JPS6328641B2 - - Google Patents

Info

Publication number
JPS6328641B2
JPS6328641B2 JP58156914A JP15691483A JPS6328641B2 JP S6328641 B2 JPS6328641 B2 JP S6328641B2 JP 58156914 A JP58156914 A JP 58156914A JP 15691483 A JP15691483 A JP 15691483A JP S6328641 B2 JPS6328641 B2 JP S6328641B2
Authority
JP
Japan
Prior art keywords
solar collector
liquid
condenser
water
boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58156914A
Other languages
Japanese (ja)
Other versions
JPS6048101A (en
Inventor
Daido Ishii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGOYA DAIGAKU GAKUCHO
Original Assignee
NAGOYA DAIGAKU GAKUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGOYA DAIGAKU GAKUCHO filed Critical NAGOYA DAIGAKU GAKUCHO
Priority to JP58156914A priority Critical patent/JPS6048101A/en
Publication of JPS6048101A publication Critical patent/JPS6048101A/en
Publication of JPS6328641B2 publication Critical patent/JPS6328641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 本発明は、液体を蒸留する方法に関し、特に太
陽熱を利用し無沸騰状態で蒸留を行なう方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for distilling a liquid, and particularly to a method for distilling a liquid in a non-boiling state using solar heat.

従来より、液体の蒸留は、その精製,分離,回
収などの目的をもつて行なわれており、石油・石
炭などの化石エネルギーや電気エネルギーにより
液体を加熱沸騰させ、その後、コンデンサにより
冷却液化させて蒸留が行なわれていた。
Traditionally, liquid distillation has been carried out for the purpose of refining, separating, and recovering the liquid.The liquid is heated to boiling point using fossil energy such as oil or coal or electrical energy, and then cooled and liquefied using a condenser. Distillation was taking place.

しかしながら、このような方法では、大学や研
究機関等の化学系の実験室で行なわれるような、
小規模の蒸留の場合、蒸留コストが高くなるほ
か、液体の沸騰に伴う飛沫の混入により蒸留液の
純度の低下を招くという問題点があり、また蒸留
が加熱,沸騰によつて行なわれるところから、作
業者の監視も常に必要になつて、その安全性には
最大の注意を払わなければならないという問題点
がある。
However, with this method, it is not possible to carry out the
In the case of small-scale distillation, in addition to the high distillation cost, there are problems in that the purity of the distillate decreases due to the contamination of droplets due to boiling of the liquid, and because distillation is performed by heating and boiling. However, there is a problem in that it is necessary to constantly monitor the workers, and maximum attention must be paid to their safety.

そこで、多くの実験室では、蒸留によつて有機
溶媒等が再生利用可能と知りながら、面倒なため
に焼却処理しているのが現状であり、資源の無駄
を招いている。
Therefore, in many laboratories, even though they know that organic solvents can be recycled through distillation, they still incinerate them due to the hassle, resulting in wasted resources.

また、その燃焼に伴つて有害ガスを発生する場
合には、焼却炉や洗浄塔などで腐食を生じるとい
う問題点もある。
Furthermore, when harmful gases are generated as a result of combustion, there is also the problem that corrosion occurs in incinerators, cleaning towers, and the like.

本発明は、このような実情に鑑み、太陽熱を利
用して無沸騰状態で液体を蒸発させ、その後冷却
液化することによつて、自動的に、且つ安全に、
また低コストで蒸留を行なえるようにした、太陽
熱利用無沸騰型蒸留方法を提供することを目的と
する。
In view of these circumstances, the present invention automatically and safely evaporates liquid in a non-boiling state using solar heat, and then cools it to liquefy it.
Another object of the present invention is to provide a non-boiling distillation method using solar heat, which allows distillation to be carried out at low cost.

