JPS6380842A - Reaction using fine particle - Google Patents

Reaction using fine particle

Info

Publication number
JPS6380842A
JPS6380842A JP22492886A JP22492886A JPS6380842A JP S6380842 A JPS6380842 A JP S6380842A JP 22492886 A JP22492886 A JP 22492886A JP 22492886 A JP22492886 A JP 22492886A JP S6380842 A JPS6380842 A JP S6380842A
Authority
JP
Japan
Prior art keywords
electric field
raw gas
raw material
particles
material gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22492886A
Other languages
Japanese (ja)
Inventor
Masao Sugata
菅田 正夫
Hiroyuki Sugata
裕之 菅田
Toshiaki Kimura
木村 稔章
Noriko Kurihara
栗原 紀子
Toru Den
透 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP22492886A priority Critical patent/JPS6380842A/en
Publication of JPS6380842A publication Critical patent/JPS6380842A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To reduce damage due to the collision of charged particles having large charge, by forming an electric field to the flow passage of the activated raw gas being the jet stream substance from a contracting and expanding nozzle and selectively sending the neutral particles in the raw gas to a reaction field. CONSTITUTION:When the downstream chamber 4 is evacuated while raw gas A is supplied into the upstream chamber 3, the raw gas A is injected to the downstream chamber 4 through a contracting and expanding nozzle 1. When the raw gas A is injected in a definite direction as a proper expanded stream of supersonic velocity, the raw gas A after injection straightly advances in the min. diffused state to be formed into beam stream. When the beam stream of this activated raw gas A enters the electric field due to an electric field forming means 2, the particles having charge in the beam stream receive the effect of said electric field. However, since neutral particles receive no effect of the electric field, said particles straightly advance as they are while are distinguished from the charged particles receiving the effect of the electric field to be sent to a reaction field.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば成膜加工、エツチング、ドープ加工、
表面改質等の処理に用いる反応方法に関するもので5更
に詳しくは、活性化した原料ガスをビーム流としてL記
処理を行う反応場へと送る反応方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to, for example, film forming processing, etching, doping processing,
This invention relates to a reaction method used in treatments such as surface modification, and more specifically, relates to a reaction method in which activated raw material gas is sent as a beam stream to a reaction field where the treatment described in L is performed.

[従来の技術〕 従来、活性化した原料ガスをビーム流として反応場へと
送る反応方法としては、イオンインプラ技術が知られて
いる。このイオンインプラ技術においては、原料ガスを
活性イオン化し、これを電場によって加速してど一ム流
として反応場へと供給しているものである。
[Prior Art] Ion implantation technology is conventionally known as a reaction method in which activated source gas is sent as a beam stream to a reaction field. In this ion implantation technology, raw material gas is actively ionized, accelerated by an electric field, and supplied to a reaction field as a single stream.

[発明が解決しようとする問題点コ ところで、上記従来の反応方法では、活性イオンの流れ
を電場を用いてビーム流化しているため、ビーム流化さ
れるのは荷電粒子である。従って、大きな電荷を有する
荷電粒子が、成膜加工やエツチング等を施すべき被処理
物に衝突することによるダメージの発生が避けられない
問題がある。
[Problems to be Solved by the Invention] Incidentally, in the above-mentioned conventional reaction method, the flow of active ions is converted into a beam stream using an electric field, so it is charged particles that are converted into a beam stream. Therefore, there is an unavoidable problem in that charged particles having a large charge collide with the object to be processed, such as film formation or etching, resulting in damage.

[問題点を解決するための手段コ 上記問題点を解決するために講じられた手段を、本発明
の一実施例に対応する第1図で説明すると、本発明は、
縮小拡大ノズルlからの噴出流として送られて来る活性
化されたg料ガスの流路に電場を形成して、活性化され
た原料ガス中の中性粒子を選択的に反応場へと送る微粒
子を用いた反応方法とするという手段を講じているもの
である。
[Means for solving the problems] The means taken to solve the above problems will be explained with reference to FIG. 1, which corresponds to an embodiment of the present invention.
An electric field is formed in the flow path of the activated raw material gas sent as a jet stream from the contraction/expansion nozzle l, and neutral particles in the activated raw material gas are selectively sent to the reaction field. This method uses microparticles as a reaction method.

