JPS61218814A - Minute particle flow control apparatus - Google Patents

Minute particle flow control apparatus

Info

Publication number
JPS61218814A
JPS61218814A JP60115365A JP11536585A JPS61218814A JP S61218814 A JPS61218814 A JP S61218814A JP 60115365 A JP60115365 A JP 60115365A JP 11536585 A JP11536585 A JP 11536585A JP S61218814 A JPS61218814 A JP S61218814A
Authority
JP
Japan
Prior art keywords
chamber
flow
contraction
particles
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60115365A
Other languages
Japanese (ja)
Inventor
Yuji Chiba
千葉 裕司
Kenji Ando
謙二 安藤
Tatsuo Masaki
正木 辰雄
Masao Sugata
菅田 正夫
Kuniji Osabe
長部 国志
Osamu Kamiya
神谷 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60115365A priority Critical patent/JPS61218814A/en
Priority to CA000504938A priority patent/CA1272662A/en
Priority to GB8607602A priority patent/GB2175413B/en
Priority to DE19863610298 priority patent/DE3610298A1/en
Publication of JPS61218814A publication Critical patent/JPS61218814A/en
Priority to US07/052,148 priority patent/US4911805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Coating Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To control a beam spraying region by providing a skimmer with the function of a variable aperture on the downstream situated side of a shrinkage/expansion nozzle. CONSTITUTION:A passage is provided with a shrinkage/expansion nozzle 1 in which a passage is gradually shrinked from an inlet 1a toward a throat 2 and gradually expanded therefrom toward an outlet 1b. A skimmer 7 is provided on the downstream situated side of the shrinkage/expansion nozzle 1. This construction enables a surface irradiated by a beam to be controlled and a beam spraying region to be accurately controlled.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微粒子の移送手段や吹き付は手段等として利
用される微粒子流の流れ制御装置に関するもので、例え
ば、微粒子による。成膜加工、複合素材の形成、ドープ
加工、または微粒子の新たな形成場等への応用が期待さ
れるものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a flow control device for a particulate flow that is used as a means for transporting or spraying particulates, for example, by using particulates. It is expected to be applied to film formation processing, composite material formation, doping processing, and new formation sites for fine particles.

本明細書において、微粒子とは、原子、分子、超微粒子
及び一般微粒子をいう。ここで超微粒子とは、例えば、
気相反応を利用した、ガス中蒸発法、プラズマ蒸発法、
気相化学反応法、更には液相反応を利用した、コロイド
学的な沈殿法、溶液噴霧熱分解法等によって得られる、
超微細な(一般には0.5μm以下)粒子をいう。一般
微粒子とは、機械的粉砕や析出沈殿処理等の一般的手法
によって得られる微細粒子をいう。また、ビームとは、
流れ方向に断面積がほぼ一定の噴流のことをいい、その
断面形状は問わないものである。
In this specification, fine particles refer to atoms, molecules, ultrafine particles, and general fine particles. Here, ultrafine particles are, for example,
Evaporation method in gas, plasma evaporation method using gas phase reaction,
Obtained by gas phase chemical reaction method, colloidal precipitation method, solution spray pyrolysis method, etc. using liquid phase reaction,
Refers to ultrafine (generally 0.5 μm or less) particles. General fine particles refer to fine particles obtained by general methods such as mechanical crushing and precipitation treatment. Also, what is a beam?
A jet stream whose cross-sectional area is approximately constant in the flow direction, and its cross-sectional shape does not matter.

[従来の技術] 一般に微粒子は、キャリアガス中に分散浮遊されて、キ
ャリアガスの流れによって移送されている。
[Prior Art] Generally, fine particles are dispersed and suspended in a carrier gas and transported by the flow of the carrier gas.

従来、玉記微粒子の移送に伴う微粒子の流れ制御は、上
流側と下流側の差圧によって、キャリアガスと共に流れ
る微粒子の全流路を、管材又は筺体で区画することによ
って行われているに過ぎない。従って、微粒子の流れは
、その強弱はあるものの必然的に、微粒子の流路を区画
する管材又は筐体内全体に分散した状態で生ずることに
なる。
Conventionally, control of the flow of fine particles accompanying the transfer of fine particles has been carried out by dividing the entire flow path of the fine particles flowing together with the carrier gas with a pipe material or a housing based on the differential pressure between the upstream side and the downstream side. do not have. Therefore, although the flow of particles varies in strength and weakness, the flow of particles inevitably occurs in a dispersed state throughout the pipe material or casing that defines the flow path for particles.

また、微粒子を基体へ吹き付ける場合等においては、ノ
ズルを介してキャリアガスと共に微粒子を噴出させるこ
とが行われている。この微粒子の吹き付けに用いられて
いるノズルは、単なる平行管又は先細ノズルで、確かに
噴出直後の微粒子の噴流断面はノズル端目面の面積に応
じて絞られる。しかし、噴流はノズルの出口面で拡散さ
れるので、単に一時的に波路を絞っただけのものに過ぎ
ず、また噴流の速度が音速を越えることはない。
Furthermore, when spraying fine particles onto a substrate, the fine particles are jetted out together with a carrier gas through a nozzle. The nozzle used to spray the fine particles is a simple parallel tube or a tapered nozzle, and the jet cross section of the fine particles immediately after being ejected is certainly narrowed down according to the area of the nozzle end face. However, since the jet is diffused at the exit surface of the nozzle, the wave path is merely temporarily constricted, and the speed of the jet does not exceed the speed of sound.

[発明が解決しようとする問題点] ところで、微粒子の全流路を管材又は筐体で区画し、E
流側と下流側の差圧によって、この流路に沿ってキャリ
アガスと共に微粒子を移送するのでは、それほど高速の
移送速度は望み得ない、また、微粒子の流路を区画する
管材や筐体の壁面と微粒子の接触を、全移送区間に亘っ
て避は難い。
[Problems to be Solved by the Invention] By the way, it is possible to divide the entire flow path of fine particles with a pipe material or a casing, and to
If particles are transferred along this flow path along with the carrier gas by the differential pressure between the flow side and the downstream side, a very high transfer speed cannot be expected. It is difficult to avoid contact between the wall surface and the particulates over the entire transfer section.

このため、特に活性を有する微粒子をその捕集位置まで
移動させる際に、経時的活性の消失や、管材や筺体の壁
面との接触による活性の消失を生みやすい問題がある。
For this reason, there is a problem in that when moving particularly active fine particles to their collection position, the activity tends to disappear over time or due to contact with the tube material or the wall surface of the casing.

また、管材や筐体で微粒子の全流路を区画したのでは、
流れのデッドスペースの発生等によって、移送微粒子の
捕集率が低rしたり、キャリアガスの微粒子移送への利
用効率も低下する。
In addition, if the entire flow path of particles is divided by pipe material or housing,
Due to the occurrence of dead spaces in the flow, the collection rate of the transported particles decreases, and the utilization efficiency of the carrier gas for transporting the particles also decreases.