このため本発明の太陽熱利用無沸騰型蒸留方法
は、蒸発装置としての太陽集熱器に連続的に蒸留
されるべき液体を導き、同液体を太陽熱によつて
蒸発させるとともに、その蒸発によつて生じた上
記液体の蒸気を更にコンデンサに導いて凝縮させ
るようにした方法において、上記の太陽集熱器と
コンデンサとを共通の密閉スペースを介して連結
させるとともに、同密閉スペース内に上記液体の
蒸気と反応しない気体を封入し、ついで、上記太
陽集熱器で得られる温度が上記液体の沸点以下に
なるように上記気体の圧力を設定することによ
り、上記太陽集熱器で無沸騰型蒸発を行なわせ
て、この無沸騰型蒸発によつて生じた上記液体の
蒸気を上記密閉スペースを通じ上記コンデンサに
導いて凝縮させることを特徴としている。
For this reason, the non-boiling distillation method using solar heat of the present invention continuously introduces the liquid to be distilled into a solar collector serving as an evaporator, evaporates the liquid using solar heat, and In a method in which the generated liquid vapor is further guided to a condenser and condensed, the solar collector and the condenser are connected through a common sealed space, and the liquid vapor is introduced into the same sealed space. By enclosing a gas that does not react with the liquid, and then setting the pressure of the gas so that the temperature obtained in the solar collector is below the boiling point of the liquid, non-boiling evaporation is performed in the solar collector. In addition, the vapor of the liquid generated by this non-boiling evaporation is led to the condenser through the closed space and condensed.

以下図面により、本発明の一実施例としての太
陽熱利用無沸騰型蒸留方法について説明すると、
第1図は本発明の方法により水の蒸留を行なう際
に用いられる装置を示す模式図、第2図は上記方
法によるクロロホルムの蒸留を行なう際に用いら
れる装置を示す模式図であり、第3図は上記方法
により水の蒸留を実施した実験の際の諸量の経時
変化を示すグラフ、第4図は上記方法によりクロ
ロホルムの蒸留を実施した際の諸量の経時変化を
示すグラフである。
Below, a non-boiling distillation method using solar heat as an embodiment of the present invention will be explained with reference to the drawings.
FIG. 1 is a schematic diagram showing an apparatus used when distilling water according to the method of the present invention, FIG. 2 is a schematic diagram showing an apparatus used when distilling chloroform according to the above method, and FIG. The figure is a graph showing changes in various amounts over time during an experiment in which water was distilled using the above method, and FIG. 4 is a graph showing changes in various amounts over time in an experiment in which chloroform was distilled using the above method.

まず、本発明の方法により蒸留する際に用いら
れる装置について説明すると、第1図に示すよう
に、太陽熱を効率的に受けるべく所定の角度に傾
斜して設けられた太陽集熱器1は、広い集熱面を
有するようにその内部に導管2が複数配設されて
おり、これらの導管2の端部は太陽集熱器1の出
口部および入口部に集結している。
First, to explain the apparatus used for distillation according to the method of the present invention, as shown in FIG. 1, a solar collector 1 is installed at a predetermined angle to efficiently receive solar heat. A plurality of conduits 2 are arranged inside the solar collector 1 so as to have a wide heat collecting surface, and the ends of these conduits 2 converge at the outlet and inlet of the solar collector 1 .

この太陽集熱器1の下部の入口部には、供給管
3が接続され、同供給管3の他端は原料液供給容
器4内の蒸留されるべき原料水5中に浸漬され
て、位置エネルギーを利用したサイホン式にて原
料水5が連続的に太陽集熱器1内の導管2に供給
されるようになつている。
A supply pipe 3 is connected to the lower inlet of the solar collector 1, and the other end of the supply pipe 3 is immersed in the raw material water 5 to be distilled in the raw material liquid supply container 4. Raw water 5 is continuously supplied to the conduit 2 in the solar collector 1 in a siphon type using energy.

一方、太陽集熱器1の上部の出口(蒸気取出
口)には、連通管6の一端が接続され、同連通管
6の他端部にはバルブ7が付設されている。
On the other hand, one end of a communication pipe 6 is connected to an upper outlet (steam outlet) of the solar collector 1, and a valve 7 is attached to the other end of the communication pipe 6.

そして、連通管6は、太陽集熱器1の上記出口
よりも下方に位置してほぼ垂直に保持された空冷
式コンデンサ8の上端部に、管継手9を介して接
続されており、管継手9にはバルブ10が付設さ
れ、コンデンサ8の上端部にはバルブ11が付設
されている。
The communication pipe 6 is connected via a pipe joint 9 to the upper end of an air-cooled condenser 8 which is located below the outlet of the solar collector 1 and held substantially vertically. A valve 10 is attached to the capacitor 9, and a valve 11 is attached to the upper end of the capacitor 8.

