JPS62116771A - Film forming device - Google Patents

Film forming device

Info

Publication number
JPS62116771A
JPS62116771A JP25484385A JP25484385A JPS62116771A JP S62116771 A JPS62116771 A JP S62116771A JP 25484385 A JP25484385 A JP 25484385A JP 25484385 A JP25484385 A JP 25484385A JP S62116771 A JPS62116771 A JP S62116771A
Authority
JP
Japan
Prior art keywords
gas
reaction chamber
raw material
contraction
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25484385A
Other languages
Japanese (ja)
Inventor
Kenji Ando
謙二 安藤
Osamu Kamiya
神谷 攻
Masao Sugata
菅田 正夫
Noriko Kurihara
栗原 紀子
Hiroyuki Sugata
裕之 菅田
Toru Den
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP25484385A priority Critical patent/JPS62116771A/en
Publication of JPS62116771A publication Critical patent/JPS62116771A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To effectively utilize light beam energy by using reducing and expanding nozzles to supply a gaseous raw material onto a substrate in a reaction chamber and to supply a non-reactive gas to a light beam incident window. CONSTITUTION:The reducing and expanding nozzle 1 is disposed to a flow passage connecting a gaseous raw material generating chamber 3 and the reaction chamber 5 and the outflow port thereof is directed to the substrate 10. The other reducing and expanding nozzle 11 is disposed to a flow passage connecting a non-reactive gas generating chamber 4 and the reaction chamber 5 and the outflow port thereof is directed to an incident window 9 of the light beam. The gaseous raw material blown onto the substrate 10 is excited by the light beam irradiated from a light source 6 and the thin film is formed by the decomposition and reaction thereof. Since the non-reactive gas is constantly blown to the incident window 9, the contamination of the incident window 9 by the gaseous raw material is prevented. The respective gases can be transformed in the form of a beam by the above-mentioned mechanism and therefore, the diffusion of the gases is prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜の形成に用いられる成膜装置に関し、特
に、光ビームによるエネルギー照射によって成膜反応を
促進させる成膜装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a film forming apparatus used for forming a thin film, and particularly relates to a film forming apparatus that promotes a film forming reaction by energy irradiation with a light beam. .

[従来の技術] 従来のこの種の装置は、膜の堆積用基体を配置した反応
室内に、原料ガス(反応ガス)を導入し、この原料ガス
の雰囲気中へ、さらに入射窓を介して外部光源から基体
に向けて光ビームを照射し、基体表面上の原料ガス分子
を活性化させ、この活性化による分解、反応によって薄
膜を形成するものであった。
[Prior Art] This type of conventional apparatus introduces a raw material gas (reactive gas) into a reaction chamber in which a substrate for film deposition is arranged, and then introduces the raw material gas into the atmosphere of the raw material gas and then externally through an entrance window. A light beam is irradiated from a light source toward a substrate to activate source gas molecules on the surface of the substrate, and a thin film is formed by decomposition and reaction caused by this activation.

[発明が解決しようとする問題点] しかしながら、上記従来装置においては、成膜作業の進
行に伴い、光ビーム入射窓にも膜が形成され、この膜の
付着が汚れとなり、光ビームのエネルギーが有効に基体
上に付かされないという欠点があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional apparatus, as the film forming operation progresses, a film is also formed on the light beam entrance window, and the adhesion of this film causes dirt, which reduces the energy of the light beam. It has the disadvantage that it cannot be applied effectively to the substrate.

本発明は、上記従来装置の欠点を除去し、光ビームのエ
ネルギーを有効に利用することのできる成膜装置を提供
することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a film forming apparatus that can eliminate the drawbacks of the conventional apparatus described above and can effectively utilize the energy of a light beam.

[問題点を解決するための手段] 本発明は、反応室内の基板表面上への原料ガスの供給を
、第1の縮小拡大ノズルで行うとともに、反応室内の光
ビーム入射窓への非反応性ガスの供給を、第2の縮小拡
大ノズルによって行うことを特徴とするものである。
[Means for Solving the Problems] The present invention supplies a raw material gas onto the surface of a substrate in a reaction chamber using a first contraction/expansion nozzle, and also supplies a non-reactive gas to a light beam entrance window in the reaction chamber. It is characterized in that the gas is supplied by a second contraction/expansion nozzle.