一方、従来の平行管や先細ノズルは、流過した噴流内の
微粒子の密度分布が大きい拡散流となる。従って、微粒
子を基体へ吹き付ける場合等において、均一な吹き付は
制御が行い難い問題がある。また、均一な吹き付は領域
の制御も困難である。
On the other hand, in conventional parallel tubes and tapered nozzles, the jet stream that passes through it becomes a diffuse flow with a large density distribution of particles. Therefore, when spraying fine particles onto a substrate, it is difficult to control uniform spraying. Furthermore, uniform spraying makes it difficult to control the area.

[問題点を解決するための手段] 1記問題点を解決するために講じられた手段を、本発明
の基本原理の説明図である第1図で説明すると、下流側
が排気される流路に縮小拡大ノズルlを設け、さらにこ
のノズルの下流側に、可変絞り機能を有するスキマー7
を設けることによってと記問題点を解決したものである
[Means for Solving the Problems] The measures taken to solve the problems mentioned above are explained with reference to FIG. 1, which is an explanatory diagram of the basic principle of the present invention. A contraction/expansion nozzle l is provided, and a skimmer 7 having a variable aperture function is further provided on the downstream side of this nozzle.
By providing this, the above problems are solved.

本発明における縮小拡大ノズル1とは、流入口1dから
中間部に向って徐々に開口面積が絞られてのど部2とな
り、こののど部2から流出口1bに向って徐々に開口面
積が拡大されているノズルをいう。
The contraction/expansion nozzle 1 in the present invention is a throat portion 2 in which the opening area is gradually narrowed from the inlet 1d toward the middle portion, and the opening area is gradually expanded from the throat portion 2 toward the outlet 1b. This refers to the nozzle that is

一方、可変絞り機能を有するスキマー7とは。On the other hand, what is the skimmer 7 that has a variable aperture function?

外部からの操作によって、その開口部の面積を段階的あ
るいは無段階に調整できる機能を有するスキマーをいう
。また、第1図においては、説明の便宜上、縮小拡大ノ
ズルlの流入側と流出側は、各々密閉系である上流室3
と下流室4に連結されている。しかし、本発明における
縮小拡大ノズル1の流入側と流出側は1両者間に差圧を
生じさせて、下流側で排気しつつキャリアガスと共に微
粒子を流過させることができれば、密閉系であっても開
放系であってもよい。
A skimmer that has the ability to adjust the area of its opening stepwise or steplessly by operating it from the outside. In addition, in FIG. 1, for convenience of explanation, the inflow side and the outflow side of the contraction/expansion nozzle l are each shown as an upstream chamber 3 which is a closed system.
and the downstream chamber 4. However, the inflow and outflow sides of the contraction/expansion nozzle 1 in the present invention can be a closed system if a differential pressure can be generated between the two and the particles can be passed along with the carrier gas while being exhausted on the downstream side. It may also be an open system.

[作 用] 例えば第1図に示されるように、上流室3内に微粒子を
分散浮遊させたキャリアガスを供給する一方、下流室4
内を真空ポンプ5で排気すると、上流室3と下流室4間
に圧力差を生じる。従って、供給された微粒子を含むキ
ャリアガスは、上流室3から縮小拡大ノズル1を流過し
て下流室4へと流入することになる。ト流室3の圧力P
oと下流室4の圧力Pの圧力比P/POと、のど部2の
開口面績A・と流出01bの開口面積Aとの比A/A”
とを調節することによって、キャリアガスと共に噴出す
る微粒子の流れを高速化できる。そして、上流室3と下
流室4内の圧力比P/Paが臨界圧力比より大きければ
、縮小拡大ノズルlの出口流速が亜音速以下の流れとな
り、キャリアガスと共に微粒子は減速噴出される。また
、上記圧力比が臨界圧力比以下であれば、縮小拡大ノズ
ルlの出口流速は超音速流となり、キャリアガスと共に
微粒子を超高速にて噴出させることができる。
[Function] For example, as shown in FIG.
When the inside is evacuated by the vacuum pump 5, a pressure difference is created between the upstream chamber 3 and the downstream chamber 4. Therefore, the supplied carrier gas containing fine particles flows from the upstream chamber 3 through the contraction/expansion nozzle 1 and flows into the downstream chamber 4 . Pressure P in flow chamber 3
the pressure ratio P/PO of the pressure P of the downstream chamber 4 and the ratio A/A of the opening area A of the throat 2 and the opening area A of the outflow 01b.
By adjusting this, the flow of particles ejected together with the carrier gas can be sped up. If the pressure ratio P/Pa in the upstream chamber 3 and downstream chamber 4 is greater than the critical pressure ratio, the flow velocity at the exit of the contraction/expansion nozzle l becomes subsonic or less, and the particles are decelerated and ejected together with the carrier gas. Further, if the pressure ratio is equal to or lower than the critical pressure ratio, the flow velocity at the outlet of the contraction/expansion nozzle l becomes a supersonic flow, and the fine particles can be ejected together with the carrier gas at a super high speed.

ここで、微粒子流の速度をU、その点における音速をa
、微粒子流の比熱比をγとし、微粒子流を圧縮性の一次
元流で断熱膨張すると仮定すれば、微粒子流の到達マツ
ハ数Mは、上流室の圧力Poと下流室の圧力Pとから次
式で定まり、特にP/POが臨界圧力比以下の場合、M
はl以トとなる。
Here, the velocity of the particle flow is U, and the sound velocity at that point is a.
, the specific heat ratio of the particulate flow is γ, and assuming that the particulate flow is a compressible one-dimensional flow and expands adiabatically, the Matzuha number M reached by the particulate flow is given by the following equation from the pressure Po in the upstream chamber and the pressure P in the downstream chamber. It is determined by the formula, especially when P/PO is below the critical pressure ratio, M
is less than l.

尚、音速aは局所温度をT、気体定数をRとすると、次
式で求めることができる。
Note that the sound velocity a can be determined by the following equation, where T is the local temperature and R is the gas constant.

a=F71薯「 また、流出ロ1b開ロ面積A及びのど部2の開口面積A
°とマツハ数Mには次の関係がある。
a=F71薯" Also, the opening area A of the outflow hole 1b and the opening area A of the throat part 2
The relationship between ° and Matsuha's number M is as follows.

従って、上流室3の圧力POと下流室4の圧力Pの圧力
比P/Poによって(1)式から定まるマツハ数Mに応
じて開口面積比A/A”を定めたり、A/A・によって
(2)式から定まるMに応じてP/P、を調整すること
によって、拡大縮小ノズルlから噴出する微粒子流の流
速を調整できる。このときの微粒子流の速度Uは、次の
(3)式によって求めることができる。
Therefore, the opening area ratio A/A'' can be determined according to the Matsuha number M determined from equation (1) by the pressure ratio P/Po of the pressure PO in the upstream chamber 3 and the pressure P in the downstream chamber 4, or by A/A. By adjusting P/P according to M determined from equation (2), the flow velocity of the particulate flow ejected from the enlargement/contraction nozzle l can be adjusted.The velocity U of the particulate flow at this time is determined by the following (3). It can be determined by the formula.

上記微粒子流の流れ状態は、上流室3の圧力P0と下流
室4の圧力Pの圧力比P/Poを一定に保つことにより
、開口面積比A/A−で定まる一定の状態を維持するこ
とになる。
The flow state of the particle flow is maintained at a constant state determined by the opening area ratio A/A- by keeping the pressure ratio P/Po of the pressure P0 of the upstream chamber 3 and the pressure P of the downstream chamber 4 constant. become.

