JPS5959787A - Dehydration of coal tar - Google Patents

Dehydration of coal tar

Info

Publication number
JPS5959787A
JPS5959787A JP17244582A JP17244582A JPS5959787A JP S5959787 A JPS5959787 A JP S5959787A JP 17244582 A JP17244582 A JP 17244582A JP 17244582 A JP17244582 A JP 17244582A JP S5959787 A JPS5959787 A JP S5959787A
Authority
JP
Japan
Prior art keywords
coal tar
water
dehydration
line
dehydration tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17244582A
Other languages
Japanese (ja)
Other versions
JPH0251474B2 (en
Inventor
Fumitaka Akazawa
赤澤 文隆
Fumihiko Ooshima
大嶋 文彦
Shigeru Ikeda
池田 繁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP17244582A priority Critical patent/JPS5959787A/en
Publication of JPS5959787A publication Critical patent/JPS5959787A/en
Publication of JPH0251474B2 publication Critical patent/JPH0251474B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PURPOSE:To insure dehydration of coal tar under stabilized conditions, by subjecting water-containing raw coal tar to a preliminary flushing process to remove a part of water and a part of gas oil. CONSTITUTION:Crude coal tar introduced through a line 1 is passed through heat exchangers 2 and 4 for heating. It is further heated to a predetermined temperature in a heater 5 under pressure and is fed into a flushing tank 7. The heated and pressurized coal tar is flushed in the flushing tank 7, where a greater portion of volatile matters such as water and gas oil contained in it are vaporized and they are fed into the heat exchanger 2. The coal tar from the flushing tank 7 which still contained gas oil and a small amount of water is discharged through a line 15, heated to a predetermined temperature in a heat exchanger 16 and fed into a dehydrating tower 14 for separation of remaining low-boiling fractions such as water and gas oil.

Description

【発明の詳細な説明】 本発明は、コールタールの脱水処理方法に関するもので
ある。さらに詳しくは、コールタール中の水分を安定し
た状態で確実に除去することができ、しかもスラッジ除
去の問題もない改良された脱水処理方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for dehydrating coal tar. More specifically, the present invention relates to an improved dehydration treatment method that can reliably remove water in coal tar in a stable state and eliminates the problem of sludge removal.

コールタールは、通常蒸留により、軽油、カルポル油、
ナフタリン油、洗浄油、アントラセン油、ピッチ等の各
留分に分留されている。しかしながら、コールタールは
、通常3〜10%の水分を含んであり、この水分が蒸留
時に突沸現象を生じたり、泡立って精留を妨げたり、高
い蒸気圧を示して圧力制御や温度制御を困難にしたりす
るばかりでなく、加熱に必要な燃料の消費を無益に増大
させるため、予め水分をできるたけ除去しておく必変が
ある。
Coal tar is usually distilled into light oil, carpol oil,
It is fractionated into various fractions such as naphthalene oil, cleaning oil, anthracene oil, and pitch. However, coal tar usually contains 3 to 10% water, and this water causes bumping phenomena during distillation, bubbles that impede rectification, and exhibits high vapor pressure, making pressure and temperature control difficult. It is necessary to remove as much moisture as possible beforehand, not only to reduce the amount of moisture, but also to unnecessarily increase the consumption of fuel necessary for heating.