反応室内への各ガスの導入法としては、あらがじめ反応
室内を真空ポンプによって減圧状態としておき、各ガス
の発生室と反応室との差圧を利用して反応室内にガスを
導入しようとするものである。縮小拡大ノズルを通過し
たガスは高速のビーム状となって反応室内に流入する。
To introduce each gas into the reaction chamber, first reduce the pressure in the reaction chamber with a vacuum pump, and then introduce the gas into the reaction chamber using the pressure difference between the generation chamber of each gas and the reaction chamber. That is. The gas that has passed through the contraction/expansion nozzle flows into the reaction chamber in the form of a high-speed beam.

なお、本発明における縮小拡大ノズルの流入側と流出側
は、両者間に差圧を生じさせて、下流側で排気しつつガ
スを流過させることができれば、密閉系であっても開放
系であってもよい。
In addition, the inflow side and the outflow side of the contraction/expansion nozzle in the present invention can be an open system even if it is a closed system, as long as a pressure difference is generated between the two and the gas can flow through while being exhausted on the downstream side. There may be.

本発明に用いられる縮小拡大ノズルの一例を第2図に示
す。第2図において、縮小拡大ノズルlは、流入口1a
から中間部に向って徐々に開口面積が絞られてのど部2
となり、こののど部2から流出口1bに向って徐々に開
口面積が拡大されているノズルである。
An example of the contraction/expansion nozzle used in the present invention is shown in FIG. In FIG. 2, the contraction/expansion nozzle l is the inlet port 1a.
The opening area is gradually narrowed from the middle part to the throat part 2.
This is a nozzle whose opening area gradually increases from the throat portion 2 toward the outlet 1b.

本発明における非反応性ガスとしては、通常用いられる
不活性ガスのほか、原料ガスに対して非反応性を示すも
のが用いられる。また光源としては紫外、赤外、レーザ
ー等が用いられる。
As the non-reactive gas in the present invention, in addition to commonly used inert gases, gases that are non-reactive with respect to the raw material gas are used. Further, as a light source, ultraviolet, infrared, laser, etc. are used.

[作 用] 各発生室に原料ガスと非反応性ガスを供給する−・方1
反応室内を真空ポンプで排気すると、各発生室と反応室
との間に圧力差を生じる。したがって、供給されたガス
は各発生室から縮小拡大ノズルを流過して反応室へと高
速で流入することになる。
[Function] Supplying raw material gas and non-reactive gas to each generation chamber - Method 1
When the reaction chambers are evacuated using a vacuum pump, a pressure difference is created between each generation chamber and the reaction chamber. Therefore, the supplied gas flows from each generation chamber through the contraction/expansion nozzle and flows into the reaction chamber at high speed.

反応室内において、原料ガスの高速ビームは基体表面り
に吹きつけられ、非反応性ガスの高速ビームは光ビーム
入射窓に吹きつけられる。基体及び入射窓から反射した
ガスは、前述した真空ポンプによってただちに反応室外
に排気される。
In the reaction chamber, a high-velocity beam of raw material gas is blown onto the substrate surface, and a high-velocity beam of non-reactive gas is blown onto a light beam entrance window. The gas reflected from the substrate and the entrance window is immediately pumped out of the reaction chamber by the vacuum pump described above.

ところで縮小拡大ノズルは、発生室の圧力Poと反応室
の圧力Pの圧力比P/Paと、のど部2の開口面積A中
と流出口1bの開口面積Aとの比A/A”とを調節する
ことによって、噴出するガスの流れを高速化できる。そ
して1発生室と反応室内の圧力比P/Paが臨界圧力比
より大きければ、縮小拡大ノズルの出口流速が亜音速以
下の流れとなり、ガスは減速噴出される。また、上記圧
力比が臨界圧力比以下であれば、縮小拡大ノズルの出口
流速は超音速流となり、ガスを超高速にて噴出させるこ
とができる。
By the way, the contraction/expansion nozzle calculates the pressure ratio P/Pa between the pressure Po in the generation chamber and the pressure P in the reaction chamber, and the ratio A/A'' between the opening area A of the throat section 2 and the opening area A of the outlet 1b. By adjusting the flow rate of the ejected gas, it is possible to increase the speed of the ejected gas.If the pressure ratio P/Pa in the generation chamber and the reaction chamber is greater than the critical pressure ratio, the flow velocity at the exit of the contraction-expansion nozzle becomes a subsonic flow, The gas is ejected at a reduced speed.If the pressure ratio is less than or equal to the critical pressure ratio, the outlet flow velocity of the contraction/expansion nozzle becomes a supersonic flow, and the gas can be ejected at an ultrahigh speed.

