JPS6354934A - Vapor phase exciter - Google Patents

Vapor phase exciter

Info

Publication number
JPS6354934A
JPS6354934A JP61197264A JP19726486A JPS6354934A JP S6354934 A JPS6354934 A JP S6354934A JP 61197264 A JP61197264 A JP 61197264A JP 19726486 A JP19726486 A JP 19726486A JP S6354934 A JPS6354934 A JP S6354934A
Authority
JP
Japan
Prior art keywords
nozzle
plasma
gas
film
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61197264A
Other languages
Japanese (ja)
Inventor
Toru Den
透 田
Masao Sugata
菅田 正夫
Noriko Kurihara
栗原 紀子
Hiroyuki Sugata
裕之 菅田
Kenji Ando
謙二 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61197264A priority Critical patent/JPS6354934A/en
Publication of JPS6354934A publication Critical patent/JPS6354934A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/002Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To make the generation of plasma in the inside of a nozzle efficient by providing a construction or the like for microwave between a waveguide and the nozzle and also joining the waveguide and the nozzle and making the inside of the nozzle to a plasma generator. CONSTITUTION:The inside of a downstream chamber 4 is exhausted by a vacuum pump 11 and pressure difference is caused between an upstream chamber 3 and the downstream chamber 4. In case of feeding film nonforming gas to the inside of the upstream chamber 3 and also introducing microwave through a waveguide 2, microwave is introduced into a nozzle 1 and the plasma of film nonforming gas is generated in the nozzle. When plasma is introduced into the downstream chamber 4 by means of the above-mentioned pressure difference, film forming gas is fed through a feed ring 10 and thereby molecules of film forming gas are brought into contact with activated plasma, and a product is produced by vapor phase reaction. The product is stuck on a base material 5 and collected without sticking on the inner wall of the downstream chamber 4 because it is passed through the nozzle by the gas flow.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、マイクロ波放電を利用した気相励起装置に関
するもので、例えば、製膜装置、エツチング装置、超微
粒子発生装置への応用や、さらには複合素材の形成、フ
ァインセラミックス材料への応用も期待されるものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas phase excitation device using microwave discharge, and is applicable to, for example, a film forming device, an etching device, an ultrafine particle generator, Furthermore, it is expected to be applied to the formation of composite materials and fine ceramic materials.

本明細書において、縮小拡大ノズルとは、流入口側から
中間部に向って徐々に開口面積が絞られてのど部となり
、こののど部から流出口に向って徐々に開口面積が拡大
されているノズルをいう。
In this specification, a contracting/expanding nozzle is one in which the opening area is gradually narrowed from the inlet side toward the middle part to form a throat, and the opening area is gradually expanded from this throat toward the outlet. Refers to a nozzle.

また、非成膜ガスとは、それのみでは膜形成能を生じな
いガスをいう、成膜ガスとは、エネルギーの付与によっ
て膜形成能を生じるガス及び当該ガスと非成膜ガスの混
合ガスをいう。
In addition, non-film-forming gas refers to a gas that does not produce film-forming ability by itself. Film-forming gas refers to a gas that produces film-forming ability when energy is applied, and a mixed gas of the gas and non-film-forming gas. say.

[従来の技術] 従来、マイクロ波を用いた気相励起装置としては、電子
サイクロトロン共鳴(以下ECRという)を利用したも
のが知られている。この装置は、例えば石英等のマイク
ロ波透過性材料のマイクロ波導入部を介して、導波管で
導いて来たマイクロ波を、空胴共振器となっているプラ
ズマ発生室に導入してプラズマを発生させるものとなっ
ている(特開昭57−177975号)、この気相励起
装置を、例えばプラズマCVD  (化学的気相成長)
装置に利用する場合、プラズマを更に成膜室へと導き、
成膜室でプラズマに成膜ガスを接触させて分解し、基体
面上で生成物の付着捕集をしている。
[Prior Art] Conventionally, as a gas phase excitation device using microwaves, one using electron cyclotron resonance (hereinafter referred to as ECR) is known. This device introduces microwaves guided by a waveguide into a plasma generation chamber, which is a cavity resonator, through a microwave introduction part made of a microwave-transparent material such as quartz. (Japanese Unexamined Patent Publication No. 57-177975), this gas phase excitation device can be used, for example, by plasma CVD (chemical vapor deposition).
When used in a device, the plasma is further guided to the deposition chamber,
In the film-forming chamber, the film-forming gas is brought into contact with the plasma and decomposed, and the products are collected on the substrate surface.