本発明において縮小拡大ノズル1とは、流入口laから
中間部に向って徐々に開口面積が絞られてのど部1bと
なり、こののど部から流出口1cに向って徐々に開口面
積が拡大されているノズルをいう。ガスとは、気体の他
、微細粒子等のように実質的に気相流として移送し得る
ものをも含む。また、中性粒子とは、電荷を有しない原
子、分子、クラスター、その他の微細粒子をいう。
In the present invention, the contracting/expanding nozzle 1 is defined as having an opening area gradually narrowed from an inlet la toward an intermediate portion to form a throat portion 1b, and an opening area gradually expanding from this throat portion toward an outlet port 1c. Refers to the nozzle that is present. The gas includes not only gases but also those that can be transported substantially as a gas phase flow, such as fine particles. Moreover, neutral particles refer to atoms, molecules, clusters, and other fine particles that have no electric charge.

[作 用] 第1図において、上流室3内に原料ガスAを供給しつつ
下流室4内を排気すると、原お1ガスAは縮小拡大ノズ
ル1を介して下流室4へと噴出することになる。
[Function] In FIG. 1, when the downstream chamber 4 is evacuated while the raw material gas A is supplied into the upstream chamber 3, the raw gas A is ejected into the downstream chamber 4 through the contraction/expansion nozzle 1. become.

縮小拡大ノズルlは、上流室3の圧力POと下流室4の
圧力Pの圧力比P/Poを臨界圧力比以下とすることに
よって、原料ガスAの流れを超音速にまで高速化できる
The contraction/expansion nozzle 1 can speed up the flow of the source gas A to supersonic speed by setting the pressure ratio P/Po of the pressure PO in the upstream chamber 3 and the pressure P in the downstream chamber 4 to a critical pressure ratio or less.

ここで、臨界圧力比とは次の値をいう。即ち、縮小拡大
ノズル1ののど部1bで原料ガスAの流速が音速に一致
すると、流出口1cでの流速は、理想的にはのど部1b
の断面積A◆と流出口1cの断面積Aとの開口面積比A
/A・で決まるマツハ数Mに一致する。この関係は、具
体的には後述する(3)式で決まる。そして、このよう
なマツハ数Mに対し、次の(1)式で定まる上流室2の
圧力Poと下流室3の圧力Pとの圧力比P/P Oを臨
界圧力比と呼ぶ、尚、γは原料ガスAの比熱比である。
Here, the critical pressure ratio means the following value. That is, when the flow velocity of the raw material gas A at the throat section 1b of the contraction/expansion nozzle 1 matches the sonic velocity, the flow velocity at the outlet port 1c ideally matches the throat section 1b.
Opening area ratio A between the cross-sectional area A◆ and the cross-sectional area A of the outlet 1c
It corresponds to the Matsuha number M determined by /A. This relationship is specifically determined by equation (3), which will be described later. Then, for such a Matsuha number M, the pressure ratio P/P O between the pressure Po in the upstream chamber 2 and the pressure P in the downstream chamber 3 determined by the following equation (1) is called the critical pressure ratio. is the specific heat ratio of raw material gas A.

ここで、原料ガスAの速度をU、その点における音速を
aとし、原料ガスAを圧縮性の一次元流で断熱膨張する
と仮定すれば、原料ガスAの到達マツハ数Mは、上流側
の圧力Poと下流側の圧力L′とから次式で定まり、特
にP’/Poが臨界圧力比以下の場合、Mは1以上とな
る。
Here, if we assume that the velocity of the raw material gas A is U, the sound velocity at that point is a, and that the raw material gas A expands adiabatically in a compressible one-dimensional flow, the Matsuh number M reached by the raw material gas A is It is determined by the following equation from the pressure Po and the downstream pressure L', and especially when P'/Po is less than the critical pressure ratio, M becomes 1 or more.

尚、音速aは局所温度をT、気体定数をRとすると、次
式で求めることができる。
Note that the sound velocity a can be determined by the following equation, where T is the local temperature and R is the gas constant.

a=「71]7 また、流出口1cの開口面IA及びのど部1bの開口面
積A°とマツハ数Mには次の関係がある。
a='71]7 Further, the following relationship exists between the opening surface IA of the outlet 1c and the opening area A° of the throat portion 1b and the Matsuhah number M.