また、コンデンサ8内で凝縮した蒸留水12を
連続的に取り出すために、コンデンサ8の下部に
接続された採取管13の下端が蒸留液受器14内
の蒸留水12中に挿入されている。
Further, in order to continuously take out the distilled water 12 condensed in the condenser 8, the lower end of a sampling pipe 13 connected to the lower part of the condenser 8 is inserted into the distilled water 12 in the distilled liquid receiver 14.

さらに、本実施例では、減圧蒸留方式を採用し
て蒸留効率を良くするため、原料液供給容器4お
よび蒸留液受器14の水面位置は太陽集熱器1お
よびコンデンサ8の水面位置より所定量だけ低く
なるようにされている。
Furthermore, in this embodiment, in order to improve the distillation efficiency by employing a reduced pressure distillation method, the water surface positions of the raw material liquid supply container 4 and the distilled liquid receiver 14 are set by a predetermined amount from the water surface positions of the solar collector 1 and the condenser 8. It is made to be lower only.

上述の装置を用いて本発明の方法により水の蒸
留を行なうには、まず、供給管3,導管2および
連通管6を原料水5で満たしてバルブ7を閉じる
とともに、採取管13とコンデンサ8とをあらか
じめ準備しておいた蒸留水12で満たしてバルブ
11を閉じる。
To distill water according to the method of the present invention using the above-mentioned apparatus, first, the supply pipe 3, the conduit 2, and the communication pipe 6 are filled with raw water 5, the valve 7 is closed, and the collection pipe 13 and the condenser 8 are closed. and is filled with distilled water 12 prepared in advance, and the valve 11 is closed.

そして、連通管6とコンデンサ8の上端とを密
閉スペースとしての管継手9によつて気密に接続
した後、管継手9に付設されているバルブ10を
閉とした状態で、バルブ7,11を開とし、太陽
集熱器1とコンデンサ8とを連通させる。
After the communication pipe 6 and the upper end of the condenser 8 are airtightly connected by the pipe joint 9 serving as a sealed space, the valves 7 and 11 are closed while the valve 10 attached to the pipe joint 9 is closed. It is opened to connect the solar collector 1 and the capacitor 8.

ついで、バルブ10を介して密閉スペースとし
ての管継手9へ蒸気と反応しない気体として所要
量の空気を送り込んで空気層15を形成し、バル
ブ10を閉とする。
Next, a required amount of air as a gas that does not react with steam is sent into the pipe joint 9 as a sealed space through the valve 10 to form an air layer 15, and the valve 10 is closed.

その際、前述のように、原料液供給容器4およ
び蒸留液受器14の水面と、太陽集熱器1および
コンデンサ8内の水面との間には高低差が設けら
れているので、上述の操作によつて太陽集熱器1
の上部とコンデンサ8の上部とに介在された共通
の空気層15は、所要の負圧を持つた減圧空間と
されるようになる。
At this time, as described above, there is a height difference between the water surface of the raw material liquid supply container 4 and the distilled liquid receiver 14 and the water surface of the solar collector 1 and the condenser 8. Solar collector 1 by operation
A common air layer 15 interposed between the upper part of the capacitor 8 and the upper part of the condenser 8 becomes a depressurized space having the required negative pressure.

次に、太陽集熱器1の集熱面へ太陽光線16を
作用させると、太陽光線16を受けた太陽集熱器
1において無沸騰型蒸発により生じた原料水5の
蒸気は、空気層15を通じコンデンサ8へ導かれ
て凝縮させられ、採取管13を通じて蒸留水受器
14へ蓄えられるのである。
Next, when sunlight 16 is applied to the heat collecting surface of the solar collector 1, the steam of the raw water 5 generated by non-boiling evaporation in the solar collector 1 that receives the sunlight 16 is transferred to the air layer 15. The water is led to the condenser 8 through the water pipe, where it is condensed, and then stored in the distilled water receiver 14 through the collection pipe 13.

換言すれば、本発明の方法では、太陽集熱器1
で得られる温度が、蒸留すべき液体の沸点以下に
なるように、封入される空気の圧力が設定される
のであり、これにより太陽集熱器1で無沸騰型蒸
発が適切に行なわれるのである。
In other words, in the method of the invention, the solar collector 1
The pressure of the enclosed air is set so that the temperature obtained is below the boiling point of the liquid to be distilled, and as a result, non-boiling evaporation is properly performed in the solar collector 1. .