前述のような圧力比が臨界圧力比未満の噴出においては
、噴出されるキャリアガスと微粒子は均一な拡散流とな
り、比較的広い範囲に亘って一度に均一に微粒子を吹き
付けることが可能となる。
In the above-mentioned ejection where the pressure ratio is less than the critical pressure ratio, the ejected carrier gas and the particles form a uniform diffusion flow, making it possible to uniformly spray the particles over a relatively wide range at once.

また、スキマー7によってキャリアガスの下流室4への
流出が制御されるため、上流室3と下流室4との圧力差
を効率よく保つことができる。
Further, since the skimmer 7 controls the outflow of the carrier gas to the downstream chamber 4, the pressure difference between the upstream chamber 3 and the downstream chamber 4 can be maintained efficiently.

一方、前述のような超高速の流れとしてキャリアガスと
共に微粒子を一定方向へ噴出させると、キャリアガスと
微粒子は噴出直後の噴流断面をほぼ保ちながら直進し、
ビーム化される。従って。
On the other hand, when particles are ejected in a fixed direction along with carrier gas as an ultra-high-speed flow as described above, the carrier gas and particles travel straight while maintaining almost the jet cross section immediately after ejection.
Beamed. Therefore.

このキャリアガスによって運ばれる微粒子の流れもビー
ム化され、最小限の拡散で下流室4内の空間中を、下流
室4の壁面との干渉のない空間的に独立状態で、かつ超
高速で移送されることになる。
The flow of particles carried by this carrier gas is also converted into a beam, and is transported through the space within the downstream chamber 4 with minimal diffusion, in a spatially independent state without interference with the wall surface of the downstream chamber 4, and at ultra-high speed. will be done.

このようなことから2例えば上流室3内で活性を有する
微粒子を形成して、これを直に縮小拡大ノズル1でビー
ム化移送したり、縮小拡大ノズルl内又は縮小拡大ノズ
ルlの直後で活性を有する微粒子を形成して、これをそ
のままビーム化移送すれば、超音速による、しかも空間
的に独立状態にあるビームとして移送することができ、
例えば下流室4内に設けた基体6上に付着捕集すること
ができる。従って、良好な活性状態のまま微粒子を捕集
することが可能となる。また、噴流断面が流れ方向にほ
ぼ一定のビームとして微粒子が基板6上に吹き付けられ
るので、この吹き付は領域を容易に制御できるものであ
る。
For this reason, 2, for example, it is possible to form active particles in the upstream chamber 3 and transfer them directly into a beam through the contraction/expansion nozzle 1, or activate them in the contraction/expansion nozzle 1 or immediately after the contraction/expansion nozzle 1. By forming fine particles having a particle size and transferring them as a beam, it is possible to transfer them as a spatially independent beam at supersonic speed.
For example, it can be deposited and collected on a substrate 6 provided in the downstream chamber 4. Therefore, it becomes possible to collect fine particles in a good active state. Further, since the fine particles are sprayed onto the substrate 6 as a beam whose jet cross section is substantially constant in the flow direction, the area of this spraying can be easily controlled.

[実施例コ 第2図は本発明を超微粒子による成膜装置に利用した場
合の一実施例の概略図で、図中1は縮小拡大ノズル、3
は上流室、4dは第−下流室、4bは第二下流室である
[Example 2] Figure 2 is a schematic diagram of an example in which the present invention is applied to a film forming apparatus using ultrafine particles.
is an upstream chamber, 4d is a first-downstream chamber, and 4b is a second downstream chamber.

hlIt室3と第一下流室4aは、一体のユニットとし
て構成されており、第一下流室4aに、やはり各々ユニ
ット化されたスキマー7、ゲートバルブ8及び第二下流
室4bが、全て共通した径のフランジ(以下「共通フラ
ンジ」という)を介して、相互に連結分離可能に順次連
結されている。上流室3、第一下流室4a及び第二下流
室4bは、後述する排気系によって、上流室3から第二
下流室4bへと、段階的に高い真空度に保たれているも
のである。
The hlIt chamber 3 and the first downstream chamber 4a are configured as an integrated unit, and the skimmer 7, gate valve 8, and second downstream chamber 4b, which are also each unitized, are all common to the first downstream chamber 4a. They are sequentially connected to each other so that they can be connected and separated via a diameter flange (hereinafter referred to as a "common flange"). The upstream chamber 3, the first downstream chamber 4a, and the second downstream chamber 4b are maintained at a high degree of vacuum in stages from the upstream chamber 3 to the second downstream chamber 4b by an exhaust system described later.

上流室3の一側には、共通フランジを介して気相励起装
置9が取付けられている。この気相励起装置9は、プラ
ズマによって活性な超微粒子を発生させると共に1例え
ば水素、ヘリウム、アルゴン、窒素等のキャリアガスと
共にこの超微粒子を、対向側に位置する縮小拡大ノズル
lへと送り出すものである。この形成された超微粒子が
、上流室3の内面に付着しないよう、付着防止処理を内
面に施しておいてもよい。また、発生したl1fl微粒
子は、L流室3に比して第一下流室4aが高い真空度に
あるため、両者間の圧力差によって、キャリアガスと共
に直に縮小拡大ノズル1内を流過して第一下流室4aへ
と流れることになる。
A gas phase excitation device 9 is attached to one side of the upstream chamber 3 via a common flange. This gas phase excitation device 9 generates active ultrafine particles using plasma and sends the ultrafine particles together with a carrier gas such as hydrogen, helium, argon, nitrogen, etc. to a contraction/expansion nozzle l located on the opposite side. It is. In order to prevent the formed ultrafine particles from adhering to the inner surface of the upstream chamber 3, an anti-adhesion treatment may be applied to the inner surface of the upstream chamber 3. In addition, since the first downstream chamber 4a has a higher degree of vacuum than the L flow chamber 3, the generated l1fl fine particles directly flow through the contraction/expansion nozzle 1 together with the carrier gas due to the pressure difference between the two. and flows into the first downstream chamber 4a.

気相励起装置9は、第3図(a)に示されるように、棒
状の第一電極9aを管状の第二電極8b内に設け、第二
電極9b内にキャリアガスと原料ガスを供給して1両電
極9a、 9b間で放電させるものとなっている。また
、気相励起装置9は、第3図(b)に示されるように、
第二電極9b内に設けられている第一電極9aを多孔管
として、第一電極9a内を介して両電極9a、 9b間
にキャリアガスと原料ガスを供給するものとしたり、同
(C)に示されるように。
As shown in FIG. 3(a), the gas phase excitation device 9 includes a rod-shaped first electrode 9a disposed within a tubular second electrode 8b, and a carrier gas and a raw material gas supplied into the second electrode 9b. Thus, a discharge is caused between the two electrodes 9a and 9b. Further, the gas phase excitation device 9, as shown in FIG. 3(b),
The first electrode 9a provided in the second electrode 9b may be a porous tube to supply carrier gas and raw material gas between the two electrodes 9a and 9b through the inside of the first electrode 9a. As shown in.