しかして、コールタールの脱水方法としては、1tli
常タ ルを加熱し、脱水塔にて気液;17−衡を利用し
て脱水する方法が通常行なわれている。かかる脱水」売
においては、液相から水分を完全に追い出す/こめ、大
気圧操業で塔頂温度+−1,s 、5〜100″C程1
笈が4g 、+iflである。しかしなから、クール中
の含イ1水分が変動して2%以上に増加した場合水とべ
/十ノ等で形成さitでいると思われる一種の共沸混合
物のV衡がくずれるためか、脱水塔での突沸現象が牛し
たり、温度管理が困難となる等安全運転に支障を生じる
ことがある。このため脱水塔での前処理上程としてター
ル中の水分を2係以下に1で低減させることが望ましい
。かかる前処理力法どして従来から加圧脱水法が採用さ
れている。
However, as a method for dehydrating coal tar, 1tli
A commonly used method is to heat tal and dehydrate it in a dehydration tower using gas-liquid equilibrium. In such dehydration, moisture is completely expelled from the liquid phase, and the column top temperature is +-1, s and 5 to 100"C in atmospheric pressure operation.
The koji is 4g, +ifl. However, if the water content in the coolant fluctuates and increases to 2% or more, the V balance of a type of azeotrope that is thought to be formed in water pots, etc. will be disrupted. Bumping phenomenon in the dehydration tower may cause problems with safe operation, such as boiling and temperature control becoming difficult. For this reason, it is desirable to reduce the water content in the tar by 1 to less than 2 as a pretreatment step in the dehydration tower. As such a pretreatment force method, a pressurized dehydration method has conventionally been adopted.

この加圧脱水方法は、;う〜10気圧の加圧下に120
〜I 50 ”C,に加温したコールクールを加圧脱水
)j、14iで30分〜1時間程度H11留させて静置
することにより、比重差によってコールクール中の水分
は」二層に分離され、下層のコールクール中の水分を低
減させるものである。
This pressurized dehydration method is;
By pressurizing and dehydrating the coal cool heated to ~I 50 "C," and leaving it to stand for about 30 minutes to 1 hour at 14i, the water in the coal cool will form into two layers due to the difference in specific gravity. This is to reduce the moisture content in the lower layer of coal cool.

しかしなから、前記加圧脱水槽内において使用される加
圧脱水槽は圧力容器であるだめに、年に1回内部の開放
検査か必要であり、このだめ装置の清掃をυするが、他
方、近年コークス炉の大型化にともなって無煙コークス
化法によってタール中にコークス粉や石炭粉末等のスラ
ッ7か増加して来ており、そのだめ、該加圧脱水槽内に
沈積するスラッジの除去作業か煩雑で長時間を要する等
の時題か生じて来でいた。まだ前記加圧脱水槽は、コー
ルタールの処理量が増大するにつれて30分〜1時間の
滞留を行うのに充分な大容耽の槽を心電とするので、そ
の設置面積が増大するだけで々く、建設費用か莫大とな
る。さらに、加圧脱水槽の上層から分離する水分には重
質油が分散丑たけ溶解しており廃液処理の負荷か大きく
なる等の川水処理上の問題があった。また、コールター
ル中の含有水分はかなり変動しており、10%前後にも
達する場合がある。このため加圧脱水槽で分離できなか
った水分が2幅以−にに増加し、その分は次工程の加熱
炉や熱交換器において気化が起り、脱水塔へ供給する際
に、気液Δ1/衡下の晰内で突沸が起る等脱水塔の安定
した運転はできない。すなわち、脱水塔を安定運転する
ためにはコールクール中の水分は2%以下であることが
T1しいが、前記のととき胛由により含水率を常に2係
以下に保つこと−極めて困難である。
However, since the pressurized dehydration tank used in the pressurized dehydration tank is a pressure vessel, it is necessary to conduct an internal open inspection once a year. In recent years, with the increase in the size of coke ovens, the amount of sludge such as coke powder and coal powder in tar has increased due to the smokeless coking method, and as a result, it is necessary to remove the sludge that accumulates in the pressurized dehydration tank. Problems arose, such as the work being complicated and requiring a long time. However, as the amount of coal tar to be processed increases, the pressurized dehydration tank requires a tank with a large capacity sufficient for retention for 30 minutes to 1 hour, so the installation area only increases. Therefore, the construction cost would be enormous. Furthermore, heavy oil is dispersed and dissolved in the water separated from the upper layer of the pressure dehydration tank, which poses problems in river water treatment, such as increasing the burden of waste liquid treatment. Furthermore, the moisture content in coal tar varies considerably and can reach around 10% in some cases. For this reason, the moisture that could not be separated in the pressure dehydration tank increases by more than 2 times, and that amount is vaporized in the heating furnace or heat exchanger in the next step, and when supplied to the dehydration tower, the gas-liquid Δ1 / Stable operation of the dehydration tower is not possible due to bumping occurring in the liquid under pressure. In other words, in order to operate the dehydration tower stably, it is desirable that the water content in the coal cool is 2% or less, but due to the above-mentioned reasons, it is extremely difficult to maintain the water content at 2% or less at all times. .