従って、開口面積比A/A・によって(3)式から定ま
るMに応じて圧力比P/Poを臨界圧力比に調整するこ
とによって、拡大縮小ノズル1から噴出する原料ガスA
をa音速の適正膨張流として噴出させることができる。
Therefore, by adjusting the pressure ratio P/Po to the critical pressure ratio according to M determined from equation (3) by the opening area ratio A/A, the raw material gas A ejected from the expansion/contraction nozzle 1 is
can be ejected as an appropriately expanded flow at a sonic speed.

ここで、上流室3と下流室4の圧力比が臨界圧力比に等
しくなっているときの原料ガスAの膨張を適正膨張とい
う。また、このときの原料ガスAの速度Uは、次の(4
)式によって求めることができる。
Here, the expansion of the raw material gas A when the pressure ratio of the upstream chamber 3 and the downstream chamber 4 is equal to the critical pressure ratio is referred to as proper expansion. In addition, the velocity U of the raw material gas A at this time is as follows (4
) can be obtained using the formula.

ここでToは」−流室の気体温度である。Here To is the gas temperature in the flow chamber.

上述のような超音速の適正膨張流として原料ガスAを一
定方向へ噴出させると、原料ガスAは噴出後最小限の拡
散で直進し、ビーム化される。
When the raw material gas A is ejected in a fixed direction as a properly expanded flow at supersonic speed as described above, the raw material gas A travels straight with minimal diffusion after being ejected, and becomes a beam.

従って、原料ガスAを活性化させておけば、活性化され
た原料ガスAのビーム流を作り出すことができる。
Therefore, by activating the raw material gas A, a beam flow of the activated raw material gas A can be created.

一方、この活性化された原料ガスAのビーム流が、電場
形成手段2による電場内へ入ると、ビーム流中の電荷を
有する粒子はこの電場の影響を受けることになる。しか
し、中性粒子は電場の影響を受けないので、上記電場の
影響を受ける荷電粒子と区分けされつつそのまま直進し
、反応場へと送られる。従って、電荷を有しない中性粒
子のみを反応場へと送ることができるものである。
On the other hand, when the beam flow of the activated raw material gas A enters the electric field generated by the electric field forming means 2, charged particles in the beam flow are influenced by this electric field. However, since the neutral particles are not affected by the electric field, they are separated from the charged particles, which are affected by the electric field, and proceed straight as they are and are sent to the reaction field. Therefore, only uncharged neutral particles can be sent to the reaction field.

[実施例] 原料ガスAが供給される上流室3には、例えば石英等の
マイクロ波を透過し得る材料で形成された窓部5を介し
て導波管6が接続されている。導波管6は、窓部5を介
して上流室3内にマイクロ波を投入するためのもので、
原料ガスAは、上流室3内でサイクロトロン共鳴によっ
て活性化される。
[Example] A waveguide 6 is connected to the upstream chamber 3 to which the raw material gas A is supplied via a window 5 formed of a material that can transmit microwaves, such as quartz. The waveguide 6 is for introducing microwaves into the upstream chamber 3 through the window 5.
The raw material gas A is activated within the upstream chamber 3 by cyclotron resonance.

上記上流室3は、縮小拡大ノズル1を介して下流室4に
連通されている。
The upstream chamber 3 is communicated with the downstream chamber 4 via the contraction/expansion nozzle 1 .

縮小拡大ノズル1としては、前述のように、流入計1a
から徐々に開口面請が絞られてのとllbとなり、再び
徐々に開口面積が拡大して流出口1cとなっているもの
であればよいが、第2図(a)に拡大して示しであるよ
うに、流出口IC位置で内周面が中心軸に対してほぼモ
行になっていることが好ましい。これは、噴出される原
料ガスAの流れ方向が、ある程度流出口1c内周面の方
向によって影響を受けるので、できるだけ平行流にさせ
やすくするためである。しかし、第2図(b)に示され
るように、のど部1bから流出口ICへ至る内周面の中
心軸に対する角度αを、7°以下好ましくは56以下と
すれば、剥離現象を生じにくく、噴出する原料ガスAの
流れはほぼ均一に維持されるので、この場合はことさら
上記のように平行にしなくともよい、乎行部の形成を省
略することにより、縮小拡大ノズルlの作製が容易とな
る。また、縮小拡大ノズル1を第2図(C)に示される
ような矩形のものとすれば、スリット状に原料ガスAを
噴出させることができる。
As mentioned above, the inflow meter 1a is used as the contraction/expansion nozzle 1.
It is sufficient if the opening area is gradually narrowed down to 1lb, and the opening area is gradually expanded again to form the outlet 1c, but it is shown enlarged in Fig. 2(a). As shown in the figure, it is preferable that the inner circumferential surface is substantially perpendicular to the central axis at the outlet IC position. This is because the flow direction of the ejected raw material gas A is influenced to some extent by the direction of the inner circumferential surface of the outlet 1c, so that it is possible to make the flow parallel to each other as easily as possible. However, as shown in FIG. 2(b), if the angle α of the inner peripheral surface from the throat portion 1b to the outlet IC with respect to the central axis is set to 7 degrees or less, preferably 56 or less, the peeling phenomenon is less likely to occur. Since the flow of the ejected raw material gas A is maintained almost uniformly, in this case it is not necessary to make it parallel as described above, and by omitting the formation of the flowing part, it is easy to manufacture the contracting and expanding nozzle L. becomes. Furthermore, if the contraction/expansion nozzle 1 is made rectangular as shown in FIG. 2(C), the raw material gas A can be ejected in a slit shape.