半割管状の両電極9a、 9bを絶縁材9Cを介して管
状に接合し、両電極9a、 9bで形成された管内にキ
ャリアガスと原料ガスを供給するものとすることもでき
る。
It is also possible to connect the half-tubular electrodes 9a and 9b into a tube via an insulating material 9C, and supply the carrier gas and source gas into the tube formed by the electrodes 9a and 9b.

縮小拡大ノズルlは、第一下流室4aの上流室3側の側
端に、上流室3に流入Qlaを開口させ、第一ド流室4
aに流出口1bを開口させて、上流室3内に突出した状
態で、共通フランジを介して取付けられている。但しこ
の縮小拡大ノズルlは、第一下流室4a内に突出した状
態で取付けるようにしてもよい。縮小拡大ノズル1をい
ずれに突出させるかは、移送するB微粒子の大きさ、量
、性質等に応じて選択すればよい。
The contraction/expansion nozzle l opens the inflow Qla into the upstream chamber 3 at the side end of the first downstream chamber 4a on the upstream chamber 3 side, and
The outflow port 1b is opened at a, and the upstream chamber 3 is protruded into the upstream chamber 3, and is attached via a common flange. However, the contraction/expansion nozzle 1 may be installed in a state in which it projects into the first downstream chamber 4a. The direction in which the contraction/expansion nozzle 1 should be projected may be selected depending on the size, amount, properties, etc. of the B fine particles to be transferred.

縮小拡大ノズル1としては、前述のように、流入口1a
から徐々に開口面積が絞られてのど部2となり、再び徐
々に開口面積が拡大して流出口1bとなっているもので
あればよいが、そののど部2の開口面積が、真空ポンプ
5aの排気流量より、所要のト流室3の圧力及び温度下
におけるノズル流量が小さくなるよう定められている。
As mentioned above, the contraction/expansion nozzle 1 has an inlet port 1a.
The opening area is gradually narrowed down to form the throat 2, and the opening area is gradually expanded again to form the outflow port 1b. The nozzle flow rate is determined to be smaller than the exhaust flow rate under the required pressure and temperature of the flow chamber 3.

これによって流出口1bは適正膨張となり、流出口1b
での減速等を防止できる。また、第4図(a)に拡大し
て示しであるように、流出口lb付近の内周面が、中心
軸に対してほぼ平行であることが好ましい。これは、噴
出されるキャリアガス及び超微粒子の流れ方向が、ある
程度流出口lb付近の内周面の方向によって影響を受け
るので、できるだけ平行流にさせやすくするためである
。しかし、第4図(b)に示されるように、のど部2か
ら流出口1bへ至る内周面の中心軸に対する角度αを、
7°以下好ましくは5°以下とすれば、剥離現象を生じ
にくく、噴出するキャリアガス及び超微粒子の流れはほ
ぼ均一に維持されるので、この場合はことさら上記平行
部を形成しなくともよい。平行部の形成を省略すること
により、縮小拡大ノズル1の作製が容易となる。また、
縮小拡大ノズルlを第4図(C)に示されるような矩形
のものとすれば、スリット状にキャリアガス及び超微粒
子を噴出させることができる。
As a result, the outlet 1b is properly expanded, and the outlet 1b
This can prevent deceleration, etc. Further, as shown in an enlarged view in FIG. 4(a), it is preferable that the inner circumferential surface near the outlet lb is substantially parallel to the central axis. This is because the direction of flow of the carrier gas and ultrafine particles to be ejected is influenced to some extent by the direction of the inner circumferential surface near the outlet lb, so that it is possible to make the flow parallel to each other as easily as possible. However, as shown in FIG. 4(b), the angle α of the inner peripheral surface from the throat portion 2 to the outlet 1b with respect to the central axis is
If the angle is 7° or less, preferably 5° or less, peeling phenomenon will not easily occur and the flow of the ejected carrier gas and ultrafine particles will be maintained almost uniformly, so in this case, it is not necessary to form the above-mentioned parallel portion. By omitting the formation of the parallel portion, the contraction/expansion nozzle 1 can be manufactured easily. Also,
If the contraction/expansion nozzle l is made rectangular as shown in FIG. 4(C), carrier gas and ultrafine particles can be ejected in a slit shape.

ここで、前記剥離現象とは縮小拡大ノズルlの内面に突
起物等があった場合に、縮小拡大ノズル1の内面と流過
流体間の境界層が大きくなって、流れが不均一になる現
象をいい、噴出流が高速になるほど生じやすい。前述の
角度αは、この剥離現象防止のために、縮小拡大ノズル
lの内面仕上げ精度が劣るものほど小さくすることが好
ましい。縮小拡大ノズル1の内面は、JIS 8060
1に定められる、表面仕上げ精度を表わす逆三角形マー
クで三つ以上、最適には四つ以上が好ましい、特に、縮
小拡大ノズルlの拡大部における剥離現象が、その後の
キャリアガス及び超微粒子の流れに大きく影響するので
、上記仕上げ精度を、この拡大部を重点にして定めるこ
とによって、縮小拡大ノズル1の作製を容易にできる。
Here, the separation phenomenon is a phenomenon in which when there is a protrusion etc. on the inner surface of the contraction/expansion nozzle 1, the boundary layer between the inner surface of the contraction/expansion nozzle 1 and the flowing fluid becomes large and the flow becomes non-uniform. The faster the jet flow, the more likely it is to occur. In order to prevent this peeling phenomenon, it is preferable that the above-mentioned angle α is made smaller as the inner surface finish accuracy of the contraction/expansion nozzle l becomes lower. The inner surface of the contraction/expansion nozzle 1 conforms to JIS 8060.
1, it is preferable to have three or more inverted triangular marks representing surface finish accuracy, and optimally four or more. In particular, the peeling phenomenon at the enlarged part of the contraction/expansion nozzle l will affect the subsequent flow of carrier gas and ultrafine particles. Therefore, by determining the finishing accuracy with emphasis on this enlarged portion, the reduction/expansion nozzle 1 can be manufactured easily.

また、やはり剥離現象の発生防止のため、のど部2は滑
らかな湾曲面とし、断面積変化率における微係数が(1
)とならないようにする必要がある。
In addition, in order to prevent the occurrence of peeling phenomenon, the throat portion 2 is made a smooth curved surface, and the differential coefficient of the cross-sectional area change rate is (1
) must be avoided.

縮小拡大ノズル1の材質としては1例えば鉄、ステンレ
ススチールその他の金属の他、アクリル樹脂、ポリ塩化
ビニル、ポリエチレン、ポリスチレン、ポリプロピレン
等の合成樹脂、セラミック材料1右英、ガラス等、広く
用いることができる。この材質の選択は、生成される超
微粒子との非反応性、加工性、真空系内におけるガス放
出性等を考慮して行えばよい。また、縮小拡大ノズル1
の内面に、aW1粒子の付着・反応を生じにくい材料を
メッキ又はコートすることもできる。具体例としては、
ポリフッ化エチレンのコート等を挙げることができる。
Materials for the contraction/expansion nozzle 1 include iron, stainless steel, and other metals, as well as synthetic resins such as acrylic resin, polyvinyl chloride, polyethylene, polystyrene, and polypropylene, ceramic materials, and glass. can. This material may be selected in consideration of non-reactivity with the generated ultrafine particles, processability, gas release properties in a vacuum system, etc. Also, the reduction/expansion nozzle 1
It is also possible to plate or coat the inner surface of the substrate with a material that is less likely to cause adhesion and reaction of aW1 particles. As a specific example,
Examples include polyfluoroethylene coating.