[発明が解決しようとする問題点] しかしながら、マイクに波を用いて成膜する場合の大き
な問題点として、マイクロ波導入窓の膜付着による曇り
がある。これはECR装置に限らないで起こるものであ
る。また、ECRプラズマCvO装置においては、生成
物を堆積させる基体がプラズマ中にさらされるため、基
体表面が変質しやすく、捕集された生成物もプラズマに
よってダメージを受けてしまうという欠点があった。
[Problems to be Solved by the Invention] However, a major problem in forming a film using microwave waves is fogging due to film adhesion on the microwave introduction window. This occurs not only in ECR devices. Furthermore, in the ECR plasma CvO apparatus, since the substrate on which the products are deposited is exposed to plasma, the surface of the substrate is likely to change in quality, and the collected products are also damaged by the plasma.

また、プラズマが基板表面に存在すると、基板表面とプ
ラズマとの間にシース領域が形成され、この領域でイオ
ンが加速されるため、前述した場合と同様にダメージの
原因となる。しかも、このような従来装置においては、
垂直以外のエツチングは極めて困難なものであった。
Further, when plasma exists on the substrate surface, a sheath region is formed between the substrate surface and the plasma, and ions are accelerated in this region, causing damage as in the case described above. Moreover, in such conventional equipment,
Etching other than vertically is extremely difficult.

[問題点を解決するための手段] 上記問題点を解決するための手段を、本発明の一実施例
に対応する第1図を用いて説明すると、本発明は導波管
2に石英板8を介してノズル1を連結し、該ノズル1内
をプラズマ発生室とした事を特徴とするものである0石
英板8は大気と真空とを遮断しているものであるが、他
にアルミナやマコール等を用いることもできる。導波管
2とノズルlの間にはインピーダンス整合のために絞り
7を用いる場合もある。絞り7には第3図に示す様に誘
導素子(a)、容量素子(b)、並列共振素子(C)等
がある。また、絞りの代わりにマイクロ波を効率よく導
波管から放射させるため第4図に示すスロットアンテナ
を用いてもよい。
[Means for Solving the Problems] Means for solving the above problems will be explained using FIG. 1, which corresponds to an embodiment of the present invention. The nozzle 1 is connected to the nozzle 1 through the quartz plate 8, which is characterized by making the inside of the nozzle 1 a plasma generation chamber.The quartz plate 8 blocks the atmosphere and vacuum, but other materials such as alumina and McCor etc. can also be used. An aperture 7 may be used between the waveguide 2 and the nozzle l for impedance matching. As shown in FIG. 3, the aperture 7 includes an inductive element (a), a capacitive element (b), a parallel resonant element (C), etc. Further, instead of the aperture, a slot antenna shown in FIG. 4 may be used to efficiently radiate microwaves from the waveguide.

スロットアンテナは、導波管の末端を閉じ、これに水平
のスロット(溝)を設けたもので、スロットの長さをマ
イクロ波の波長入の局とし、マイクロ波の放射効率が最
大となるようにしたものである。
A slot antenna is a waveguide whose end is closed and a horizontal slot (groove) is provided in it.The length of the slot is set at the station where the microwave wavelength is input, and the microwave radiation efficiency is maximized. This is what I did.