ここで、微粒子流の速度をU、その点における音速をa
、ガス流の比熱比をγとし、ガス流を圧縮性の一次元流
で断熱膨張すると仮定すれば、ガス流の到達マツハ数M
は、発生室の圧力Poと反応室の圧力Pとから次式で定
まり、特にP/Poが臨界圧力比以下の場合、Mは1以
上となる。
Here, the velocity of the particle flow is U, and the sound velocity at that point is a.
, the specific heat ratio of the gas flow is γ, and assuming that the gas flow is a compressible one-dimensional flow and expands adiabatically, the reached Matzha number M of the gas flow is
is determined by the following equation from the pressure Po in the generation chamber and the pressure P in the reaction chamber. In particular, when P/Po is below the critical pressure ratio, M is 1 or more.

尚、音速aは局所温度をT、気体定数をRとすると、次
式で求めることができる。
Note that the sound velocity a can be determined by the following equation, where T is the local temperature and R is the gas constant.

a=「71薯「 また、流出ロ1b開ロ面積A及びのど部2の開口面積A
°とマツハ数Mには次の関係がある。
a = "71 薯" In addition, the opening area A of the outflow hole 1b and the opening area A of the throat part 2
The relationship between ° and Matsuha's number M is as follows.

従って、発生室の圧力P。と反応室の圧力Pの圧力比P
/Paによって(1)式から定まるマツハfiMに応じ
て開口面積比A/A”を定めたり、A/Aψによって(
2)式から定まるMに応じてP/P、を調整することに
よって、拡大縮小ノズルから噴出するガス流の流速を調
整できる。このときのガス流の速度Uは、次の(3)式
によって求めることができる。
Therefore, the pressure P in the generation chamber. and the pressure ratio P of the reaction chamber pressure P
/Pa determines the opening area ratio A/A'' according to Matsuha fiM determined from equation (1), and A/Aψ determines (
2) By adjusting P/P according to M determined from the equation, the flow velocity of the gas flow ejected from the expansion/contraction nozzle can be adjusted. The velocity U of the gas flow at this time can be determined by the following equation (3).

上記ガス流の流れ状態は1発生室内の温度が一定であれ
ば発生室の圧力Poと反応室の圧力Pの圧力比P/Po
を一定に保つことにより、開口面積比A/A”で定まる
一定の状態を維持することになる。
If the temperature in the generation chamber is constant, the flow state of the gas flow is the pressure ratio P/Po of the pressure Po in the generation chamber and the pressure P in the reaction chamber.
By keeping constant, a constant state determined by the opening area ratio A/A'' is maintained.

前述のような圧力比が臨界圧力比未満の噴出においては
、噴出されるガスは均一な拡散流となり、比較的広い範
囲に亘って一度に均一にガスを吹き付けることが可能と
なる。
In the above-mentioned ejection where the pressure ratio is less than the critical pressure ratio, the ejected gas becomes a uniform diffusion flow, making it possible to uniformly spray the gas over a relatively wide range at once.

一方、前述のような超音速の流れとしてガスを一定方向
へ噴出させると、ガスは噴出直後の噴流断面をほぼ保ち
ながら直進し、ビーム化される。
On the other hand, when gas is ejected in a fixed direction as a supersonic flow as described above, the gas travels straight while maintaining almost the jet cross section immediately after ejection, and becomes a beam.

従って、最小限の拡散で反応室内の空間中を、反応室の
壁面との干渉のない空間的に独立状態で、かつ超音速で
移送されることになる。
Therefore, it is transported through the space within the reaction chamber with minimal diffusion, in a spatially independent state without interference with the walls of the reaction chamber, and at supersonic speed.

このようなことから1例えば発生室内で原料ガスを励起
状態とし、これを直に縮小拡大ノズルでビーム化移送し
たり、縮小拡大ノズル内又は縮小拡大ノズルの直後で原
料ガスを励起させ、これをそのままビーム化移送すれば
、超音速による、しかも空間的に独立状態にあるビーム
として移送することができ、例えば反応室内に設けた基
体上に吹き付けることができる。従って、良好な活性状
態のまま原料ガスを送り込むことが可能となる。
For these reasons, 1. For example, the raw material gas is excited in the generation chamber and transferred directly into a beam through the contraction/expansion nozzle, or the raw material gas is excited in the contraction/expansion nozzle or immediately after the contraction/expansion nozzle, and then the source gas is excited. If the beam is transferred as it is, it can be transferred as a spatially independent beam at supersonic speed, and can be sprayed, for example, onto a substrate provided in a reaction chamber. Therefore, it becomes possible to feed the raw material gas in a good activated state.