上述の方法により、太陽集熱器1が太陽光線1
6による太陽熱を受けて、太陽集熱器1内におい
て水蒸気の発生が起こると、空気層15の圧力が
上昇して、コンデンサ8内の水面は下降し、それ
と同時に太陽集熱器1内の水面も下降するように
なる。
By the method described above, the solar collector 1 receives sunlight 1
When water vapor is generated in the solar collector 1 due to the solar heat generated by the solar collector 6, the pressure in the air layer 15 increases, the water level in the condenser 8 falls, and at the same time, the water level in the solar collector 1 decreases. will also start to decline.

しかしこの場合、無制限に水面は下降するので
はなく、太陽集熱器1中の水面の下降によつて太
陽集熱器1内での水蒸気発生が抑制されること
と、コンデンサ8内で水蒸気の液化(凝縮)が起
こるために、両方の水面は平衡状態が保たれるよ
うになる。
However, in this case, the water level does not fall indefinitely, but the water level in the solar collector 1 falls, suppressing the generation of water vapor in the solar collector 1, and the generation of water vapor in the condenser 8. As liquefaction (condensation) occurs, both water surfaces come to be in equilibrium.

つまり、水蒸気発生と冷却液化が、自制作用を
もつて進行されることになるのであり、したがつ
て、太陽集熱器1に太陽光線16が当たつて、太
陽熱が吸収されている限りにおいて、太陽集熱器
1内においては原料水5の蒸発が続き、そして太
陽集熱器1に原料水5が供給容器4から供給管3
を通じて連続的に供給される一方、コンデンサ8
内においては前記蒸発した水蒸気が空気層15を
通じて導かれて連続的に液化され、そして蒸留液
受器14に取り出されるのである。
In other words, water vapor generation and cooling liquefaction proceed in a self-produced manner. Therefore, as long as the solar radiation 16 hits the solar collector 1 and solar heat is absorbed, Evaporation of the raw water 5 continues in the solar collector 1, and the raw water 5 is supplied to the solar collector 1 from the supply container 4 to the supply pipe 3.
while being continuously supplied through capacitor 8
Inside, the evaporated water vapor is introduced through an air layer 15, is continuously liquefied, and then taken out into a distillate receiver 14.

上述のように、本発明の方法によれば、蒸留操
作は連続的に且つ自動的に、無人で行なわれるよ
うになるのであり、また、この蒸留操作は、原料
水5を加熱,沸騰させるものでないところから、
原料水5の飛沫を生じることがなく、蒸留水の純
度が高くなつて、安全性の面においても著しく有
利となるのである。
As described above, according to the method of the present invention, the distillation operation can be carried out continuously, automatically, and unattended, and this distillation operation involves heating and boiling the raw water 5. From a place that is not
There is no splashing of the raw water 5, and the purity of the distilled water is increased, which is extremely advantageous in terms of safety.

つぎに、本発明の方法により水の蒸留を行なつ
た実験について説明すると、この実験において
は、太陽集熱器1として、l=200cmの市販の温
水器(商品名「ソーラメイトパネルSMP―
2003D」)が用いられており、コンデンサ8は直
径が10cmのものであつた。また、太陽熱を受けて
いないときのコンデンサ8内の水面の位置は上部
にあり(L=100cm)、その水面から蒸留液受器1
4の水面までの水柱の高さ(h)は710cm,水銀
柱で約52cmであつた。
Next, an experiment in which water was distilled using the method of the present invention will be explained. In this experiment, a commercially available water heater (trade name: "Solar Mate Panel SMP-
2003D") was used, and the capacitor 8 had a diameter of 10 cm. In addition, the water surface inside the condenser 8 when not receiving solar heat is at the top (L = 100 cm), and the water surface is at the top of the distillate receiver 1.
The height of the water column (h) to the water surface in No. 4 was 710 cm, and the mercury column was approximately 52 cm.

また、太陽集熱器1およびコンデンサ8の上部
の空間の示す圧力は、水柱で約324cm,水銀柱で
約24cmであつた。
The pressure in the space above the solar collector 1 and the condenser 8 was about 324 cm in water column and about 24 cm in mercury column.