縮小拡大ノズルlの長さは、装置の大きさ等によって任
意に定めることができる。ところで、縮小拡大ノズルI
を流過するときに、キャリアガス及び超微粒子は、保有
する熱エネルギーが運動エネルギーに変換される。そし
て、特に超音速で噴出される場合、熱エネルギーは著し
く小さくなって過冷却状態となる。従って、キャリアガ
ス中に凝縮成分が含まれている場合、上記過冷却状態に
よって積極的にこれらを凝縮させ、これによって超微粒
子を形成させることも可能である。これによる超微粒子
の形成は、均質核形成であるので、均質な超微粒子が得
やすい。また、この場合、十分な凝縮を行うために、縮
小拡大ノズルlは長い方が好ましい。一方、L記のよう
な凝縮を生ずると、これによって熱エネルギーが増加し
て速度エネルギーは低下する。従って、高速噴出の維持
を図る上では、縮小拡大ノズル1は短い方が好ましい。
The length of the contraction/expansion nozzle l can be arbitrarily determined depending on the size of the apparatus and the like. By the way, contraction/expansion nozzle I
When flowing through the carrier gas and ultrafine particles, the thermal energy they possess is converted into kinetic energy. Particularly when ejected at supersonic speed, the thermal energy becomes significantly small, resulting in a supercooled state. Therefore, if the carrier gas contains condensed components, it is also possible to actively condense them by the supercooled state, thereby forming ultrafine particles. Since the formation of ultrafine particles by this is homogeneous nucleation, it is easy to obtain homogeneous ultrafine particles. Further, in this case, in order to perform sufficient condensation, it is preferable that the contraction/expansion nozzle l be long. On the other hand, when condensation occurs as shown in L, thermal energy increases and velocity energy decreases. Therefore, in order to maintain high-speed jetting, it is preferable that the contraction/expansion nozzle 1 be short.

上流室3の圧力Paと下流室4の圧力Pの圧力比P/P
、と、のど部2の開口面積A”と流出口1bの開口面積
との比A/A”との関係を適宜に調整して、上記縮小拡
大ノズルl内を流過させることにより、超微粒子を含む
キャリアガスはビーム化され、i−下流室4aから第二
下流室4bへと超高速で流れることになる。
Pressure ratio P/P of pressure Pa in upstream chamber 3 and pressure P in downstream chamber 4
, and the ratio A/A'' between the opening area A'' of the throat portion 2 and the opening area of the outflow port 1b, and the ultrafine particles are allowed to flow through the contraction/expansion nozzle l. The carrier gas containing .

スキマー7は、第二下流室4bが第一下流室4aよりも
十分高真空度を保つことができるよう、第一下流室4a
と第二下流室4bとの間の開口面積を調整できるように
するためのものである。具体的には、第51N(a)に
示されるように、各々〈字形の切欠部10,10′を有
する二枚の調整板11.11’を、v′J欠部10.1
0”を向き合わせてすれ違いスライド可能に設けたもの
となっている。この調整板11、11′は、外部からス
ライドさせることができ1両切欠部10,10’の重な
り具合で、ビームの通過を許容しかつ第二下流室の十分
な真空度を維持し得る開口度に調整されるものである。
The skimmer 7 is installed in the first downstream chamber 4a so that the second downstream chamber 4b can maintain a sufficiently higher degree of vacuum than the first downstream chamber 4a.
This is to enable adjustment of the opening area between the first downstream chamber 4b and the second downstream chamber 4b. Specifically, as shown in No. 51N(a), two adjustment plates 11.11' each having a 〈 letter-shaped notch 10, 10' are connected to a v'J notch 10.1.
The adjustment plates 11 and 11' can be slid from the outside, and the overlapping condition of the notches 10 and 10' allows the beam to pass through the adjustment plates 11 and 11'. The opening degree is adjusted to allow for the above-mentioned conditions and to maintain a sufficient degree of vacuum in the second downstream chamber.

尚、スキマー7の切欠部10,10′及び調整板11.
If′の形状は、図示される形状の他、半円形その他の
形状でもよい。
Note that the notches 10, 10' of the skimmer 7 and the adjustment plate 11.
The shape of If' may be semicircular or other shapes other than the illustrated shape.

例えば、第5図(b)に示す様に、カメラに用いられる
絞り機構の如き形状であってもよい。この様な形状とし
た場合には、微妙な圧力調整が極めて容易なものとなる
For example, as shown in FIG. 5(b), the shape may be similar to that of an aperture mechanism used in a camera. With such a shape, delicate pressure adjustment becomes extremely easy.

ゲートバルブ8は、ハンドル12を回すことによって昇
降される形状の弁体13を有するもので、ビーム走行時
には開放されているものである。このゲートバルブ8を
閉じることによって、上流室3及び第一下流室4a内の
真空度を保ちながら第二下流室4bのユニット交換が行
える。また、本実施例の装置において、超微粒子は第二
下流室4b内で捕集されるが、ゲートバルブ8をポール
バルブ等としておけば、特に超微粒子が酸化されやすい
金属微粒子であるときに、このポールバルブと共に第二
下流室4bのユニット交換を行うことにより。
The gate valve 8 has a valve body 13 that can be raised and lowered by turning a handle 12, and is open when the beam is traveling. By closing this gate valve 8, the unit in the second downstream chamber 4b can be replaced while maintaining the degree of vacuum in the upstream chamber 3 and the first downstream chamber 4a. Further, in the apparatus of this embodiment, the ultrafine particles are collected in the second downstream chamber 4b, but if the gate valve 8 is a pole valve or the like, especially when the ultrafine particles are metal particles that are easily oxidized, By replacing the unit of the second downstream chamber 4b together with this Pall valve.

急激な酸化作用による危険を伴うことなくユニット交換
を行える利点がある。
This has the advantage that the unit can be replaced without the risk of rapid oxidation.

第二下流室4b内には、ビームとして移送されて来る超
微粒子を受けて付着させ、これを成膜状態で捕集するた
めの基体6が位置している。この基体6は、共通フラン
ジを介して第二下流室4bに取付けられて、シリンダ1
4によってスライドされるスライド軸15先端の基体ホ
ルダー16に取付けられている。基体6の前面にはシャ
ッター17が位置していて、必要なときはいつでもビー
ムを遮断できるようになっている。また、基体ホルダー
16は。
A base body 6 is located in the second downstream chamber 4b for receiving and depositing ultrafine particles transferred as a beam, and collecting the ultrafine particles in a film-formed state. This base body 6 is attached to the second downstream chamber 4b via a common flange, and is attached to the cylinder 1.
4 is attached to a base holder 16 at the tip of a slide shaft 15 that is slid by a slide shaft 15. A shutter 17 is located on the front side of the base 6, so that the beam can be blocked whenever necessary. Moreover, the substrate holder 16 is.