また、噴流断面が流れ方向にほぼ一定のビームとして基
板上に吹き付けられるので、この吹き付は領域を容易に
制御できるものである。
Furthermore, since the jet is sprayed onto the substrate as a beam whose cross section is substantially constant in the flow direction, the area of the spray can be easily controlled.

[実施例] 第1図は本発明の一実施例を示す装置の概略構成図であ
る。
[Embodiment] FIG. 1 is a schematic configuration diagram of an apparatus showing an embodiment of the present invention.

第1図において、縮小拡大ノズルlは原料ガス発生室3
と反応室5を結ぶ流路に配置され、その流出「Iは基体
10に向けられている。一方、縮小拡大ノズル11は非
反応性ガス発生室4と反応室5を結ぶ流路に配置され、
その流出口は光ビームの入射窓9に向けられている。な
お、第1図は各ノズルの上下の位置関係を示したもので
、2つのノズルは乎面的に重なり合わない位置に配置さ
れている。縮小拡大ノズルl及び11と対向する位置に
は排気口が設けられ、真空ポンプ12が配置されている
。この真空ポンプ12の排気によって、反応室5は常に
低い圧力となるように保たれている。また、反応室5の
上部には光源6が配置され4投影レンズ7及び薄膜を所
定のパターンに形成するだめのマスク板8、反応室5の
上部壁面に設けられた入射窓9を通して、基体10に光
ビームが照射されるように構成されている。
In FIG. 1, the contraction/expansion nozzle l is the raw material gas generation chamber 3.
The outflow nozzle 11 is arranged in a flow path connecting the non-reactive gas generation chamber 4 and the reaction chamber 5, and its outflow "I" is directed toward the base 10. ,
Its outlet is directed towards the entrance window 9 of the light beam. Note that FIG. 1 shows the vertical positional relationship of each nozzle, and the two nozzles are arranged at positions that do not overlap in terms of plane. An exhaust port is provided at a position facing the contraction/expansion nozzles 1 and 11, and a vacuum pump 12 is disposed. By exhausting the vacuum pump 12, the reaction chamber 5 is always kept at a low pressure. A light source 6 is disposed in the upper part of the reaction chamber 5, and a substrate 10 is illuminated through a projection lens 7, a mask plate 8 for forming a thin film in a predetermined pattern, and an entrance window 9 provided on the upper wall of the reaction chamber 5. It is configured so that the light beam is irradiated to the area.

縮小拡大ノズルlとしては、前述のように、流入口1a
から徐々に開口面積が絞られてのど部?となり、再び徐
々に聞11面積が拡大して流出t+lbとなっているも
のであればよいが、そののど部2の開口面積が、真空ポ
ンプ12の排気流量より、所要の発生室の圧力及び温度
下におけるノズル流量が小さくなるよう定められている
。これによって流出口tbは適正膨張となり、流出口1
bでの減速等を防止できる。また、第2図に拡大して示
しであるように、流出口lb付近の内周面が、中心軸に
対してほぼ平行であることが好ましい。これは、噴出さ
れるガスの流れ方向が、ある程度流出口1b付近の内周
面の方向によって影響を受けるので、できるだけ平行流
にさせやすくするためである。しかし、第3図に示され
るように、のど部2から流出口1bへ至る内周面の中心
軸に対する角度αを、7°以下好ましくは5°以下とす
れば、剥離現象を生じにくく、噴出するガスの流れはほ
ぼ均一に維持されるので、この場合はことさら上記平行
部を形成しなくともよい。平行部の形成を省略すること
により、縮小拡大ノズル1の作製が容易となる。
As mentioned above, the contraction/expansion nozzle l is the inlet 1a.
The opening area gradually narrows down from the throat? It is sufficient if the area gradually expands to the outflow t+lb, but the opening area of the throat 2 is determined by the required pressure and temperature of the generation chamber from the exhaust flow rate of the vacuum pump 12. The nozzle flow rate at the bottom is set to be small. As a result, the outlet tb is properly expanded, and the outlet 1
It is possible to prevent deceleration, etc. at b. Further, as shown in an enlarged view in FIG. 2, it is preferable that the inner circumferential surface near the outlet lb is substantially parallel to the central axis. This is because the flow direction of the ejected gas is influenced to some extent by the direction of the inner circumferential surface near the outlet 1b, so the purpose is to make parallel flow as easy as possible. However, as shown in FIG. 3, if the angle α of the inner circumferential surface from the throat portion 2 to the outlet 1b with respect to the central axis is set to 7° or less, preferably 5° or less, the peeling phenomenon will be less likely to occur, and no jetting will occur. Since the flow of gas is maintained substantially uniformly, it is not necessary to form the above-mentioned parallel portion in this case. By omitting the formation of the parallel portion, the contraction/expansion nozzle 1 can be manufactured easily.