ここで、前記剥離現象とは縮小拡大ノズル1の内面に突
起物等があった場合に、縮小拡大ノズル1の内面と流過
流体間の境界層が大きくなって、流れが不均一になる現
象をいい、噴出流が高速になるほど生じやすい。前述の
角度αは、この剥離現象防止のために、縮小拡大ノズル
1の内面仕丑げ精度が劣るものほど小さくすることが好
ましい。縮小拡大ノズル1の内面は、JIS 8060
1に定められる、表面仕上げ精度を表わす逆三角形マー
クで三つ以上、最適には四つ以−4二が好ましい。特に
、縮小拡大ノズル1の拡大部における剥離現象が、その
後の原料ガスAの流れに大きく影響するので、上記仕上
げ精度を、この拡大部を重点にして定めることによって
、縮小拡大ノズルlの作製を容易にできる。また、やは
り剥離現象の発生防止のため、のど部1bは滑らかな湾
曲面とし、断面積変化率における微係数が(3)となら
ないようにする必要がある。
Here, the separation phenomenon is a phenomenon in which when there is a protrusion or the like on the inner surface of the contraction/expansion nozzle 1, the boundary layer between the inner surface of the contraction/expansion nozzle 1 and the flowing fluid becomes large and the flow becomes non-uniform. The faster the jet flow, the more likely it is to occur. In order to prevent this peeling phenomenon, the above-mentioned angle α is preferably made smaller as the inner surface finishing precision of the contraction/expansion nozzle 1 is inferior. The inner surface of the contraction/expansion nozzle 1 conforms to JIS 8060.
1, three or more inverted triangular marks representing surface finish accuracy, most preferably four or more -42. In particular, since the peeling phenomenon in the enlarged part of the contraction/expansion nozzle 1 greatly affects the subsequent flow of the raw material gas A, by determining the finishing accuracy with emphasis on this enlarged part, the fabrication of the contraction/expansion nozzle 1 is improved. It's easy to do. Furthermore, in order to prevent the occurrence of a peeling phenomenon, the throat portion 1b must have a smooth curved surface so that the differential coefficient in the rate of change in cross-sectional area does not become (3).

縮小拡大ノズル1の材質としては、例えば鉄、ステンレ
ススチールその他の全屈の他、アクリル樹脂、ポリ塩化
ビニル、ポリエチレン、ポリスチレン、ポリプロピレン
等の合成樹脂、セラミック材料1右英、ガラス等、広く
用いることができる。この材質の選択は、原料ガスAと
の非反応性、加工性、真空系内におけるガス放出性等を
考慮して行えばよい、また、縮小拡大ノズル1の内面に
、原料ガスの付着・反応を生じにくい材料をメッキ又は
コートすることもできる。具体例としては、ポリフッ化
エチレンのコート等を挙げることができる。
The material of the contraction/expansion nozzle 1 can be widely used, such as iron, stainless steel, and other materials, as well as synthetic resins such as acrylic resin, polyvinyl chloride, polyethylene, polystyrene, and polypropylene, ceramic materials, and glass. Can be done. This material may be selected by taking into consideration non-reactivity with the raw material gas A, workability, gas release properties in a vacuum system, etc. It is also possible to plate or coat a material that does not easily cause Specific examples include polyfluoroethylene coating.