第3図に示した実験結果は、午前9時前から午
後4時過ぎにかけて蒸留操作を行なつて得られた
コンデンサ8内圧力a(ΔP),太陽集熱器1の出
口温度b,コンデンサ8の頂部温度c,太陽集熱
器1の入口温度dおよび大気温度eの変化をそれ
ぞれ示しているが、同図より、太陽集熱器1の出
口温度bとコンデンサ8の頂部温度cがほぼ同じ
温度(約60℃)で、ほぼ一定に推移していること
が明らかである。
The experimental results shown in Figure 3 are the internal pressure a (ΔP) of the condenser 8, the outlet temperature b of the solar collector 1, and the condenser 8 internal pressure a (ΔP) obtained by performing the distillation operation from before 9 a.m. to after 4 p.m. The figure shows the changes in the top temperature c of the solar collector 1, the inlet temperature d of the solar collector 1, and the atmospheric temperature e, respectively. From the same figure, the outlet temperature b of the solar collector 1 and the top temperature c of the condenser 8 are almost the same. It is clear that the temperature (approximately 60°C) remains almost constant.

また、コンデンサ8内の圧力変化a(ΔP)も、
日中はそれほど大きくはなく、ほぼ平衡状態で蒸
留が進行していることを示している。
In addition, the pressure change a (ΔP) inside the capacitor 8 is also
It is not so large during the day, indicating that distillation is proceeding in an almost equilibrium state.

なお、この実験より、約2平方メートルの集熱
面積を持つこの太陽集熱器1を利用した蒸留装置
で、12月の晴天日には約1.8の無沸騰蒸留水の
採取が可能であることが確認された。
Furthermore, from this experiment, it was found that with a distillation device using this solar collector 1, which has a heat collecting area of about 2 square meters, it is possible to collect about 1.8 g of non-boiling distilled water on a sunny day in December. confirmed.

本発明の方法によりクロロホルムなどの易揮発
性液体を蒸留する際には、常圧でも十分な蒸留効
率が得られるので、第2図に示したような装置を
用いる。この装置では、容器4および受器14の
位置が、太陽集熱器1およびコンデンサ8に対し
て高めに配置されており、太陽集熱器1の上部お
よびコンデンサ8の上部間に設けられた空気層1
5にはほぼ常圧の圧力が作用するように構成され
ている。
When distilling easily volatile liquids such as chloroform by the method of the present invention, an apparatus as shown in FIG. 2 is used since sufficient distillation efficiency can be obtained even at normal pressure. In this device, the container 4 and the receiver 14 are placed higher than the solar collector 1 and the condenser 8, and the air is provided between the upper part of the solar collector 1 and the upper part of the condenser 8. layer 1
5 is constructed so that substantially normal pressure acts on it.

この場合にも、前述の水の蒸留の場合と同様な
手順で蒸留が行なわれ、また、同様の作用,効果
が得られる。
In this case as well, the distillation is carried out in the same manner as in the case of water distillation described above, and the same actions and effects can be obtained.

なお、クロロホルムの蒸留においても、第1図
に示した装置を用いて減圧蒸留を行なうことが可
能であり、その場合には、コンデンサ8を冷却ジ
ヤケツトなどの容量の大きなものにして、その蒸
留効率を高めることも可能となる。
In the case of distilling chloroform, it is also possible to perform vacuum distillation using the apparatus shown in Figure 1. In that case, the condenser 8 may be replaced with a cooling jacket or other large-capacity one to increase the distillation efficiency. It is also possible to increase the

上述の方法によつてクロロホルムの蒸留を行な
つた実験の結果(第4図参照)について説明する
と、この実験では、第2図において、l=200cm,
L=100cm,h=50cmとされ、第3図とほぼ同様
の結果が得られた。そして、1月の晴天日に約7
/日の蒸留クロロホルムが得られることが確認
された。
To explain the results of an experiment (see Figure 4) in which chloroform was distilled using the method described above, in this experiment, in Figure 2, l = 200 cm,
L=100cm and h=50cm, and almost the same results as in FIG. 3 were obtained. And on a sunny day in January, about 7
It was confirmed that /day of distilled chloroform could be obtained.

本発明の方法に用いられる第1,2図の装置に
おいて、バルブ7の位置は、導管2と供給管3と
の接続部付近に設定してもよく、これにより蒸気
バルブ7を通らないようにすることができる。
In the apparatus of FIGS. 1 and 2 used in the method of the present invention, the position of the valve 7 may be set near the connection between the conduit 2 and the supply pipe 3, thereby preventing the steam from passing through the valve 7. can do.