ここで、前記剥離現象とは縮小拡大ノズルlの内面に突
起物等があった場合に、縮小拡大ノズル1の内面と流過
流体間の境界層が大きくなって、流れが不均一になる現
象をいい、噴出流が高速になるほど生じやすい。前述の
角度αは、この剥離現象防止のために、縮小拡大ノズル
lの内面仕上げ精度が劣るものほど小さくすることが好
ましい。縮小拡大ノズルlの内面は、JIS 8080
+に定められる1表面仕上げ精度を表わす逆三角形マー
クで二つ以上、最適には四つ以上が好ましい。特に、縮
小拡大ノズルlの拡大部における剥離現象が、その後の
ガスの流れに大きく影響するので、上記仕上げ精度を、
この拡大部を重点にして定めることによって、縮小拡大
ノズルlの作製を容易にできる。また、やはり剥離現象
の発生防止のため、のど部2は滑らかな湾曲面とし、断
ilI?i積変化率における微係数が■とならないよう
にする必要がある。
Here, the separation phenomenon is a phenomenon in which when there is a protrusion etc. on the inner surface of the contraction/expansion nozzle 1, the boundary layer between the inner surface of the contraction/expansion nozzle 1 and the flowing fluid becomes large and the flow becomes non-uniform. The faster the jet flow, the more likely it is to occur. In order to prevent this peeling phenomenon, it is preferable that the above-mentioned angle α is made smaller as the inner surface finish accuracy of the contraction/expansion nozzle l becomes lower. The inner surface of the contraction/expansion nozzle l conforms to JIS 8080.
It is preferable to have two or more inverted triangular marks representing the surface finish accuracy determined by +, and optimally four or more. In particular, the peeling phenomenon at the enlarged part of the contraction/expansion nozzle l greatly affects the subsequent gas flow, so the above finishing accuracy is
By placing emphasis on this enlarged portion, it is possible to easily manufacture the contracting/expanding nozzle l. In addition, in order to prevent the occurrence of peeling phenomenon, the throat portion 2 is made into a smooth curved surface, and the throat portion 2 is made of a smooth curved surface. It is necessary to prevent the differential coefficient in the i product change rate from becoming ■.

縮小拡大ノズルlの材質としては、例えば鉄。The material of the contraction/expansion nozzle l is, for example, iron.

ステンレススチールその他の金属の他、アクリル樹脂、
ポリ塩化ビニル、ポリエチレン、ポリスチレン、ポリプ
ロピレン笠の合成樹脂、セラミック材料、石英、ガラス
等、広く用いることができる。この材質の選択は、生成
される反応物質との非反応性、加工性、減圧系内におけ
るガス放出性等を考慮して行えばよい。また、縮小拡大
ノズルlの内面に、ガスの付着・反応を生じにくい材料
をメッキ又はコートすることもでSる。具体例としては
、ポリフッ化エチレンのコート等を挙げることがで5る
In addition to stainless steel and other metals, acrylic resin,
A wide variety of materials can be used, including synthetic resins such as polyvinyl chloride, polyethylene, polystyrene, and polypropylene caps, ceramic materials, quartz, and glass. This material may be selected by taking into consideration non-reactivity with the generated reactant, workability, gas release properties in a reduced pressure system, and the like. Furthermore, the inner surface of the contraction/expansion nozzle 1 may be plated or coated with a material that is less likely to cause gas adhesion or reaction. A specific example is a polyfluoroethylene coating.