本発明Cよ、前記のごとき従来法の諸欠点を解消する/
ζめになされたもので、含水原料コールタールを脱水塔
において脱水処理を行うにあたり、事前にフラソン工程
において含有水分の一部および軽油分の一部をフラッシ
ュさせることを特徴とするコールタールの蒸留方法であ
る。
The present invention C solves the drawbacks of the conventional method as described above.
A method of distillation of coal tar, which has been developed for the purpose of ζ, and is characterized by flashing part of the water content and part of the light oil content in the furathon process before dehydrating the water-containing raw material coal tar in a dehydration tower. It's a method.

つぎに、本発明の一実施態様を図面を参照しつつ説明す
る。ずなわぢ、図面に示すように、ラインIより導入さ
れた粗コールタールは、熱交換器2においてライン8よ
り供給される水蒸気、軽油等のガス状物の凝縮時の潜熱
により予熱されたのち、ライン3を経て熱交換器4にお
いて加熱され、さらに加熱器5において加圧下に所定の
温度、例えば、110〜200℃の温度に加熱され、つ
いでライン6よりほぼ大気圧力下のフラップユ槽7に供
給される。加圧加熱されたコールタール−このフラツン
コ一槽7において100〜] 3 0 ”C;の温度で
フラッシュされ、該コールタール れている水分、軽油等の揮発分の大部分は気化してライ
ン8より排出され、前記熱交換器2にお1ハて粗コール
タールとの熱交換により大部分か凝縮され、その凝縮潜
熱により粗コールタールされる。凝縮された揮発分はさ
らにl令却詣(例えばエアフィンクーラー)9によりl
今加されたのち油水混合液はライン10より第1軽油分
離槽11に送られる。この第1軽油分離槽11で静置分
離された水分(アンモニア水)はライン12より糸外に
排出され、一方、軽油分はライン13を経て脱水塔14
の塔頂部に、該脱水塔14における還流液の一部として
供給される。
Next, one embodiment of the present invention will be described with reference to the drawings. As shown in the drawing, the crude coal tar introduced from line I is preheated in heat exchanger 2 by the latent heat of condensing gaseous substances such as steam and light oil supplied from line 8. , is heated in a heat exchanger 4 via a line 3, further heated under pressure in a heater 5 to a predetermined temperature, for example, 110 to 200°C, and then transferred via a line 6 to a flap tank 7 under approximately atmospheric pressure. Supplied. The coal tar heated under pressure is flashed at a temperature of 100 to 30"C; in this tank 7, most of the volatile components such as water and light oil in the coal tar are vaporized and sent to the line 8. The most part is condensed by heat exchange with crude coal tar in the heat exchanger 2, and is converted into crude coal tar by the latent heat of condensation. For example, air fin cooler)
After being added, the oil/water mixture is sent to the first light oil separation tank 11 via line 10. The water (ammonia water) separated by standing in this first light oil separation tank 11 is discharged from the line 12 to the outside, while the light oil passes through line 13 to the dehydration tower 14.
is supplied to the top of the column as part of the reflux liquid in the dehydration column 14.