超微粒子の捕集の最適温度条件下に基体6を加熱又は冷
却でるようになっている。
The substrate 6 can be heated or cooled under optimal temperature conditions for collecting ultrafine particles.

尚、上流室3及び第二下流室4bの上下には、図示され
るように各々共通フランジを介してガラス窓18が取付
けられていて、内部観察ができるようになっている。ま
た9図示はされていないが、上流室3、第一下流室4a
及び第一下流室の前後にも各々同様のガラス窓(図中の
18と同様)が共通7ランジを介して取付けられている
。これらのガラス窓18は、これを取外すことによって
、共通フランジを介して各種の測定装置、ロードロック
室等と付は替えができるものである。
Incidentally, glass windows 18 are attached to the upper and lower sides of the upstream chamber 3 and the second downstream chamber 4b through common flanges, respectively, as shown in the figure, so that the inside can be observed. 9 Although not shown, the upstream chamber 3 and the first downstream chamber 4a
Similar glass windows (same as 18 in the figure) are installed at the front and rear of the first downstream chamber via common 7 lunges. These glass windows 18 can be removed and replaced with various measuring devices, load lock chambers, etc. via a common flange.

次に、本実施例における排気系について説明する。Next, the exhaust system in this embodiment will be explained.

上流室3は、圧力調整弁19を介して“メインバルブ2
0aに接続されている。第一下流室4aは直接メインバ
ルブ20aに接続されており、このメインバルブ20a
は真空ポンプ5aに接続されている。第二下流室4bは
メインバルブ20bに接続されており、更にこのメイン
バルブ20bは真空ポンプ5bに接続されている。尚、
21a、 21bは、各々メインバルブ20a、 20
bのすぐ上流側にあらびきバルブ22a、 22bを介
して接続されていると共に、補助バルブ23d。
The upstream chamber 3 is connected to the main valve 2 via a pressure regulating valve 19.
Connected to 0a. The first downstream chamber 4a is directly connected to the main valve 20a, and this main valve 20a
is connected to the vacuum pump 5a. The second downstream chamber 4b is connected to a main valve 20b, which in turn is connected to a vacuum pump 5b. still,
21a and 21b are main valves 20a and 20, respectively.
The auxiliary valve 23d is connected to the immediate upstream side of the valve 22a and 22b via the bias valves 22a and 22b.

23bを介して真空ポンプ5aに接続された減圧ポンプ
で、上流室3、第一下流室4a及び第二下流室4b内の
あらびきを行うものである。尚、24a〜24hは、各
室3 、4a、 4b及びポンプ5a、 51)、 2
1a、 21bのリーク及びパージ用バルブである。
The vacuum pump 23b is connected to the vacuum pump 5a and is used to check the inside of the upstream chamber 3, the first downstream chamber 4a, and the second downstream chamber 4b. In addition, 24a to 24h are each chamber 3, 4a, 4b and pump 5a, 51), 2
1a and 21b are leak and purge valves.

まず、あらびきバルブ21a、 21bと圧力調整弁1
8を開いて、上流室3、第−及び第二下流室4a、 4
b内のあらびきを減圧ポンプ20a、 20bで行う。
First, the interference valves 21a and 21b and the pressure regulating valve 1
8, the upstream chamber 3, the first and second downstream chambers 4a, 4
The check in b is performed using the vacuum pumps 20a and 20b.

次いで、あらびきバルブ21a、 21bを閉じ、補助
バルブ23a、 23b及びメインバルブ20a、 2
0bを開いて、真空ポンプ5a、 5bで上流室3、第
−及び第二下流室4a、 4b内を十分な真空度とする
。このとき、圧力調節弁19の開度を調整することによ
って、上流室3より第一下流室4aの真空度を高くし、
次にキャリアガス及び原料ガスを流し、更に第一下流室
4aより第二下流室4bの真空度が高くなるよう、スキ
マー7で調整する。この調整は、メインバルブ20bの
開度調整で行うこともできる。そして、超微粒子の形成
並びにそのビーム化噴射による成膜作業中を通じて、各
室3 、4a、 4bが一定の真空度を保つよう制御す
る。この制御は、手動でもよいが、各室3 、4a、 
4b内の圧力を検出して、この検出圧力に基づいて圧力
調整弁19、メインバルブ20a、 20b、スキマー
7等を自動的に開閉制御することによって行ってもよい
、また、上流室3に供給されるキャリアガスと微粒子が
直に縮小拡大ノズル1を介して下流側へと移送されてし
まうようにすれば、移送中の排気は、下流側、即ち第−
及び第二下流室4a、 4bのみ行うこととすることが
できる。
Next, the auxiliary valves 23a, 23b and the main valves 20a, 2 are closed.
0b is opened and the vacuum pumps 5a and 5b are used to create a sufficient degree of vacuum in the upstream chamber 3 and the first and second downstream chambers 4a and 4b. At this time, by adjusting the opening degree of the pressure regulating valve 19, the degree of vacuum in the first downstream chamber 4a is made higher than that in the upstream chamber 3,
Next, the carrier gas and the raw material gas are flowed, and the skimmer 7 is used to adjust the degree of vacuum in the second downstream chamber 4b to be higher than that in the first downstream chamber 4a. This adjustment can also be performed by adjusting the opening degree of the main valve 20b. The chambers 3, 4a, and 4b are controlled to maintain a constant degree of vacuum throughout the formation of ultrafine particles and the film forming operation by beam injection. This control may be done manually, but each room 3, 4a,
This may be done by detecting the pressure in the upstream chamber 3 and automatically controlling the opening and closing of the pressure regulating valve 19, main valves 20a, 20b, skimmer 7, etc. based on the detected pressure. If the carrier gas and particulates are directly transferred to the downstream side via the contraction/expansion nozzle 1, the exhaust gas during transfer will be transferred to the downstream side, that is, the
and only the second downstream chambers 4a and 4b.

上記真空度の制御は、上流室3と第一下流室4aの真空
ポンプ5aを各室3,4a毎に分けて設けて制御を行う
ようにしてもよい。しかし1本実施例のように、一台の
真空ポンプ5aでビームの流れ方向に排気し、上流室3
と第一下流室4aの真空度を制御するようにすると、多
少真空ポンプ5aに脈動等があっても、両者間の圧力差
を一定に保ちやすい。従って、この差圧の変動の影響を
受けやすい流れ状態を、一定に保ちやすい利点がある。
The degree of vacuum may be controlled by separately providing vacuum pumps 5a for the upstream chamber 3 and the first downstream chamber 4a for each chamber 3, 4a. However, as in this embodiment, one vacuum pump 5a is used to exhaust air in the direction of beam flow, and the upstream chamber 3
By controlling the degree of vacuum in the first downstream chamber 4a, it is easy to maintain a constant pressure difference between the two even if there is some pulsation in the vacuum pump 5a. Therefore, there is an advantage that it is easy to maintain a constant flow state that is susceptible to fluctuations in differential pressure.

真空ポンプ5a、 5bによる吸引は、特に第−及び第
二下流室4a、 4bにおいては、その上方より行うこ
とが好ましい、上方から吸引を行うことによって、ビー
ムの重力による降下をある程度抑止することができる。
The suction by the vacuum pumps 5a, 5b is preferably performed from above, especially in the first and second downstream chambers 4a, 4b.By suctioning from above, the descent of the beam due to gravity can be suppressed to some extent. can.