また、バルブ11についても、これをコンデン
サ8の下部または採取管13に設けるようにし
て、蒸気がバルブ11を通過するのを回避するこ
とができる。
Further, the valve 11 can also be provided at the bottom of the condenser 8 or at the collection tube 13 to prevent steam from passing through the valve 11.

以上詳述したように、本発明の太陽熱利用無沸
騰型蒸留方法によれば、連続的に蒸留されるべき
液体を導かれる太陽集熱器と同太陽集熱器に密閉
スペースを介して接続されるコンデンサとをそな
え、上記密閉スペースに適当量の気体を封入し
て、上記太陽集熱器で得られる温度が上記液体の
沸点以下になるように上記気体の圧力を設定する
ことにより、太陽熱を利用して液体の無沸騰型蒸
留を行なえるようになり、純度の高い蒸留液体が
得られるとともに、蒸留コストが大幅に低減され
るほか、作業の安全性も一段と向上する効果があ
り、また、その蒸留は自動的に連続して行なわれ
るので、省力化がもたらされる利点もある。
As described in detail above, according to the non-boiling distillation method utilizing solar heat of the present invention, a solar collector through which a liquid to be continuously distilled is guided is connected to the solar collector through a sealed space. A suitable amount of gas is sealed in the sealed space, and the pressure of the gas is set so that the temperature obtained by the solar collector is below the boiling point of the liquid. It has become possible to perform non-boiling distillation of liquids by using it, resulting in highly pure distilled liquids, significantly reducing distillation costs, and further improving work safety. Since the distillation is carried out automatically and continuously, there is also the advantage of labor saving.

また、本発明の方法では、もし、加熱温度が上
昇し、沸騰状態になると、自制作用によつて無沸
騰状態に復するようにもなる利点がある。
In addition, the method of the present invention has the advantage that if the heating temperature rises and the temperature reaches a boiling state, the non-boiling state can be restored when the product is used for home production.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の太陽熱利用無沸騰型蒸留方法
により水の蒸留を行なう際に用いられる装置を示
す模式図、第2図は上記方法によるクロロホルム
の蒸留を行なう際に用いられる装置を示す模式図
であり、第3図は上記方法により水の蒸留を実施
した実験の際の諸量の経時変化を示すグラフ、第
4図は上記方法によりクロロホルムの蒸留を実施
した際の諸量の経時変化を示すグラフである。 1……太陽集熱器、2……導管、3……供給
管、4……原料液供給容器、5……原料水、6…
…連通管、7……バルブ、8……コンデンサ、9
……管継手、10,11……バルブ、12……蒸
留水、13……採取管、14……蒸留液受器、1
5……空気層、16……太陽光線、17……廃ク
ロロホルム、18……蒸留クロロホルム、a……
コンデンサの圧力変化、b……太陽集熱器の出口
温度、c……コンデンサの上部温度、d……太陽
集熱器の入口温度、e……外気温度。
Figure 1 is a schematic diagram showing an apparatus used for distilling water by the solar heat-based non-boiling distillation method of the present invention, and Figure 2 is a schematic diagram showing an apparatus used for distilling chloroform by the above method. Figure 3 is a graph showing changes over time in various quantities during an experiment in which water was distilled using the above method, and Figure 4 is a graph showing changes over time in various quantities during an experiment in which chloroform was distilled using the above method. This is a graph showing. DESCRIPTION OF SYMBOLS 1... Solar collector, 2... Conduit, 3... Supply pipe, 4... Raw material liquid supply container, 5... Raw material water, 6...
...Communication pipe, 7...Valve, 8...Condenser, 9
... Pipe joint, 10, 11 ... Valve, 12 ... Distilled water, 13 ... Collection tube, 14 ... Distilled liquid receiver, 1
5... Air layer, 16... Sunlight, 17... Waste chloroform, 18... Distilled chloroform, a...
Pressure change in the condenser, b... Outlet temperature of the solar collector, c... Upper temperature of the condenser, d... Inlet temperature of the solar collector, e... Outside air temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 蒸発装置としての太陽集熱器に連続的に蒸留
されるべき液体を導き、同液体を太陽熱によつて
蒸発させるとともに、その蒸発によつて生じた上
記液体の蒸気を更にコンデンサに導いて凝縮させ
るようにした方法において、上記の太陽集熱器と
コンデンサとを共通の密閉スペースを介して連結
させるとともに、同密閉スペース内に上記液体の
蒸気と反応しない気体を封入し、ついで、上記太
陽集熱器で得られる温度が上記液体の沸点以下に
なるように上記気体の圧力を設定することによ
り、上記太陽集熱器で無沸騰型蒸発を行なわせ
て、この無沸騰型蒸発によつて生じた上記液体の
蒸気を上記密閉スペースを通じ上記コンデンサに
導いて凝縮させることを特徴とする、太陽熱利用
無沸騰型蒸留方法。
1. The liquid to be continuously distilled is introduced into a solar collector as an evaporation device, and the liquid is evaporated by solar heat, and the vapor of the liquid generated by the evaporation is further introduced into a condenser and condensed. In the method, the solar collector and the condenser are connected through a common sealed space, and a gas that does not react with the vapor of the liquid is filled in the sealed space, and then the solar collector and the condenser are connected through a common sealed space. By setting the pressure of the gas so that the temperature obtained in the heating device is below the boiling point of the liquid, non-boiling evaporation is performed in the solar collector, and the liquid produced by this non-boiling evaporation is A non-boiling distillation method using solar heat, characterized in that the vapor of the liquid is introduced into the condenser through the closed space and condensed.
JP58156914A 1983-08-27 1983-08-27 Distillation process utilizing solar heat without accompanying boiling Granted JPS6048101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58156914A JPS6048101A (en) 1983-08-27 1983-08-27 Distillation process utilizing solar heat without accompanying boiling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58156914A JPS6048101A (en) 1983-08-27 1983-08-27 Distillation process utilizing solar heat without accompanying boiling

