ方向位置を適宜に定めて
、マイクロ波放電を生ずる位置を流れ方向に調整できる
利点がある。
In the one shown in FIG. 4, a strip-shaped conductor part 16 is provided at the upper part of the contraction/expansion nozzle 1 at right angles to the flow direction, the entire lower part is made into the conductor part 16, and the other part is made into an insulating part 17. This has the advantage that the position of the upper conductor portion 16 in the flow direction can be appropriately determined and the position where microwave discharge is generated can be adjusted in the flow direction.

85図のものは、第1図でも説明した同軸型の縮小拡大
ノズル1の周囲に、流れ方向にスライド可能な電磁石1
9を設けたものである。このようにすると、縮小拡大ノ
ズル1内でサイクロトロン共鳴によってプラズマを誘起
することができ、そのプラズマ密度の分布も制御するこ
とができる。また、発散磁界により、イオン種の輸送も
可能となる。
The one in Fig. 85 is an electromagnet 1 that is slidable in the flow direction around the coaxial type contraction/expansion nozzle 1 explained in Fig. 1.
9. In this way, plasma can be induced within the contraction/expansion nozzle 1 by cyclotron resonance, and the distribution of the plasma density can also be controlled. The diverging magnetic field also allows the transport of ionic species.

第6図のものは、第2図に示したものと同様の縮小拡大
ノズル1に永久磁石20を組合わせたものである。この
場合にも、第5図のものと同様にサイクロトロン共鳴に
よってプラズマを誘起でき、プラズマ密度の制御も可能
となる。また、プラズマをミラー磁場により縮小拡大ノ
ズル1内に閉じ込めることができるので、中性ラジカル
のみを選択的に噴出させることができる。
The one in FIG. 6 is a combination of a contraction/expansion nozzle 1 similar to that shown in FIG. 2 and a permanent magnet 20. In this case as well, plasma can be induced by cyclotron resonance as in the case of FIG. 5, and the plasma density can also be controlled. Further, since the plasma can be confined within the contraction/expansion nozzle 1 by the mirror magnetic field, only neutral radicals can be selectively ejected.

ここで簡単にサイクロトロン共鳴に触れると、マイクロ
波の周波数が2.45GHzの場合、磁界強度875G
aussの時共鳴が起こり、マイクロ波のエネルギーが
効率的に吸収され、密度の高い、分解効率のよいプラズ
マが生成されるものである。また、電子は、磁力線に沿
って動こうとすると共に反磁性を持つので、第5図のよ
うな発散磁界の場合、その磁力線に沿って飛び出すが、
第6図のようなミラー磁場の場合、磁力線は閉じている
ので、電子はその中に閉じこめられる形になるのである
To briefly touch on cyclotron resonance, if the microwave frequency is 2.45 GHz, the magnetic field strength is 875 G.
When the auss occurs, resonance occurs, microwave energy is efficiently absorbed, and a dense plasma with high decomposition efficiency is generated. In addition, electrons tend to move along magnetic lines of force and have diamagnetic properties, so in the case of a diverging magnetic field as shown in Figure 5, they fly out along the lines of magnetic force.
In the case of a mirror magnetic field as shown in Figure 6, the lines of magnetic force are closed, so the electrons are confined within them.

[発明の効果] 以上説明の通り、本発明によれば、プラズマ中で生成し
た活性種の輸送が可能となり、又、マイクロ波導入部分
の汚れの問題も解決され、さらにプラズマと基体を離す
ことによるプラズマダメージの回避も可能となる。また
、活性種が、ビーム化されて一定方向に移送されるので
、反応室の壁面との干渉や流れの拡散による収率低下を
最小限に抑えることができるばかりか、空間的に独立し
た望域で何らの干渉も受けずに反応を行うことができ、
理想的な反応場による純度の高い生成物を得ることがで
きるものである。
[Effects of the Invention] As explained above, according to the present invention, it becomes possible to transport active species generated in plasma, solve the problem of contamination of the microwave introduction part, and furthermore, it is possible to separate the plasma and the substrate. It is also possible to avoid plasma damage caused by. In addition, since the active species are converted into a beam and transported in a fixed direction, it is possible to not only minimize the yield loss due to interference with the reaction chamber walls or flow diffusion, but also to separate spatially independent targets. The reaction can be carried out without any interference in the area,
It is possible to obtain highly pure products due to the ideal reaction field.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を成膜用の反応装置としたときの一実施
例を示す説明図、第2図ないし第6図は各々マイクロ波
によるプラズマを縮小拡大ノズル内で発生させる場合の
他の実施例を示す図である。 1:縮小拡大ノズル、1a 二流入口、1b:のど部、
1c :流出口、2:ポンプ、3:反応室、4:成膜ガ
ス供給環、5:孔、6:基体、7:基体ホルダー、8:
上流室、9ニアイソレータ−110:パワーモニター、
11ニスリースタブチユーナー、12:導波管、13:
マイクロ波発生装置、 14:導波管同軸変換器、15:内軸、16:導体部、
17:絶縁部、18二同軸ケーブル、lS:電磁石、2
0:永久磁石。 第1図  。 第2図 第3図 第4図 第5区 第6図
FIG. 1 is an explanatory diagram showing one embodiment of the present invention as a film-forming reaction device, and FIGS. 2 to 6 show other examples in which plasma generated by microwaves is generated in a contraction/expansion nozzle. It is a figure showing an example. 1: Reduction/expansion nozzle, 1a Two inlets, 1b: Throat,
1c: Outlet, 2: Pump, 3: Reaction chamber, 4: Film forming gas supply ring, 5: Hole, 6: Substrate, 7: Substrate holder, 8:
Upstream chamber, 9-near isolator-110: power monitor,
11: Nissley stub tuner, 12: waveguide, 13:
microwave generator, 14: waveguide coaxial converter, 15: inner shaft, 16: conductor part,
17: Insulation section, 18 twin coaxial cable, lS: Electromagnet, 2
0: Permanent magnet. Figure 1. Figure 2 Figure 3 Figure 4 Figure 5 Section 6