これら絞りやスコツトアンテナの取り付は位置は、導波
管2とノズル1の接合部に大きなインピーダンスのギャ
ップがある場合には、その位Hに取り付けるのが望まし
いが、インピーダンスのギャップがあまり無い場合には
、導波管内、ノズル内に絞りやスロットアンテナをつけ
る事も可能である。
Regarding the mounting position of these apertures and Scott antennas, if there is a large impedance gap at the junction of waveguide 2 and nozzle 1, it is desirable to mount it at that point H, but there is not much impedance gap. In some cases, it is also possible to attach an aperture or slot antenna inside the waveguide or nozzle.

なお、導波管2としては、方形導波管、円形導波管等を
用いることができ、ノズルとしては、第5図に示す様に
末広ノズル(a)、先細ノズル(b)、ラバールノズル
(C)、矩形ノズル(d)、ストレートノズル(e)等
を用いることができるやなお、第1図においては、説明
の便宜上、ノズル1の流入側と流出側は、各々密閉系に
連結されている。しかし、本発明におけるノズルlの流
入側と流出側は、両者間に差圧を生じさせて、下流側で
排気しつつプラズマを流過させることができれば、密閉
系であっても開放系であってもよい。
Note that as the waveguide 2, a rectangular waveguide, a circular waveguide, etc. can be used, and as the nozzle, as shown in FIG. C), a rectangular nozzle (d), a straight nozzle (e), etc. can be used. In FIG. 1, for convenience of explanation, the inflow side and the outflow side of the nozzle 1 are connected to each other in a closed system. There is. However, the inflow and outflow sides of the nozzle l in the present invention can be an open system even if it is a closed system, as long as a pressure difference is created between the two and the plasma can flow through while being exhausted on the downstream side. It's okay.

[作 用] 第1図に示されるように、供給管9から上流室3に非成
膜ガスを供給する一方、下流室4内を真空ポンプ11で
排気すると、上流室3と下流室4との間に圧力差を生じ
る。ここで導波v2からマイクロ波をノズル1に導入す
ると、ノズルl内にプラズマが発生し、前述した圧力差
によって下流室4に流入することになる。このプラズマ
がノズル1を通過する時、供給環10から成膜ガスを供
給すると、成膜ガスの分子はこの活性なプラズマと接触
して分解される。これらの励起活性種が、ノズル1から
基体5に到達するまでの距離を離せば、寿命の短い活性
種の濃度を減らす事も出来る。
[Function] As shown in FIG. 1, when the non-film forming gas is supplied from the supply pipe 9 to the upstream chamber 3 and the downstream chamber 4 is evacuated by the vacuum pump 11, the upstream chamber 3 and the downstream chamber 4 are A pressure difference is created between the two. When microwaves are introduced into the nozzle 1 from the waveguide v2, plasma is generated within the nozzle 1 and flows into the downstream chamber 4 due to the pressure difference described above. When this plasma passes through the nozzle 1, when a film forming gas is supplied from the supply ring 10, the molecules of the film forming gas come into contact with this active plasma and are decomposed. By increasing the distance from the nozzle 1 to the substrate 5 for these excited active species, the concentration of short-lived active species can be reduced.

また、特にノズルとして縮小拡大ノズルを用いた場合、
縮小拡大ノズルは、上流室3の圧力Paと下流室4の圧
力Pの圧力比P/P Oと、のど部の開口面gA−と流
出口の開口面積Aとの比A/A−とを調節することによ
って、噴出する気体の流れを高速化できる。そして、上
流室3と下流室4内の圧力比P/P、が臨界圧力比より
大きければ、縮小拡大ノズルの出口流速が亜音速以下の
流れとなり、気体は減速噴出される。また、上記圧力比
が臨界圧力比以下であれば、縮小拡大ノズルの出口流速
は超音速流となり、気体を超音速にて噴出させることが
できる。
In addition, especially when using a contraction/expansion nozzle as a nozzle,
The contraction/expansion nozzle calculates the pressure ratio P/PO between the pressure Pa in the upstream chamber 3 and the pressure P in the downstream chamber 4, and the ratio A/A- between the opening surface gA- of the throat and the opening area A of the outlet. By adjusting it, the flow of the ejected gas can be made faster. If the pressure ratio P/P in the upstream chamber 3 and downstream chamber 4 is greater than the critical pressure ratio, the outlet flow velocity of the contraction/expansion nozzle becomes subsonic flow or less, and the gas is decelerated and ejected. Further, if the pressure ratio is equal to or lower than the critical pressure ratio, the outlet flow velocity of the contraction/expansion nozzle becomes a supersonic flow, and the gas can be ejected at a supersonic velocity.