縮小拡大ノズル1の長さは、装置の大きさ等によって任
意に定めることができる。ところで、縮小拡大ノズル1
を流過するときに、原料ガスAは、保有する熱エネルギ
ーが連動エネルギーに変換される。そして、特に超音速
で噴出される場合、熱エネルギーは著しく小さくなって
冷却状態となる。従って、キャリアガス中に架線成分が
含まれている場合、上記冷却状態によって積極的にこれ
らを凝縮させ、これによって微粒子を形成させることも
可能である。また、この場合、上のな凝縮を行うために
、縮小拡大ノズル1は長い方が好ましい。一方、上記の
ような凝縮を生ずると、これによって熱エネルギーが増
加して速度エネルギーは低下する。従って、高速噴出の
維持を図る上では、縮小拡大ノズル1は短い方が好まし
い。
The length of the contraction/expansion nozzle 1 can be arbitrarily determined depending on the size of the device and the like. By the way, contraction/expansion nozzle 1
When flowing through the source gas A, the thermal energy it possesses is converted into interlocking energy. Particularly when ejected at supersonic speed, the thermal energy is significantly reduced and a cooling state occurs. Therefore, when the carrier gas contains catenary components, it is also possible to actively condense them by the above-mentioned cooling state, thereby forming fine particles. Further, in this case, it is preferable that the contraction/expansion nozzle 1 is long in order to perform the above condensation. On the other hand, when condensation occurs as described above, thermal energy increases and velocity energy decreases. Therefore, in order to maintain high-speed jetting, it is preferable that the contraction/expansion nozzle 1 be short.

下流室4には、L記縮小拡大ノズル1から噴出される原
料ガスAの流路を間に挟んで、一対の電極が電場形成手
段2として設けられている。また、この電場形成手段2
の下流側には、処理を施すべき基体7が設けられている
。更に、この基体7の前面付近には、原料ガスBが供給
されるようになっている。
In the downstream chamber 4, a pair of electrodes are provided as electric field forming means 2, with a flow path for raw material gas A ejected from the L contraction/expansion nozzle 1 interposed therebetween. Moreover, this electric field forming means 2
A substrate 7 to be treated is provided on the downstream side of the substrate. Furthermore, raw material gas B is supplied to the vicinity of the front surface of this base body 7.

本実施例においては、原料ガスAはト流室3で活性化さ
れるものとなっているので、縮小拡大ノズル1からは活
性化された原料ガスAがビーム流として噴出されること
になる。但し、原料ガスAの活性化は、少なくとも電場
形成手段2の電場内に原料ガスAのビーム流が流入する
前に行われれば足り、縮小拡大ノズル1から噴出された
原料ガスAのビーム流に対して、紫外、可視、赤外線等
の各種波長の光や、レーザー光等を照射して、原料ガス
Aをビーム流とした後に活性化することもできる。
In this embodiment, the source gas A is activated in the flow chamber 3, so the activated source gas A is ejected from the contraction/expansion nozzle 1 as a beam stream. However, it is sufficient that the activation of the raw material gas A is performed at least before the beam flow of the raw material gas A flows into the electric field of the electric field forming means 2. On the other hand, it is also possible to activate the raw material gas A after turning it into a beam stream by irradiating it with light of various wavelengths such as ultraviolet, visible, and infrared rays, laser light, and the like.

活性化された原料ガスAのビーム流が電場形成手段2の
電場内へと入ると、正の荷電粒子は負電極へ引き付けら
れると同時に、負の荷電粒子は正電極へと引き付けられ
て、中性粒子のみが直進する。そして、この活性化した
中性粒子のみが基体7の前面で原料ガスBと反応して、
基体7に成膜やエツチング等の処理が施されることにな
る。
When the beam flow of the activated source gas A enters the electric field of the electric field forming means 2, the positively charged particles are attracted to the negative electrode, while the negatively charged particles are attracted to the positive electrode, and the inside Only sexual particles move straight. Then, only these activated neutral particles react with the raw material gas B on the front surface of the base 7,
Processing such as film formation and etching will be performed on the base body 7.

上記実施例においては、電場形成手段2は一対の電極と
なっているが、本発明における電場形成手段2は活性化
された原料ガスA中の中性粒子を選択的に直進させ得れ
ば足り、電子線を発生させて電場を形成するもの等であ
ってもよい、また、電場の強さは、形成される荷電粒子
の電荷に応じて調整し、中性粒子のみが基体7へ付着す
るようにする。
In the above embodiment, the electric field forming means 2 is a pair of electrodes, but it is sufficient that the electric field forming means 2 in the present invention can selectively move the neutral particles in the activated raw material gas A in a straight line. , which generates an electron beam to form an electric field, etc. The strength of the electric field is adjusted depending on the charge of the charged particles to be formed, so that only neutral particles adhere to the substrate 7. do it like this.