Publications (2)

Publication Number Publication Date
JPS6048101A JPS6048101A (en) 1985-03-15
JPS6328641B2 true JPS6328641B2 (en) 1988-06-09

Family

ID=15638134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58156914A Granted JPS6048101A (en) 1983-08-27 1983-08-27 Distillation process utilizing solar heat without accompanying boiling

Country Status (1)

Country Link
JP (1) JPS6048101A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016049480A (en) * 2014-08-29 2016-04-11 實野 孝久 Desalination plant using solar heat
JP7051268B1 (en) * 2021-05-21 2022-04-11 重治 黒田 Steam generator, water treatment system and steam generation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948561A (en) * 1972-09-13 1974-05-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948561A (en) * 1972-09-13 1974-05-10

Also Published As

Publication number Publication date
JPS6048101A (en) 1985-03-15

Similar Documents

Publication Publication Date Title
US4424633A (en) Apparatus for heating and drying articles
US4329204A (en) Multiple effect thin film distillation system
JP2002014475A (en) Method for regenerating solvent and apparatus therefor
GB2032613A (en) Heat transfer system
US4309243A (en) Vertical tube distillers
US6477323B2 (en) System and method for continuously reprocessing waste sulfuric acid liquid, and heater supporting structure for heating a vessel made of glass
CN101993123A (en) Low-temperature heat energy driven device for distilling and separating water evaporated under negative pressure
CN101028918B (en) Recovery of hydrofluoric acid
CN101993122A (en) Low-temperature heat energy driven double-container device for distilling and separating water evaporated under negative pressure
JPS6328641B2 (en)
CN210138475U (en) Rectifying tower for recovering solvent
GB2181724A (en) Disposal of seepage water from rubbish dumps
CN210176751U (en) Industrial naphthalene production system
KR100211672B1 (en) A condensing apparatus and a method of chemical for semiconductor process
JPS5959787A (en) Dehydration of coal tar
JP2796958B2 (en) Non-catalytic pyrolysis pot for polymer waste mineral oil and waste synthetic resin and pyrolysis apparatus using this non-catalytic pyrolysis pot
US3901767A (en) Distillation mechanism and system
JPS6055117B2 (en) Anhydrous ethanol manufacturing method and device
CN217921527U (en) Waste liquid concentration device of two-phase circulation contact
CN108130124A (en) The processing unit and technique of a kind of waste mineral oil
CN213253850U (en) Heat recovery type air sweeping type membrane distillation device
CN213589740U (en) Separation equipment for chemical reagent
CN211752573U (en) Distillation tower for chemical production
JPS60226837A (en) Apparatus for producing absolute ethanol and production of absolute ethanol
SE429647B (en) SET AND DEVICE TO REDUCE THE NEED OF ENERGY FOR DISTILLATION PROCESSES