ここで、流れの速度をU、その点における音速をa、気
体の比熱比をγとし、流れを圧縮性の一次元流で断熱膨
張すると仮定すれば、流れの到達マツハ数Mは、上流室
3の圧力Poと下流室4の圧力Pとから次式で定まり、
特にP/Paが臨界圧力比以下の場合、Mは1以上とな
る。
Here, assuming that the velocity of the flow is U, the sound velocity at that point is a, the specific heat ratio of the gas is γ, and the flow is a compressible one-dimensional flow with adiabatic expansion, the Matsuha number M reached by the flow is It is determined by the following formula from the pressure Po of 3 and the pressure P of the downstream chamber 4,
In particular, when P/Pa is less than or equal to the critical pressure ratio, M is 1 or more.

尚、音速aは局所温度をT、気体定数をRとすると、次
式で求めることができる。
Note that the sound velocity a can be determined by the following equation, where T is the local temperature and R is the gas constant.

a=rRT また、流出口の開口面積A及びのど部の開口面積AIと
マツハfiMには次の関係がある。
a=rRT Further, the following relationship exists between the opening area A of the outlet, the opening area AI of the throat, and Matsuha fiM.

従って、開口面積比A/A ”によって(2)式から定
まるMに応じて圧力比P/Poを調整することによって
、縮小拡大ノズルから噴出する気体を超音速の適正膨張
流として噴出させることができる。この適正膨張流とは
、流出口における気体の圧力と下流側の圧力Pとが等し
い流れで、このときのビームの速度Uは、上流側の温度
をToとすると、次の(3)式によって求めることがで
きる。
Therefore, by adjusting the pressure ratio P/Po according to M determined from equation (2) by the opening area ratio A/A'', the gas ejected from the contraction/expansion nozzle can be ejected as a properly expanded flow at supersonic speed. This proper expansion flow is a flow in which the gas pressure at the outlet is equal to the pressure P on the downstream side, and the beam speed U at this time is given by the following (3), assuming that the temperature on the upstream side is To. It can be determined by the formula.

上述のような超音速の適正膨張流として気体を一定方向
へ噴出させると、気体は噴出直後の噴流断面を広げなが
らも直進し、ビーム化される。これによって活性種を含
んだ気体は、最小限の拡散で下流室4内の空間中を、下
流室4の壁面との干渉のない空間的に独立状態で、かつ
超音速で噴出されることになる。
When gas is ejected in a fixed direction as a properly expanded flow at supersonic speed as described above, the gas travels straight and becomes a beam while expanding the cross section of the jet immediately after ejection. This allows the gas containing active species to be ejected at supersonic speed through the space within the downstream chamber 4 with minimal diffusion, in a spatially independent state without interference with the wall surface of the downstream chamber 4. Become.

[実施例] 第1図は本発明による気相励起装置を成膜装置に使用し
た場合の一実施例を示すものである。
[Example] FIG. 1 shows an example in which a gas phase excitation device according to the present invention is used in a film forming apparatus.