本実施例に係る装置は以上のようなものであるが、次の
ような変更が可能である。
Although the apparatus according to this embodiment is as described above, the following modifications can be made.

まず、縮小拡大ノズルlは、上下左右への傾動や一定間
隔でのスキャン可能とすることもでき、広い範囲に亘っ
て成膜を行えるよう・にすることもできる、特にこの傾
動やスキャンは、第4図(C)の矩形ノズルと組合わせ
ると有利である。
First, the contraction/expansion nozzle l can be made to be able to tilt vertically and horizontally, or to scan at regular intervals, and can also be made to be able to form a film over a wide range. It is advantageous to combine it with the rectangular nozzle of FIG. 4C.

縮小拡大ノズルlを石英等の絶縁体で形成し、そこにマ
イクロ波を付与して、縮小拡大ノズル1内で活性超微粒
子を形成したり、透光体で形成して紫外、赤外、レーザ
ー光等の各種の波長を持つ光を流れに照射することもで
きる。また、縮小拡大ノズルlを複数個設けて、一度に
複数のビームを発生させることもできる。特に、複数個
の縮小拡大ノズルlを設ける場合、各々独立した上流室
3に接続しておくことによって、異なる微粒子のビーム
を同時に走行させることができ、異なる微粒子の積層又
は混合捕集や、ビーム同志を交差させることによる、異
なる微粒子同志の衝突によって、新たな微粒子を形成さ
せることも可能となる。
The contraction/expansion nozzle l is made of an insulator such as quartz, and microwaves are applied thereto to form active ultrafine particles inside the contraction/expansion nozzle 1, or ultraviolet, infrared, or laser is formed by forming the contraction/expansion nozzle l of a translucent material. It is also possible to irradiate the flow with light having various wavelengths, such as light. It is also possible to provide a plurality of contraction/expansion nozzles l to generate a plurality of beams at once. In particular, when a plurality of contraction/expansion nozzles l are provided, by connecting each to an independent upstream chamber 3, beams of different particles can be run at the same time. It is also possible to form new particles by collision of different particles by crossing them.

基体6を、上下左右に移動可能又は回転可能に保持し、
広い範囲に亘ってビームを受けられるようにすることも
できる。また、基体6をロール状に巻取って、これを順
次送り出しながらビームを受けるようにすることによっ
て、長尺の基体6に微粒子による処理を施すこともでき
る。更には、ドラム状の基体6を回転させながら微粒子
による処理を施してもよい。
The base body 6 is held movably or rotatably in the vertical and horizontal directions,
It is also possible to receive the beam over a wide range. Further, by winding up the base body 6 into a roll and sending it out one after another so as to receive the beam, a long base body 6 can also be treated with fine particles. Furthermore, the treatment with fine particles may be performed while rotating the drum-shaped base 6.

本実施例では8発生室3.第=−下流室4a及び第二下
流室4bで構成されているが、第二下流室4bを省略し
たり、第二下流室の下流側に更に第三。
In this example, there are 8 generation rooms, 3. Although the second downstream chamber 4a is composed of a downstream chamber 4a and a second downstream chamber 4b, the second downstream chamber 4b may be omitted, or a third chamber may be provided downstream of the second downstream chamber.

第四・・・・・・下流室を接続することもできる。また
Fourth...downstream chambers can also be connected. Also.

上流室3を加圧すれば、第一下流室4aは開放系とする
ことができ、第一下流室4aを減圧して上流室3を開放
系とすることもできる。特にオートクレーブのように、
上流室3を加圧し、第一下流室4a以丁を減圧すること
もできる。
By pressurizing the upstream chamber 3, the first downstream chamber 4a can be made into an open system, and by reducing the pressure in the first downstream chamber 4a, the upstream chamber 3 can be made into an open system. Especially like an autoclave.
It is also possible to pressurize the upstream chamber 3 and reduce the pressure in the first downstream chamber 4a.

本実施例では、上流室3で活性な超微粒子を形成してい
るが、必ずしもこのような必要はなく、別途形成した微
粒子を上流室3ヘキヤリアガスと共に送り込むようにし
てもよい。また、縮小拡大ノズル1を開閉する弁を設け
、上流室3側に一時微粒子を溜めながら、上記弁を断続
的に開閉して、微粒子を得ることもできる。前記縮小拡
大ノズル1ののど部2を含む下流側で行うエネルギー付
ケと同期させて、上記弁を開閉すれば、排気系の負担が
大幅に低減されると共に、原料ガスの有効利用を図りつ
つパルス状の微粒子流を得ることができる。尚、同一排
気条件下とすれば、上述の断続的開閉の方が、下流側を
高真空に保持しやすい利点がある。断続的開閉の場合、
上流室3と縮小拡大ノズル1の間に、微粒子を一時溜め
る室を設けておいてもよい。
In this embodiment, active ultrafine particles are formed in the upstream chamber 3, but this is not necessarily necessary, and separately formed particles may be sent to the upstream chamber 3 together with the carrier gas. Further, it is also possible to provide a valve for opening and closing the contraction/expansion nozzle 1, and to obtain fine particles by intermittently opening and closing the valve while temporarily storing fine particles in the upstream chamber 3 side. By opening and closing the above-mentioned valve in synchronization with the energy application performed on the downstream side including the throat section 2 of the contraction-expansion nozzle 1, the burden on the exhaust system can be significantly reduced, and the raw material gas can be used effectively. A pulsed particle flow can be obtained. Note that under the same exhaust conditions, the above-mentioned intermittent opening and closing has the advantage that it is easier to maintain a high vacuum on the downstream side. In case of intermittent opening and closing,
A chamber may be provided between the upstream chamber 3 and the contraction/expansion nozzle 1 to temporarily store fine particles.

また、縮小拡大ノズル1を複数個直列位置に配し、各々
上流側と下流側の圧力比を調整して、ビーム速度の維持
を図ったり、各室を球形化して、デッドスペースの発生
を極力防止することもできる。
In addition, multiple contraction/expansion nozzles 1 are arranged in series, and the pressure ratio on the upstream side and downstream side is adjusted to maintain the beam speed, and each chamber is made spherical to minimize the generation of dead space. It can also be prevented.

[発明の効果] 本発明によれば、微粒子を均一な分散状態の超音速のビ
ームとして移送することができるので、空間的に独立し
た状態でかつ超高速で微粒子を移送することができる。
[Effects of the Invention] According to the present invention, fine particles can be transported as a supersonic beam in a uniformly dispersed state, so that fine particles can be transported in a spatially independent state at super high speed.

従って、活性微粒子をそのままの状態で捕集位置まで確
実に移送できると共に、ビームの照射面を制御すること
によって、その吹き付は領域を正確に制御することがで
きる。
Therefore, the active particles can be reliably transported as they are to the collection position, and by controlling the beam irradiation surface, the spraying area can be accurately controlled.