フラツンユ槽7より水と共に留出する油分の沸点範囲は
、脱水塔14の塔頂より出る油分の沸点範囲に比べると
広くなる。例えば、脱水塔14のQ: Ji Jニジ出
る?山分はベンゼン、トルコニン、キシレン、トリノチ
ルベンセン智炭素数6〜9の成分かする。したかつて、
沸点範囲の狭いタール軽油をイIIる/こめに01、フ
ラッシュ使j7より留出する油分に1可及的全量を脱水
塔14の還流液として使用し、脱水塔14から留出する
油分をタール軽油とL7て回収することが望ましい。す
なわち、フラッシュ槽7より留出する油分を脱水塔14
に還流することにより、この油分中の重質分は脱水塔j
4の塔底におとされ、脱水塔14の塔頂から留出する油
の1弗点範囲が狭く維持され、良質のタール軽油を回収
することができるのである。
The boiling point range of the oil distilled from the flattening tank 7 together with water is wider than the boiling point range of the oil coming out from the top of the dehydration tower 14. For example, Q of dehydration tower 14: Does Ji J come out? The main components are benzene, turquonin, xylene, and trinotylbenzene, which have 6 to 9 carbon atoms. Once upon a time,
Tar gas oil with a narrow boiling point range is used as the reflux liquid of the dehydration tower 14, and the entire amount of the oil distilled from the flash tank is used as the reflux liquid of the dehydration tower 14. It is desirable to collect light oil and L7. That is, the oil distilled from the flash tank 7 is transferred to the dehydration tower 14.
By refluxing the oil, heavy components in this oil are removed from the dehydration tower.
The temperature range of the oil distilled from the top of the dehydration tower 14 is kept narrow, making it possible to recover high-quality tar light oil.

フラッシュ槽7において揮発分の大部分を分離除去され
たコールタールは、なお軽油分の他に若干量の水分を含
有しているので、ライン」5より441出され、熱交換
器16において、所定の(1m度になるように加熱され
、ついでライン17より脱水塔]4の塔底に供給される
The coal tar from which most of the volatile matter has been separated and removed in the flash tank 7 still contains a small amount of water in addition to light oil, so it is discharged from the line 5 through the heat exchanger 16 at a predetermined level. (Heated to 1 m degree, and then supplied to the bottom of the dehydration tower through line 17) 4.

脱水塔14は、蒸留塔であり、気液平衡を利用して前記
コールタール中例なお残存している水分、軽油等の低沸
点留分を分離除去する。1〜かして、この場合、脱水塔
】4の塔底温度は、塔底液をライン26を経てスチーム
加熱によるリボイラーあるいは加熱炉等の加熱手段28
で加熱したのち、ライン29より脱水塔14−\循環さ
せることにより150〜200 ”(L:に保だねる。
The dehydration tower 14 is a distillation tower that uses gas-liquid equilibrium to separate and remove remaining water, light oil, and other low-boiling fractions from the coal tar. In this case, the temperature at the bottom of the dehydration tower 4 is determined by passing the bottom liquid through a line 26 to a heating means 28 such as a reboiler or heating furnace using steam heating.
After heating, it is kept at 150 to 200'' (L:) by circulating through the dehydration tower 14-\ through line 29.

塔頂より排出した低沸点留分け、ライン18」こり熱交
換器まだは適宜のt今却器(例えはエアフィンクーラー
 19に送られて//:?却されたのち、ライン20よ
り第2軽油分部槽21に送られる。この第2軽油分離j
1!72 ]で静置分p(Lされた水分(アンモニア水
)にライン22を経てライン12より系外に排出される
。一方、軽油分はライン23より排出されて別の工程・
\1若られるか、その一部+4ライン24より分離され
て脱水塔14の塔頂へ還流液として供給される。
The low-boiling fraction discharged from the top of the tower is sent to a heat exchanger (line 18) and then to an appropriate cooling unit (for example, an air fin cooler). It is sent to the light oil component tank 21.This second light oil separation j
1!72 ], the stationary fraction p (L) is discharged from the system through line 22 and line 12 to the water (ammonia water). On the other hand, the light oil component is discharged from line 23 and sent to another process.
\1 is reduced or a part thereof is separated from +4 line 24 and supplied to the top of the dehydration tower 14 as a reflux liquid.