第1図に示されるように、成膜装置100は、非成膜ガ
ス及びマイクロ波の導入される上流室3及び成膜室とな
る下流室4を有し、プラズマ発生室となるノズル1が上
流室3の先端部に取り付けられている。
As shown in FIG. 1, the film forming apparatus 100 has an upstream chamber 3 into which non-film forming gas and microwaves are introduced, and a downstream chamber 4 which serves as a film forming chamber, and a nozzle 1 which serves as a plasma generation chamber. It is attached to the tip of the upstream chamber 3.

上流室3の後壁部には、マイクロ波の透過を許容する石
英板8が配置され、この石英板8を介して導波管2が接
続されている。石英板8の上流室3側には第2図に示す
絞り7が配置され、このマイクロ波用の絞り7によって
導波管2とプラズマ発生室とのインピーダンスが整合さ
れることになる。
A quartz plate 8 that allows transmission of microwaves is arranged on the rear wall of the upstream chamber 3, and the waveguide 2 is connected via this quartz plate 8. A diaphragm 7 shown in FIG. 2 is arranged on the upstream chamber 3 side of the quartz plate 8, and this microwave diaphragm 7 matches the impedance between the waveguide 2 and the plasma generation chamber.

上流室3内のノズル1の開口部付近には、非成膜ガスを
導入するための供給管9が設けられている。ここで非成
膜ガスとは、マイクロ波放電によってプラズマ化される
ガスであって、それ自身のみでは成膜能を生じないガス
をいう。具体的には、例えばN2. N2. Ar等の
ガスである。一方、ノズルlの流出口付近には、成膜ガ
スを供給するための供給環10が設けられている。供給
環10は、多数の小孔を有する環状のパイプで、ノズル
lから噴出されたプラズマに成膜ガスを供給するもので
ある。ここで成膜ガスとは活性化されることによって成
膜能を生じるガスのことで、例えばジシランガス等であ
る。
A supply pipe 9 for introducing a non-film forming gas is provided near the opening of the nozzle 1 in the upstream chamber 3. Here, the non-film-forming gas is a gas that is turned into plasma by microwave discharge and does not have film-forming ability by itself. Specifically, for example, N2. N2. It is a gas such as Ar. On the other hand, a supply ring 10 for supplying film-forming gas is provided near the outlet of the nozzle l. The supply ring 10 is an annular pipe having a large number of small holes, and supplies a film forming gas to the plasma ejected from the nozzle l. Here, the film-forming gas is a gas that generates film-forming ability when activated, and is, for example, disilane gas.

下流室4内には、ノズルlの流出口と相対向する位置に
基体5が設けられている。この基体5は基体ホルダー6
に取り付けられていて、前後にスライド可能となるよう
に構成されている。また、基体ホルダー6は成膜中、最
適温度条件下に基体5を加熱または冷却ができるように
なっている。
A base body 5 is provided in the downstream chamber 4 at a position opposite to the outlet of the nozzle l. This base 5 is a base holder 6
It is attached to and configured to be able to slide back and forth. Further, the substrate holder 6 is capable of heating or cooling the substrate 5 under optimal temperature conditions during film formation.

さらに、成膜中、下流室4は真空ポンプ11で排気され
ており、余剰ガスや反応ガス等は直に排出されるように
なっている。
Furthermore, during film formation, the downstream chamber 4 is evacuated by a vacuum pump 11, so that surplus gas, reaction gas, etc. are directly exhausted.