また、ビームという集束した超高速平行流となることや
、ビーム化されるときに熱エネルギーが運動エネルギー
に変換されて、ビーム内の微粒子は凍結状態となるので
、これらを利用した新しい反応場を得ることにも大きな
期待を有するものである。更に、本発明の流れ制御装置
によれば、上記凍結状態になることから、流体中の分子
のミクロな状態を規定し、一つの状態からある状態への
遷移を取り扱うことも可能である。即ち、分子の持つ各
種のエネルギー準位までも規定し、その準位に相当する
エネルギーを付与するという、新たな方式による気相の
化学反応が可能である。また、従来とは異なるエネルギ
ー授受の場が提供されることにより、水素結合やファン
デアワールス結合等の比較的弱い分子間力で形成される
分子間化合物を容易に生み出すこともできる。
In addition, it becomes a focused ultra-high-speed parallel flow called a beam, and when it is made into a beam, thermal energy is converted to kinetic energy, and the particles in the beam become frozen, so we can create a new reaction field that utilizes these. I have high hopes for what I will achieve. Furthermore, according to the flow control device of the present invention, since the fluid is in the frozen state, it is also possible to define the microscopic state of molecules in the fluid and handle the transition from one state to another state. In other words, it is possible to perform chemical reactions in the gas phase using a new method in which various energy levels of molecules are defined and energy corresponding to the levels is imparted. Furthermore, by providing a field for energy exchange different from conventional ones, it is also possible to easily create intermolecular compounds formed by relatively weak intermolecular forces such as hydrogen bonds and van der Waals bonds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本原理の説明図、第2図は本発明を
超微粒子による成膜装置に利用した場合の一実施例を示
す概略図、第3図(a)〜(C)は各々気相励起装置の
例を示す図、第4図(a)〜(C)は各々縮小拡大ノズ
ルの形状例を示す図。 第5図(a)、 (b)はスキマーの説明図である。 l:縮小拡大ノズル、1a:流入口。 1b二流出口、2:のど部、3:上流室。 4:下流室、4a:第一下流室、 4b:第二下流室、5 、5a、 5b:真空ポンプ。 6:基体、7:スキマー、8:ゲートバルブ、9:気相
励起装置、9a:第一電極、 9b=第二電極、10.10′: 4j′J欠部、11
、11’ :調整板、12:ハンドル、13:弁体。 14ニジリンダ、15ニスライド軸、 16二基体ホルダー、17:シャッター、18ニガラス
窓、19:圧力調整弁、 20a、 20b:メインバルブ。 21a、 21b:減圧ポンプ、 22a、 22b:あらびきバルブ。 23a、 23b:補助バルブ、 24a〜24h:リーク及びパージ用バルブ。
Figure 1 is an explanatory diagram of the basic principle of the present invention, Figure 2 is a schematic diagram showing an embodiment of the present invention applied to a film forming apparatus using ultrafine particles, and Figures 3 (a) to (C) are FIGS. 4A to 4C are diagrams each showing an example of a gas phase excitation device, and FIGS. 4A to 4C are diagrams each showing an example of the shape of a contraction/expansion nozzle. FIGS. 5(a) and 5(b) are explanatory views of the skimmer. l: contraction/expansion nozzle, 1a: inlet. 1b Two outlets, 2: Throat, 3: Upstream chamber. 4: downstream chamber, 4a: first downstream chamber, 4b: second downstream chamber, 5, 5a, 5b: vacuum pump. 6: Substrate, 7: Skimmer, 8: Gate valve, 9: Gas phase excitation device, 9a: First electrode, 9b = Second electrode, 10.10': 4j'J notch, 11
, 11': Adjustment plate, 12: Handle, 13: Valve body. 14 double cylinder, 15 double slide shaft, 16 double base holder, 17: shutter, 18 double glass window, 19: pressure regulating valve, 20a, 20b: main valve. 21a, 21b: Decompression pump, 22a, 22b: Arabiki valve. 23a, 23b: Auxiliary valves, 24a to 24h: Leak and purge valves.

Claims (1)

【特許請求の範囲】[Claims] 1)流路に縮小拡大ノズルを設け、且つ該ノズルの下流
側に、可変絞り機能を有するスキマーを設けたことを特
徴とする微粒子流の流れ制御装置。
1) A flow control device for a particulate flow, characterized in that a contraction/expansion nozzle is provided in a flow path, and a skimmer having a variable throttling function is provided downstream of the nozzle.
JP60115365A 1985-03-26 1985-05-30 Minute particle flow control apparatus Pending JPS61218814A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60115365A JPS61218814A (en) 1985-05-30 1985-05-30 Minute particle flow control apparatus
CA000504938A CA1272662A (en) 1985-03-26 1986-03-24 Apparatus and process for controlling flow of fine particles
GB8607602A GB2175413B (en) 1985-03-26 1986-03-26 Apparatus and process for controlling flow of fine particles
DE19863610298 DE3610298A1 (en) 1985-03-26 1986-03-26 METHOD AND DEVICE FOR CONTROLLING A FLOW OF FINE PARTICLES
US07/052,148 US4911805A (en) 1985-03-26 1987-05-21 Apparatus and process for producing a stable beam of fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60115365A JPS61218814A (en) 1985-05-30 1985-05-30 Minute particle flow control apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60059619A Division JPS61218810A (en) 1985-03-26 1985-03-26 Minute particle flow control apparatus

Publications (1)

Publication Number Publication Date
JPS61218814A true JPS61218814A (en) 1986-09-29

Family

ID=14660721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60115365A Pending JPS61218814A (en) 1985-03-26 1985-05-30 Minute particle flow control apparatus

Country Status (1)

Country Link
JP (1) JPS61218814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052129A (en) * 2015-09-08 2017-03-16 日本電気株式会社 Nozzle and laminate molding apparatus, and nozzle operation method and laminate molding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017052129A (en) * 2015-09-08 2017-03-16 日本電気株式会社 Nozzle and laminate molding apparatus, and nozzle operation method and laminate molding method

Similar Documents

Publication Publication Date Title
JPS61218814A (en) Minute particle flow control apparatus
JPS61218815A (en) Minute particle flow control apparatus
JPS61223311A (en) Minute particle transferring apparatus
JPS62155934A (en) Vapor phase exciter
JPS61223307A (en) Minute particle flow controller
JPS61223313A (en) Minute particle flow controller
JPS61223308A (en) Minute particle flow controller
JPS61218812A (en) Minute particle flow control apparatus
JPS61223309A (en) Minute particle flow controller
JPS61223314A (en) Minute-particle flow control
JPS61218813A (en) Minute particle flow control apparatus
JPS6263206A (en) Flow controller of corpuscular stream
JPS61218810A (en) Minute particle flow control apparatus
JPS61218811A (en) Minute particle flow control apparatus
JPS61220735A (en) Control device for flow of fine particle stream
JPS61220729A (en) Control device for flow of fine particle stream
JPS61274106A (en) Flow controlling method of corpuscular flow
JPS6241410A (en) Corpuscular stream controller
JPS61220763A (en) Method for controlling speed of fine particle flow
JPS61223312A (en) Minute particle flow controller
JPS61223310A (en) Minute particle flow controller
JPS61220768A (en) Method for controlling fine particle flow
JPS61274107A (en) Flow controlling method of corruscular flow
JPS61220767A (en) Method for controlling density of fine particle flow
JPS61220730A (en) Control device for flow of fine particle stream