[発明の効果] 以上説明の通り、本発明によれば、中性粒子のみを選択
的に反応場へと送ることができ、大きな電荷の荷電粒子
が衝突することによるダメージを防止でき、また新しい
反応形態への応用が期待されるものである。
[Effects of the Invention] As explained above, according to the present invention, only neutral particles can be selectively sent to the reaction field, damage caused by collisions of charged particles with large charges can be prevented, and new This is expected to be applied to reaction patterns.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図(a)〜(
C)は各々縮小拡大ノズルの形状例を示す図である。 1:縮小拡大ノズル、1a :流入口、1b :のど部
、IC=流出口、 2:電場形成手段、3:上流室、4:下流室、5:窓部
、6:導波管、7:基体。
FIG. 1 is an explanatory diagram of one embodiment of the present invention, and FIGS. 2(a) to (
C) is a diagram showing an example of the shape of the contraction/enlargement nozzle. 1: Reduction/expansion nozzle, 1a: Inlet, 1b: Throat, IC=outlet, 2: Electric field forming means, 3: Upstream chamber, 4: Downstream chamber, 5: Window, 6: Waveguide, 7: Base.

Claims (1)

【特許請求の範囲】[Claims] 1)縮小拡大ノズルからの噴出流として送られて来る活
性化された原料ガスの流路に電場を形成して、活性化さ
れた原料ガス中の中性粒子を選択的に反応場へと送るこ
とを特徴とする微粒子を用いた反応方法。
1) Create an electric field in the flow path of the activated raw material gas sent as a jet stream from the contraction/expansion nozzle to selectively send neutral particles in the activated raw material gas to the reaction field. A reaction method using fine particles characterized by the following.
JP22492886A 1986-09-25 1986-09-25 Reaction using fine particle Pending JPS6380842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22492886A JPS6380842A (en) 1986-09-25 1986-09-25 Reaction using fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22492886A JPS6380842A (en) 1986-09-25 1986-09-25 Reaction using fine particle

Publications (1)

Publication Number Publication Date
JPS6380842A true JPS6380842A (en) 1988-04-11

Family

ID=16821367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22492886A Pending JPS6380842A (en) 1986-09-25 1986-09-25 Reaction using fine particle

Country Status (1)

Country Link
JP (1) JPS6380842A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115773A (en) * 1991-10-30 1993-05-14 Daikin Ind Ltd Film forming apparatus
US6117289A (en) * 1996-12-20 2000-09-12 Matsushita Electric Industrial Co., Ltd. Cholesterol sensor and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115773A (en) * 1991-10-30 1993-05-14 Daikin Ind Ltd Film forming apparatus
US6117289A (en) * 1996-12-20 2000-09-12 Matsushita Electric Industrial Co., Ltd. Cholesterol sensor and method for producing the same

Similar Documents

Publication Publication Date Title
JPS6380842A (en) Reaction using fine particle
JPS62158329A (en) Device for spraying fine particle
JPS62253772A (en) Film forming apparatus
JPS62155934A (en) Vapor phase exciter
JPS6381824A (en) Control of fine particle flow
JPS62120477A (en) Film forming device
JPS6318002A (en) Surface working method for fine particle
JPS62115700A (en) Vapor phase exciter
JPS6335779A (en) Film forming device
JPS6381821A (en) Reactor
JPS62116771A (en) Film forming device
JPS62131512A (en) Vapor phase exciting device
JPS62294413A (en) Collecting device for fine particle
JPS62115699A (en) Vapor phase exciter
JPH0627338B2 (en) Method for forming multi-layer film with ultrafine particles
JPS61223307A (en) Minute particle flow controller
JPS61221377A (en) Plasma cvd device
JPS62116785A (en) Etching device
JPS6380817A (en) Apparatus for collecting fine particles
JPS61223311A (en) Minute particle transferring apparatus
JPS6242414A (en) Vapor-phase exciting device
JPS62115823A (en) Flow controller
JPS62250945A (en) Gaseous phase treatment apparatus
JPS6241410A (en) Corpuscular stream controller
JPS61218814A (en) Minute particle flow control apparatus