このようにして脱水されたコールタールは脱水塔14の
塔底よりライン25を経て排出され、その一部は前記の
ようにライン26を経て加熱手段28においで所定の湿
度に加熱されたのちライン29により脱水塔14へ循環
されるか、残余分は熱交換2H; :3oて加熱された
のち、管炉、31で所定の温度に力11 、’1)J(
され、ついでライン:32により図示してないコールタ
ール蒸留塔へ供給される。
The coal tar thus dehydrated is discharged from the bottom of the dehydration tower 14 through the line 25, and a part of it is heated to a predetermined humidity in the heating means 28 through the line 26 as described above, and then the coal tar is discharged through the line 25. 29 to the dehydration tower 14, or the residue is heated in a heat exchanger 2H;
It is then supplied to a coal tar distillation column (not shown) via line 32.

つきに、実施例を挙げて本発明方法をさらに詳細に11
に翻すjする。なお、下記実施例におけるl一部」お上
Q;1%Jは、特にことわらない限り重量による1゜ 実施例 図面に示す装置において5係の水分を含有する液温60
℃の粗コールタール35,050部h+ 処理の場合、
従来通りの予備脱水方式を採用するとすれば、加圧脱水
槽(耐圧]Okg/ffl、容量60 m’ )が必要
であるが、本実施例では尚該加圧脱水槽にかえて容’E
g’(6,8m’のフラッシュ槽7を取りつけて予備脱
水し)ζ場合を示す。すなわち、コールタールは、ライ
ン1より熱交換器2に供給されて、約+ 03 ”Cに
ツノ[1熱されたのち、ライン3よシ熱交換器4に供給
されて]28“Cに加熱され、ついでinn熱器5にお
いてスチームによりさらに加圧加熱されてライン6より
0.01 k!? /cyl −Gで]20“Cの粗コ
ールタールをフラツシユ槽7に送って] 20 ”Cで
フラツ/ユさせた。このフラッシュ槽7よりフラツンユ
した成分は水分87係および軽油分13%よりなる混合
蒸気1679部/1〕rであってライ/8より排出さぜ
、熱交換器(コンテンサー)2にて凝縮させ、100℃
の凝縮物を?令却器9にて50”Cに冷却して8g1軽
油分離槽]1に送った。
In the following, the method of the present invention will be explained in further detail by giving examples.
to change to. In the following examples, 1%J means 1° by weight, unless otherwise specified.
For treatment with 35,050 parts h+ of crude coal tar at ℃,
If a conventional preliminary dehydration method were to be adopted, a pressurized dehydration tank (pressure resistance: Okg/ffl, capacity 60 m') would be required; however, in this embodiment, instead of the pressurized dehydration tank, a
g' (6.8 m' flash tank 7 is attached and preliminary dehydration is carried out) ζ case is shown. That is, coal tar is supplied from line 1 to heat exchanger 2 and heated to approximately +03"C [1, then supplied to heat exchanger 4 through line 3] and heated to 28"C. Then, it is further pressurized and heated with steam in the inn heater 5, and then heated to 0.01 k! from the line 6. ? /cyl-G] 20"C crude coal tar was sent to the flash tank 7 and was flattened at 20"C. The component flattened from this flash tank 7 is a mixed vapor of 1679 parts/1]r consisting of 87% moisture and 13% light oil, which is discharged from lie/8 and condensed in a heat exchanger (condenser) 2. 100℃
The condensate of? It was cooled to 50''C in a cooling device 9 and sent to 8g1 light oil separation tank]1.

第1軽油分離@11で静置分離された軽油(ベンセン、
トルエ/、キシレン45係、その他の重質分(ナフタリ
ンより低い沸点を有する放物)25係、ナフタリン26
係およびその他重質分5係)は、ライン13より脱水塔
14の塔頂に送られた。
Light oil (benzene,
Toluene/, xylene 45 parts, other heavy components (parabolic with a boiling point lower than naphthalene) 25 parts, naphthalene 26 parts
and other heavy components (5) were sent to the top of the dehydration tower 14 via line 13.

この結果、相コールタール中の水分835チが除去され
たことになった。
As a result, 835% of water in the coal tar phase was removed.