縮小拡大ノズル1の長さは、装置の大きさ等によって任
意に定めることができるが、高速噴出の維持を図る上で
は、縮小拡大ノズルlは短い方が好ましい。
The length of the contraction/expansion nozzle 1 can be arbitrarily determined depending on the size of the device, etc., but in order to maintain high-speed jetting, it is preferable that the contraction/expansion nozzle 1 is short.

次に、第1図とともに動作を説明する。まず、原料ガス
発生室3及び非反応性ガス発生室4内に、それぞれ所定
のガスを供給し、同時に真空ポンプ によって反応室5
内を排気し、減圧状態とする。この場合、あらかじめ各
発生室の圧力Poと反応室5の圧力Pの圧力比P/PO
と、のど部2の開口面積A°と流出口1bの開口面積と
の比A/A”との関係を適宜に調整することにより、縮
小拡大ノズル■内を流過する各ガスはビーム化され、発
生室から反応室へと超音速で流れることになる。
Next, the operation will be explained with reference to FIG. First, predetermined gases are supplied into the raw material gas generation chamber 3 and the non-reactive gas generation chamber 4, respectively, and at the same time, a vacuum pump is used to supply the reaction chamber 5.
Evacuate the inside and create a reduced pressure state. In this case, the pressure ratio P/PO of the pressure Po of each generation chamber and the pressure P of the reaction chamber 5 is set in advance.
By appropriately adjusting the relationship between the opening area A° of the throat section 2 and the ratio A/A'' of the opening area of the outlet 1b, each gas flowing through the contraction/expansion nozzle ■ is converted into a beam. , will flow at supersonic speed from the generation chamber to the reaction chamber.

基体10J:に吹き付けられた原料ガスは光源6から照
射される光ビームによって励起され、分解、反応して薄
膜が形成される。一方、非反応性ガスは、成膜作業中絶
えず入射窓9に吹き付けられるので、原料ガスの付着に
よる入射窓の汚れは防止される。さらに基体10及び入
射窓9に吹き付けられた各ガスは、真空ポンプ12によ
って直ちに室外に排気されるので1反応室内にガスを留
めることなく成膜を続けることができる。
The source gas blown onto the substrate 10J is excited by the light beam irradiated from the light source 6, decomposes and reacts, and forms a thin film. On the other hand, since the non-reactive gas is constantly blown onto the entrance window 9 during the film-forming operation, the entrance window is prevented from becoming contaminated due to adhesion of the source gas. Furthermore, each gas blown onto the substrate 10 and the entrance window 9 is immediately exhausted outside by the vacuum pump 12, so that film formation can be continued without the gas remaining in one reaction chamber.

第4図は本発明の他の実施例を示す装置の構成図である
。この実施例は、原料ガス発生室3に、マイクロ波、高
周波等による励起装置21を設け、原料ガスをあらかじ
め励起させて、励起ガスビームとして基体に吹き付ける
ようにしたものであ。
FIG. 4 is a block diagram of an apparatus showing another embodiment of the present invention. In this embodiment, an excitation device 21 using microwaves, high frequencies, etc. is provided in the raw material gas generation chamber 3 to excite the raw material gas in advance and spray it onto the substrate as an excited gas beam.

す、その他の構成は第1図と同様である。The other configurations are the same as in FIG.

このように、あらかじめ原料ガスを励起しておけば、基
体上での反応をさらに効率よく行うことが可能となる。
By exciting the raw material gas in advance in this way, it becomes possible to carry out the reaction on the substrate more efficiently.

[発明の効果] 以り説明したように、本発明によれば、複数の縮小拡大
ノズルを用いて原料ガス及び非反応性ガスの供給を行う
ようにしたことにより、ガスをビーム状で移送すること
ができ、ガスの拡散を防止することができる。特に、原
料ガスに用いた場合、縮小拡大ノズルから基体表面上ま
での間を、直進性のある集束した状態で移送することが
できるので、基体上での反応領域を容易に制御すること
ができる。しかも、非反応性ガスの吹き付は及び上記ビ
ーム化作用によって、基体以外の部分、例えば光ビーム
の入射窓、装置の内壁等への不必要な膜の付着を防止す
ることができ、光ビームのエネルギーを有効に利用する
ことができる。
[Effects of the Invention] As explained above, according to the present invention, by supplying the raw material gas and the non-reactive gas using a plurality of contraction/expansion nozzles, the gas can be transferred in a beam shape. gas diffusion can be prevented. In particular, when used for raw material gas, it can be transported in a straight and focused state from the contraction/expansion nozzle to the surface of the substrate, making it easy to control the reaction area on the substrate. . Moreover, the spraying of the non-reactive gas and the above-mentioned beam forming effect can prevent unnecessary film from adhering to parts other than the substrate, such as the light beam entrance window, the inner wall of the device, etc., and the light beam energy can be used effectively.