Claims (1)

【特許請求の範囲】[Claims] 1)マイクロ波によるプラズマを内部に誘起し得るノズ
ルの上流側と下流側間に差圧を形成可能に構成されてい
ることを特徴とする反応装置。
1) A reaction device characterized in that it is configured to be able to form a differential pressure between the upstream side and the downstream side of a nozzle that can induce plasma inside by microwaves.
JP17172786A 1986-07-23 1986-07-23 Reactor Pending JPS6328874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17172786A JPS6328874A (en) 1986-07-23 1986-07-23 Reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17172786A JPS6328874A (en) 1986-07-23 1986-07-23 Reactor

Publications (1)

Publication Number Publication Date
JPS6328874A true JPS6328874A (en) 1988-02-06

Family

ID=15928556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17172786A Pending JPS6328874A (en) 1986-07-23 1986-07-23 Reactor

Country Status (1)

Country Link
JP (1) JPS6328874A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992016672A1 (en) * 1991-03-18 1992-10-01 Schmitt Technology Associates An evaporation system for gas jet deposition of thin film materials
US5256205A (en) * 1990-05-09 1993-10-26 Jet Process Corporation Microwave plasma assisted supersonic gas jet deposition of thin film materials
US5356672A (en) * 1990-05-09 1994-10-18 Jet Process Corporation Method for microwave plasma assisted supersonic gas jet deposition of thin films
US5571332A (en) * 1995-02-10 1996-11-05 Jet Process Corporation Electron jet vapor deposition system
JP2021004389A (en) * 2019-06-25 2021-01-14 株式会社吉野工業所 Microwave plasma cvd device, manufacturing method of synthetic resin vessel and synthetic resin vessel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256205A (en) * 1990-05-09 1993-10-26 Jet Process Corporation Microwave plasma assisted supersonic gas jet deposition of thin film materials
US5356672A (en) * 1990-05-09 1994-10-18 Jet Process Corporation Method for microwave plasma assisted supersonic gas jet deposition of thin films
WO1992016672A1 (en) * 1991-03-18 1992-10-01 Schmitt Technology Associates An evaporation system for gas jet deposition of thin film materials
US5356673A (en) * 1991-03-18 1994-10-18 Jet Process Corporation Evaporation system and method for gas jet deposition of thin film materials
US5571332A (en) * 1995-02-10 1996-11-05 Jet Process Corporation Electron jet vapor deposition system
JP2021004389A (en) * 2019-06-25 2021-01-14 株式会社吉野工業所 Microwave plasma cvd device, manufacturing method of synthetic resin vessel and synthetic resin vessel

Similar Documents

Publication Publication Date Title
TWI643236B (en) Plasma processing device
US6396214B1 (en) Device for producing a free cold plasma jet
EP0914496B1 (en) Microwave applicator for an electron cyclotron resonance plasma source
EP0300447A2 (en) Method and apparatus for treating material by using plasma
KR20100015936A (en) Film forming apparatus
JP2005235755A (en) Microwave feeder, plasma processing apparatus using it, and plasma processing method
WO1998001599A9 (en) Microwave applicator for an electron cyclotron resonance plasma source
JPH0223612A (en) Plasma reactor
JP3682178B2 (en) Plasma processing method and plasma processing apparatus
JPH0319332A (en) Microwave plasma treatment device
JPS6328874A (en) Reactor
JPS61213377A (en) Method and apparatus for plasma deposition
JPH08236293A (en) Microwave plasma torch and plasma generating method
JPS6354934A (en) Vapor phase exciter
JPH01134926A (en) Plasma producing source and plasma processor using the same
JP2005223079A (en) Surface wave excitation plasma cvd apparatus
JPS6139730B2 (en)
JPH03158471A (en) Microwave plasma treating device
JPS62116775A (en) Plasma cvd device
JPS59103341A (en) Plasma processing apparatus
JPH03247771A (en) Microwave plasma cvd system
JPH01111876A (en) Thin film forming device by plasma treatment
JP2773157B2 (en) Semiconductor manufacturing equipment
JPH0294628A (en) Plasma generation apparatus
JPS6377121A (en) Plasma processor