このようにしてフラッシュ処理されだ液7W I 2 
(1°Cのコールタールは、水分含有量が]チ以]:に
下がりライン]5より排出され、熱交換器16において
さらに175℃に加熱されたのち、ライン17より脱水
塔14の塔底に供給された。この脱水塔】4において幻
、スチーム加熱によるリボイラー28により塔底液を循
環加熱することにより塔底rsy+度を180°0に保
って常圧蒸留を行なった。水分/122係および軽油分
578チである90°Cの層頂留分をライン19より排
出させたのち、冷却器20で50°Cに冷却して第2軽
油分離楢22に送った。ε1モ2軽油分離槽22で静置
分離された軽油(ベンゼン、トルエン、キソレン79%
、ナフタリン、その他の重質分2%およびその他の重質
分19%)167部/b rをライン24より糸外に排
出させ、残余は第1軽油分離槽11からの軽油とともに
脱水塔14の塔頂に供給して、脱水塔14における蒸留
操作の還流比を約3に保った。一方、前記第1および第
2軽油分離槽1.1 、22より分離されたアンモニア
分を含む水分dライン12より1,750部/11「の
割合で系外に排出された。この結果、脱水塔I4の操作
は全く支障がなく、安定した運転が可能であることが確
認できた。
In this way, the flushed saliva 7W I 2
(Coal tar at 1°C has a water content of [chi] or more and is discharged from line] 5, heated further to 175°C in heat exchanger 16, and then passed through line 17 to the bottom of dehydration tower 14. In this dehydration tower] 4, the bottom liquid was circulated and heated by the reboiler 28 heated by steam, thereby maintaining the bottom rsy + degree at 180° 0 and carrying out atmospheric distillation.Moisture/122 The layer top fraction at 90°C with a light oil content of 578% was discharged from line 19, cooled to 50°C in a cooler 20, and sent to the second light oil separation tower 22. ε1Mo2 light oil separation Gas oil (79% benzene, toluene, xolene) separated by standing in tank 22
, naphthalene, 2% of other heavy components, and 19% of other heavy components) are discharged from the line 24 to the outside, and the remainder is sent to the dehydration tower 14 along with the light oil from the first light oil separation tank 11. The reflux ratio of the distillation operation in the dehydration tower 14 was maintained at about 3 by feeding the mixture at the top. On the other hand, water containing ammonia separated from the first and second light oil separation tanks 1.1 and 22 was discharged to the outside of the system from the d line 12 at a ratio of 1,750 parts/11. It was confirmed that there was no problem in the operation of tower I4, and that stable operation was possible.

以−]二述べたように、本発明によるコールタールの脱
水処理方法は、含水原料コールタールを脱水塔において
脱水処理を行なうにあたり、事前にフラッジユニ程にお
いて水分の一部および軽油分の一部をフラッシュさせて
なるものである妙・ら、先ず前記フラッジユニ程がほぼ
大気圧下で行なわれ、このだめ従来の加圧脱水槽のよう
に大容量の圧力容器を使用する必要はない。また、連続
フラツ/ユカ氏であるため、コールタール蒸留の処理量
が多くなっても秤量は小さくてすむ。また、加圧脱水槽
のように静置によシ分離するものではないので、スラッ
ジ除去作業の必要はない。さらにフラッシュ処理を行な
うことにより脱水効率が上昇するので、脱水塔へ供給さ
れるコールタール中の水分含量は極めて小さくなり、こ
のため脱水塔での突沸現象は皆無となり、安全運転が可
能となった。
As mentioned above, in the method for dehydrating coal tar according to the present invention, before dehydrating the water-containing raw material coal tar in the dehydration tower, part of the water and part of the light oil are removed in advance in the flage unit stage. First of all, the flashing process is carried out under approximately atmospheric pressure, so there is no need to use a large-capacity pressure vessel unlike the conventional pressurized dehydration tank. In addition, since it is a continuous flat/yuka type, even if the throughput of coal tar distillation is large, the weight can be kept small. In addition, unlike a pressurized dewatering tank, separation is not performed by standing still, so there is no need for sludge removal work. Furthermore, by performing flash treatment, the dehydration efficiency increases, so the water content in the coal tar supplied to the dehydration tower becomes extremely small, and as a result, there is no bumping phenomenon in the dehydration tower, making safe operation possible. .