上記構成による成膜装置は、例えば次のように動作する
。まず、下流室4内を真空ポンプ11で排気すると、上
流室3と下流室4との間に圧力差を生じる。一方、上流
室3内に非成膜ガスを供給すると共に、導波管2からマ
イクロ波を送り込むと、マイクロ波はマイクロ波用窓に
よりノズル1に導入され、非成膜ガスのプラズマがノズ
ル内で発生する。このプラズマが前述した圧力差によっ
て下流室4内に流入する時、供給環10から成膜ガスを
供給すると2成膜ガスの分子と活性なプラズマが接触し
て気相反応が生じ、生成物が生じる。
The film forming apparatus having the above configuration operates, for example, as follows. First, when the downstream chamber 4 is evacuated by the vacuum pump 11, a pressure difference is generated between the upstream chamber 3 and the downstream chamber 4. On the other hand, when a non-film-forming gas is supplied into the upstream chamber 3 and microwaves are sent from the waveguide 2, the microwave is introduced into the nozzle 1 through the microwave window, and the plasma of the non-film-forming gas flows into the nozzle. Occurs in When this plasma flows into the downstream chamber 4 due to the above-mentioned pressure difference, when the film forming gas is supplied from the supply ring 10, the molecules of the film forming gas 2 come into contact with the active plasma, a gas phase reaction occurs, and the products are arise.

この生成物はガスの流れによってノズルを通過すること
になるので、生成物は下流室4の内壁に付着することな
く、基体5上に付着・捕集される。
Since this product passes through the nozzle due to the gas flow, the product does not adhere to the inner wall of the downstream chamber 4, but is deposited and collected on the substrate 5.

第1図において、基体5とノズル1の間隔を数10++
us〜数100mm程度離せば、基体5はプラズマにさ
らされることがなく、励起されたラジカル粒子のみが基
体に到達することになり、プラズマによるダメージの少
ない成膜やエツチングを行うことができる。
In FIG. 1, the distance between the base 5 and the nozzle 1 is several tens++
If the substrate 5 is separated by about several hundred millimeters, the substrate 5 will not be exposed to the plasma, and only the excited radical particles will reach the substrate, allowing film formation and etching to be performed with less damage caused by the plasma.

上記実施例において非成膜ガスとして水素ガス、成膜ガ
スとしてシランガスを使用し、基体温度を200℃とす
れば、堆積物はシリコンの多孔質膜となり、400℃と
すればアモルファスシリコン膜となる。また、室温では
数十から数百人の微細粒子膜が得られる。
In the above example, if hydrogen gas is used as the non-film-forming gas and silane gas is used as the film-forming gas, and the substrate temperature is 200°C, the deposit will be a porous silicon film, and if it is 400°C, it will be an amorphous silicon film. . Moreover, at room temperature, a film of tens to hundreds of fine particles can be obtained.

また、上記とは逆にプラズマを積極的に基板に輸送した
い場合には反応室の圧力を10″4Torr以下とし、
磁場の効果によって輸送を行うことも可能である。
Also, contrary to the above, if you want to actively transport the plasma to the substrate, the pressure in the reaction chamber should be set to 10"4 Torr or less,
It is also possible to carry out transport by the effect of a magnetic field.

第2図は、この様な場合に使用される装置の一実施例を
示したものである。第2図の装置においては、マイクロ
波導入部にスロットアンテナ13が形成され、矩形ノズ
ル101の周囲には電磁石12が配置されている。その
他の構成は上記実施例と同様である。第2図において、
矩形ノズル101内で発生したプラズマは電磁石12が
つくる発散磁界によって基体5へ導かれる。
FIG. 2 shows an embodiment of a device used in such a case. In the apparatus shown in FIG. 2, a slot antenna 13 is formed in the microwave introducing section, and an electromagnet 12 is arranged around the rectangular nozzle 101. The other configurations are the same as those of the above embodiment. In Figure 2,
Plasma generated within the rectangular nozzle 101 is guided to the base 5 by a divergent magnetic field created by the electromagnet 12.

[発明の効果] 以上説明したように、本発明によれば、ノズル内に効率
よくプラズマを発生させる事ができ、プラズマにより生
じた活性種、またはプラズマ自身をビーム性をもって基
板に輸送する事ができる。
[Effects of the Invention] As explained above, according to the present invention, plasma can be efficiently generated within the nozzle, and active species generated by the plasma or the plasma itself can be transported to the substrate with beam properties. can.