また、原料ガスをあらかじめ励起しておくことにより、
成膜反応をより効率化することができ、薄膜の堆積速度
を向上させることが可能となる。
In addition, by exciting the raw material gas in advance,
The film formation reaction can be made more efficient, and the deposition rate of the thin film can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図及び第
3図は、縮小拡大ノズルの形状例を示す図、第4図は本
発明の他の実施例を示す構成図である。 1.11・・・縮小拡大ノズル、 3・・・原料ガス発生室、 4・・・非反応性ガス発生室、5・・・反応室、6・・
・光源、9・・・入射窓、IO・・・基体。
FIG. 1 is a block diagram showing one embodiment of the present invention, FIGS. 2 and 3 are diagrams showing an example of the shape of a contraction/expansion nozzle, and FIG. 4 is a block diagram showing another embodiment of the present invention. be. 1.11... Reduction/expansion nozzle, 3... Raw material gas generation chamber, 4... Non-reactive gas generation chamber, 5... Reaction chamber, 6...
- Light source, 9...Incidence window, IO...Base.

Claims (1)

【特許請求の範囲】[Claims] 1)第1の縮小拡大ノズルによって反応室内へ原料ガス
を供給し、かつ第2の縮小拡大ノズルによって反応室内
の光ビーム入射窓へ非反応性ガスを供給することを特徴
とする成膜装置。
1) A film forming apparatus characterized in that a first contraction/expansion nozzle supplies a source gas into a reaction chamber, and a second contraction/expansion nozzle supplies a non-reactive gas to a light beam entrance window in the reaction chamber.
JP25484385A 1985-11-15 1985-11-15 Film forming device Pending JPS62116771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25484385A JPS62116771A (en) 1985-11-15 1985-11-15 Film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25484385A JPS62116771A (en) 1985-11-15 1985-11-15 Film forming device

Publications (1)

Publication Number Publication Date
JPS62116771A true JPS62116771A (en) 1987-05-28

Family

ID=17270622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25484385A Pending JPS62116771A (en) 1985-11-15 1985-11-15 Film forming device

Country Status (1)

Country Link
JP (1) JPS62116771A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247075A (en) * 1986-04-17 1987-10-28 Nec Corp Method and apparatus for depositing metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050168A (en) * 1983-08-29 1985-03-19 Yoshihiro Hamakawa Production of thin solid film by photo cvd method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6050168A (en) * 1983-08-29 1985-03-19 Yoshihiro Hamakawa Production of thin solid film by photo cvd method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62247075A (en) * 1986-04-17 1987-10-28 Nec Corp Method and apparatus for depositing metal

Similar Documents

Publication Publication Date Title
JPS6380843A (en) Reaction apparatus
JPS62116771A (en) Film forming device
JPS62253772A (en) Film forming apparatus
JPS6354934A (en) Vapor phase exciter
JPS62131511A (en) Fine particle spraying device
JPS6381821A (en) Reactor
JPS627431A (en) Reaction apparatus
JPS6335779A (en) Film forming device
JPS62155934A (en) Vapor phase exciter
JPS6369538A (en) Reaction device
JPS6320483A (en) Fine particle spraying device
JPS6242414A (en) Vapor-phase exciting device
JPS6336832A (en) Reaction device
JPS62131510A (en) Fine particle spraying device
JPS6291233A (en) Flow control device for flow of fine particles
JPS6241409A (en) Corpuscular stream controller
JPS62115825A (en) Fine particle flow controller
JPS62158329A (en) Device for spraying fine particle
JPS61223313A (en) Minute particle flow controller
JPS62115699A (en) Vapor phase exciter
JPS6381824A (en) Control of fine particle flow
JPS63241172A (en) Treatment of object
JPS62247836A (en) Gaseous phase exciter
JPS61220769A (en) Method for providing energy to fine particle flow
JPS6380842A (en) Reaction using fine particle