また、フラッジユニ程で蒸発した気化物を相コールター
ルの加熱源として利用するので、熱回収ができる。
In addition, since the vapors evaporated during the fludge process are used as a heating source for the coal tar phase, heat can be recovered.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明によるコールタールの蒸留方法の一実施態
様を示すフローノー1・である。 2.4,17,30,35,39,41.42・・・熱
交換器、5 加熱器、7 フラッシュ槽、I]、12・
・軽油分離(・トす、+6,3]・・管炉、14 脱水
塔。
The drawing is a flow no. 1 showing an embodiment of the method for distilling coal tar according to the present invention. 2.4, 17, 30, 35, 39, 41. 42... Heat exchanger, 5 Heater, 7 Flash tank, I], 12.
・Light oil separation (・Tos, +6,3]・・Tube furnace, 14 Dehydration tower.

Claims (1)

【特許請求の範囲】 u、+  a゛水原F4コールタールを脱水塔において
脱水処理を行うにあたり、事前にフラノ多ユニ程におい
て水分の一部および軽油分の一部をフラッシュさせるこ
とを特徴とするコールタールの脱水処理方法。 (2)含水県別コールタールを加圧下に加熱してフラツ
/ユI 8に導く特許請求の範囲第1項に記載の方法。 (3)脱水塔に導くフラッジユニ程後のコールタールの
水分含冶量を2チ以下とする特許請求の範囲第1項寸だ
け第2項に記載の方法。 (4)  フラップユニ程のフラッシュ温度は、大気圧
力下で100〜20o“′Cの温度で操作する特許請求
の範囲第1項ないし、第3項のいずれか一つに記載の方
法。 (5)  フラッジユニ程でフラッシュされ/こ成分を
、凝縮後に静置分離にて水分と油分に分離する特許請求
の範囲第1項ないし第4項のいずれか一つに記載の方法
。 (6)  静置分離された油分を、脱水塔の還流液とし
て供給する特許請求の範囲第5項に記載の方法。
[Claims] u, + a゛When dehydrating Suwon F4 coal tar in a dehydration tower, it is characterized in that part of the water and part of the light oil are flashed in advance in a furanite stage. Coal tar dehydration treatment method. (2) The method according to claim 1, in which water-containing prefectural coal tar is heated under pressure and is introduced into flat/yellow I8. (3) The method according to claim 1 and claim 2, wherein the water content of the coal tar after being subjected to the fludge treatment and being led to the dehydration tower is 2 H or less. (4) The method according to any one of claims 1 to 3, wherein the flash temperature of the flap unit is 100 to 20°C under atmospheric pressure. ) The method according to any one of claims 1 to 4, wherein the components flashed in the flage unit stage are condensed and then separated into water and oil by standing separation. (6) Standing. 6. The method according to claim 5, wherein the separated oil is supplied as a reflux liquid to a dehydration tower.
JP17244582A 1982-09-30 1982-09-30 Dehydration of coal tar Granted JPS5959787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17244582A JPS5959787A (en) 1982-09-30 1982-09-30 Dehydration of coal tar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17244582A JPS5959787A (en) 1982-09-30 1982-09-30 Dehydration of coal tar

Publications (2)

Publication Number Publication Date
JPS5959787A true JPS5959787A (en) 1984-04-05
JPH0251474B2 JPH0251474B2 (en) 1990-11-07

Family

ID=15942110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17244582A Granted JPS5959787A (en) 1982-09-30 1982-09-30 Dehydration of coal tar

Country Status (1)