また、これら活性種の選択は下流室の圧力やノズルと基
体との距離、あるいは磁場等により制御可能である0例
えば、ノズルと基体との距離を離せば寿命の短い活性種
の濃度を減らすことができるうえ、基体へのプラズマダ
メージを防ぐことができる。このため、プラズマによる
ダメージの少ない成膜やエツチングを行うことができる
In addition, the selection of these active species can be controlled by the pressure in the downstream chamber, the distance between the nozzle and the substrate, or the magnetic field. For example, by increasing the distance between the nozzle and the substrate, the concentration of short-lived active species can be reduced. In addition to this, plasma damage to the substrate can be prevented. Therefore, film formation and etching can be performed with less damage caused by plasma.

さらにノズルによりノズル前後に差圧が設けられている
ので、逆拡散が少なくマイクロ波導入窓の膜付着による
曇り防止が可能となる。
Furthermore, since the nozzle provides a pressure difference before and after the nozzle, there is less back-diffusion and it is possible to prevent fogging due to film adhesion on the microwave introduction window.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を示す説明図、第
3図は絞りの形状例を示す図、第4図はスロットアンテ
ナの斜視図、第5図はノズルの形状例を示す図である。 1:ノズル(プラズマ発生室)、 2:導波管、3:上流室、 4:下流室(*膜室)、 5:基体、7:絞り、8:石英板、 12:電磁石、13ニスロツトアンテナ。
1 and 2 are explanatory diagrams showing one embodiment of the present invention, FIG. 3 is a diagram showing an example of the shape of the aperture, FIG. 4 is a perspective view of the slot antenna, and FIG. 5 is an example of the shape of the nozzle. FIG. 1: Nozzle (plasma generation chamber), 2: Waveguide, 3: Upstream chamber, 4: Downstream chamber (*film chamber), 5: Substrate, 7: Aperture, 8: Quartz plate, 12: Electromagnet, 13 Nislot antenna.

Claims (1)

【特許請求の範囲】 1)導波管とノズルを接合し、該ノズル内をプラズマ発
生室とした事を特徴とする気相励起装置。 2)上記導波管とノズルの間にマイクロ波用しぼりを設
けた事を特徴とする特許請求の範囲第1項記載の気相励
起装置。 3)上記導波管とノズル間にスロットアンテナを設けた
事を特徴とする特許請求の範囲第1項記載の気相励起装
置。
[Scope of Claims] 1) A gas phase excitation device characterized in that a waveguide and a nozzle are joined, and the inside of the nozzle is used as a plasma generation chamber. 2) The gas phase excitation device according to claim 1, characterized in that a microwave aperture is provided between the waveguide and the nozzle. 3) The gas phase excitation device according to claim 1, characterized in that a slot antenna is provided between the waveguide and the nozzle.
JP61197264A 1986-08-25 1986-08-25 Vapor phase exciter Pending JPS6354934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61197264A JPS6354934A (en) 1986-08-25 1986-08-25 Vapor phase exciter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61197264A JPS6354934A (en) 1986-08-25 1986-08-25 Vapor phase exciter

Publications (1)

Publication Number Publication Date
JPS6354934A true JPS6354934A (en) 1988-03-09

Family

ID=16371579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61197264A Pending JPS6354934A (en) 1986-08-25 1986-08-25 Vapor phase exciter

Country Status (1)