Country Link
JP (1) JPS5959787A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028423A (en) * 2004-07-20 2006-02-02 Jfe Chemical Corp Synthetic tar and blockage material for tap hole of molten metal
JP2008255172A (en) * 2007-04-02 2008-10-23 Mitsubishi Chemicals Corp Method for eliminating water from tar or tar emulsion, method for converting tar emulsion to tar, and method for reducing water content in tar
CN101936641A (en) * 2010-09-21 2011-01-05 宋显华 Method and device for removing moisture in coals by using flash evaporation
CN105154122A (en) * 2015-07-14 2015-12-16 陕西双翼石油化工有限责任公司 Combined coal tar dehydration method
CN106367110A (en) * 2016-10-17 2017-02-01 山西金源煤化科技有限公司 Energy-saving tar processing technology
CN109097085A (en) * 2017-06-20 2018-12-28 中国石油化工股份有限公司 The pretreated method of coal tar
WO2023233960A1 (en) * 2022-05-30 2023-12-07 栗田工業株式会社 Method and device for recovering oil from oil-containing waste liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123693A (en) * 1979-02-28 1980-09-24 Pkm Anlagenbau Veb Dust removing and cooling of crude gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55123693A (en) * 1979-02-28 1980-09-24 Pkm Anlagenbau Veb Dust removing and cooling of crude gas

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028423A (en) * 2004-07-20 2006-02-02 Jfe Chemical Corp Synthetic tar and blockage material for tap hole of molten metal
JP2008255172A (en) * 2007-04-02 2008-10-23 Mitsubishi Chemicals Corp Method for eliminating water from tar or tar emulsion, method for converting tar emulsion to tar, and method for reducing water content in tar
CN101936641A (en) * 2010-09-21 2011-01-05 宋显华 Method and device for removing moisture in coals by using flash evaporation
CN105154122A (en) * 2015-07-14 2015-12-16 陕西双翼石油化工有限责任公司 Combined coal tar dehydration method
CN105154122B (en) * 2015-07-14 2018-01-05 陕西双翼石油化工有限责任公司 A kind of method of combined type coal tar dehydration
CN106367110A (en) * 2016-10-17 2017-02-01 山西金源煤化科技有限公司 Energy-saving tar processing technology
CN109097085A (en) * 2017-06-20 2018-12-28 中国石油化工股份有限公司 The pretreated method of coal tar
CN109097085B (en) * 2017-06-20 2021-11-16 中国石油化工股份有限公司 Coal tar pretreatment method
WO2023233960A1 (en) * 2022-05-30 2023-12-07 栗田工業株式会社 Method and device for recovering oil from oil-containing waste liquid

Also Published As

Publication number Publication date
JPH0251474B2 (en) 1990-11-07

Similar Documents

Publication Publication Date Title
US4332643A (en) Method of removing water from glycol solutions
US2838135A (en) Process for the recovery of heat from hot gases
JPS5959787A (en) Dehydration of coal tar
US2748063A (en) Distillation of coal tar
CN115605451A (en) Method and apparatus for distillation
US2601009A (en) Method of low-temperature separation of gases into constituents
US2064757A (en) Process for the treatment of hydrocarbon oil
US2673833A (en) Distillation of coal tar
US1972157A (en) Vacuum distillation
CA1085336A (en) Multistage evaporator apparatus and method of distilling petroleum
AU2019203572A1 (en) Process for dehydrating a hydrocarbon-based gas
US2781293A (en) Absorption recovery of hydrocarbons
US6599488B2 (en) Pour point depression unit using mild thermal cracker
US1953043A (en) Recovery of gasoline from natural gas
US2168683A (en) Absorption process
JPS5946995B2 (en) Improvements in aqueous effluent purification
US2168316A (en) Distillation and fractionation process and apparatus
US1649345A (en) Method of and apparatus for making gasoline
US2922751A (en) Debenzolizing wash oil
US1559218A (en) Process of continuous rectification of spirits, petroleums, and benzols
US2073953A (en) Treatment of hydrocarbons
US1892654A (en) Method and apparatus for distilling tar
KR20150003515A (en) a method and system for purify in waste oil
RU2800096C1 (en) Method for stabilizing gas condensate
US2018377A (en) Method and apparatus fob dehy