Country Link
JP (1) JPS6354934A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297140A (en) * 1988-05-25 1989-11-30 Kanebo Ltd Electrode for plasma processing
US6156152A (en) * 1997-06-05 2000-12-05 Mitsubishi Denki Kabushiki Kaisha Plasma processing apparatus
JP2005336575A (en) * 2004-05-28 2005-12-08 Toppan Printing Co Ltd Plasma film deposition system for hollow vessel
JP2007220589A (en) * 2006-02-20 2007-08-30 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generator, and workpiece treatment device used for the same
JP2009500798A (en) * 2005-07-08 2009-01-08 プラズマ サージカル エービー Plasma generator, surgical plasma apparatus, use of plasma generator, and method for generating plasma
JP2009267261A (en) * 2008-04-28 2009-11-12 Ebatekku:Kk Thin film manufacturing apparatus, thin film manufacturing method, thin film solar cell manufacturing apparatus, and thin film solar cell manufacturing method
WO2016067381A1 (en) * 2014-10-29 2016-05-06 東芝三菱電機産業システム株式会社 Gas jetting device
WO2016067379A1 (en) * 2014-10-29 2016-05-06 東芝三菱電機産業システム株式会社 Apparatus for injecting gas into film formation apparatus
US11195699B2 (en) 2015-10-29 2021-12-07 Applied Materials, Inc. Generalized cylindrical cavity system for microwave rotation and impedance shifting by irises in a power-supplying waveguide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297140A (en) * 1988-05-25 1989-11-30 Kanebo Ltd Electrode for plasma processing
US6156152A (en) * 1997-06-05 2000-12-05 Mitsubishi Denki Kabushiki Kaisha Plasma processing apparatus
JP2005336575A (en) * 2004-05-28 2005-12-08 Toppan Printing Co Ltd Plasma film deposition system for hollow vessel
JP2009500798A (en) * 2005-07-08 2009-01-08 プラズマ サージカル エービー Plasma generator, surgical plasma apparatus, use of plasma generator, and method for generating plasma
JP2007220589A (en) * 2006-02-20 2007-08-30 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generator, and workpiece treatment device used for the same
JP2009267261A (en) * 2008-04-28 2009-11-12 Ebatekku:Kk Thin film manufacturing apparatus, thin film manufacturing method, thin film solar cell manufacturing apparatus, and thin film solar cell manufacturing method
WO2016067381A1 (en) * 2014-10-29 2016-05-06 東芝三菱電機産業システム株式会社 Gas jetting device
WO2016067379A1 (en) * 2014-10-29 2016-05-06 東芝三菱電機産業システム株式会社 Apparatus for injecting gas into film formation apparatus
US11195699B2 (en) 2015-10-29 2021-12-07 Applied Materials, Inc. Generalized cylindrical cavity system for microwave rotation and impedance shifting by irises in a power-supplying waveguide
US11972930B2 (en) 2015-10-29 2024-04-30 Applied Materials, Inc. Cylindrical cavity with impedance shifting by irises in a power-supplying waveguide

Similar Documents

Publication Publication Date Title
US6417111B2 (en) Plasma processing apparatus
TW548680B (en) Gas injection system and method for plasma processing
JP2002532838A (en) Equipment for generating low-temperature free plasma beam
US5024182A (en) Thin film forming apparatus having a gas flow settling device
JPH02222134A (en) Thin film forming apparatus
US4957061A (en) Plurality of beam producing means disposed in different longitudinal and lateral directions from each other with respect to a substrate
JPH01502203A (en) Energy-enhanced surface reactions using cluster beams
WO2002080249A1 (en) Plasma processing device
JPS6354934A (en) Vapor phase exciter
JP2000073175A (en) Surface treating device
JPH07135094A (en) Material supply method and device for microwave induction plasma
JPS6328874A (en) Reactor
JPS62253772A (en) Film forming apparatus
JPS6381824A (en) Control of fine particle flow
JPS62131511A (en) Fine particle spraying device
JPS62155934A (en) Vapor phase exciter
JPS62115700A (en) Vapor phase exciter
JP2548785B2 (en) Electron cyclotron resonance plasma chemical vapor deposition equipment
JPH09241850A (en) Cvd device
JPS62115699A (en) Vapor phase exciter
JPS61221377A (en) Plasma cvd device
JPH05117866A (en) Microwave plasma cvd device
JPS62116771A (en) Film forming device
JPS6336833A (en) Reaction device
JPH0521988B2 (en)