JPS63285977A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPS63285977A
JPS63285977A JP62121511A JP12151187A JPS63285977A JP S63285977 A JPS63285977 A JP S63285977A JP 62121511 A JP62121511 A JP 62121511A JP 12151187 A JP12151187 A JP 12151187A JP S63285977 A JPS63285977 A JP S63285977A
Authority
JP
Japan
Prior art keywords
layer
type
superlattice
guard ring
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62121511A
Other languages
Japanese (ja)
Inventor
Takashi Mikawa
孝 三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62121511A priority Critical patent/JPS63285977A/en
Publication of JPS63285977A publication Critical patent/JPS63285977A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To extremely reduce noise and to remarkably accelerate a semiconductor photodetector by using a superlattice for an APD magnifying layer, employing a substance having larger band gap than that of a well layer for a window and guard ring layer to rigidly provide a guard ring effect. CONSTITUTION:An n-type superlattice (n-type Al0.48In0.52As/Ga0.47In0.53As) 2 as a magnifying layer, an n-type Ga0.47In0.53As layer 3 as an optical absorption layer, and an n-type InP layer 4 having larger band gap than that of the GaInAs of a barrier layer as a window and guard ring layer are sequentially grown on an n<+> type InP substrate 1. Then, Zn or Cd is diffused as a P-type impurity from the surface of the layer 4 to form a p<+> type region 5. The layer structure of the n-type superlattice is formed by alternately laminating 20-30 layers of N-type A InAs layers having 150Angstrom of thickness and an impurity concentration <=1X10<15>cm<-3>, and 20-30 layers of N-type GaInAs layers having 150Angstrom of thickness and impurity concentration <=1X10<15>cm<-3>. Thus, an APD having rigid guard ring effect using the superlattice amplifying layer is obtained, and low noise and superhigh speed due to the use of the superlattice are provided.

Description

【発明の詳細な説明】 〔概要〕 APD (Avalanche Photodiode
)の増倍層に超格子を用い、ウィンド層兼ガードリング
層にウェル層よりバンドギャップの大きい物質を用いて
、ガードリング効果を強固にした超格子APDを提起し
[Detailed description of the invention] [Summary] APD (Avalanche Photodiode)
), a superlattice APD is proposed in which the guard ring effect is strengthened by using a superlattice for the multiplication layer and using a material with a larger band gap than the well layer for the wind layer and guard ring layer.

超低雑音化、超高速化を可能とする。Enables ultra-low noise and ultra-high speed.

〔産業上の利用分野〕[Industrial application field]

本発明は増倍層に超格子を用いた超高速、超低雑音AP
Dの構造に関する。
The present invention is an ultra-high speed, ultra-low noise AP using a superlattice in the multiplication layer.
Regarding the structure of D.

長距離、大容量光通信システムの進展に伴い。With the development of long-distance, high-capacity optical communication systems.

電界分布の平坦な超高速、低雑音のAPDが要求されて
いる。
There is a demand for ultra-high-speed, low-noise APDs with flat electric field distribution.

〔従来の技術〕[Conventional technology]

近年、 APDO増倍層に超格子を用いようとする試み
がなされるようになってきた。
In recent years, attempts have been made to use superlattices in APDO multiplication layers.

その理由は以下のようである。The reason is as follows.

すなわち、 APDO増倍層に超格子1例えばA11n
As/GaInAs超格子を用い、ここに電子を注入す
ると、超格子のAlInAsバリア層とGaInAsウ
ェル層の界面の障壁高さが伝導帯の方が価電子帯より極
めて大きいため電子のイオン化率αが正孔のそれβより
極めて大きくなり、すなわち電子と正札のイオン化率比
α/βが大きくなり、マフキンタイア(Mc I n 
tyre)効果によりAPDの雑音は減り、また増倍さ
れた電子のビルドアップ時間が小さくなり、APDの超
高速化が可能となる。
That is, if the APDO multiplication layer contains a superlattice 1 such as A11n
When an As/GaInAs superlattice is used and electrons are injected into it, the barrier height at the interface between the AlInAs barrier layer and the GaInAs well layer of the superlattice is extremely larger in the conduction band than in the valence band, so the electron ionization rate α increases. The ionization rate ratio α/β of electrons and regular bills becomes much larger than that of holes, i.e., the ionization rate ratio α/β of electrons and regular bills becomes large, resulting in Muffkintyre (Mc I n
(tyre) effect reduces the noise of the APD, and also reduces the build-up time of the multiplied electrons, making it possible to make the APD extremely high-speed.

従来は、超格子使用のAPDに対する具体的な構造は提
起されていない。
Conventionally, no specific structure for APD using a superlattice has been proposed.

従って、従来例としてInP系1μm帯のAPDの構造
をつぎに説明する。
Therefore, as a conventional example, the structure of an InP-based 1 μm band APD will be described below.

第3図は従来例を説明する1μm帯のInP系APDの
断面図である。
FIG. 3 is a cross-sectional view of a 1 μm band InP-based APD to explain a conventional example.

つぎに、工程順に構造を説明する。Next, the structure will be explained in order of steps.

図において、  n”−InP基板31上に。In the figure, on an n''-InP substrate 31.

光吸収層としてn−GaInAs1i32+増倍層とし
てn−InP層33゜ を成長し、受光領域の周囲を残してメサエッチングし、
メサの周囲にnJnP層34を埋め込む。
A 33° n-GaInP layer was grown as a light absorbing layer and a 33° n-InP layer as a multiplication layer, and mesa etching was performed leaving the periphery of the light receiving area.
An nJnP layer 34 is embedded around the mesa.

n−InP層34.33の受光領域表面よりp型不純物
としてZn、またはCdを拡散してp″″型領域35を
形成する。
Zn or Cd is diffused as a p-type impurity from the surface of the light-receiving region of the n-InP layer 34, 33 to form a p'''' type region 35.

つぎに、 p+型領領域35上p側電極36゜n”−I
nP基板31の裏面にn側電極37を形成してAPDの
主要部の形成を終わる。
Next, the p-side electrode 36゜n''-I on the p+ type region 35
An n-side electrode 37 is formed on the back surface of the nP substrate 31 to complete the formation of the main part of the APD.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のAPDにおいては、増倍領域とガードリング領域
が同じバンドギャップの半導体で構成されており、受光
領域とガードリング領域との耐圧差が小さかった。
In conventional APDs, the multiplication region and the guard ring region are made of semiconductors with the same bandgap, and the difference in breakdown voltage between the light receiving region and the guard ring region is small.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、基板上に、バンドギャップの大き
いバリア層とバンドギャップの小さいウェル層を交互に
積層した超格子よりなる増倍層と。
The solution to the above problem is to use a multiplication layer made of a superlattice in which barrier layers with a large band gap and well layers with a small band gap are alternately laminated on a substrate.

該増倍層上に該超格子のウェル層よりバンドギャップの
大きい一導電型の半導体よりなるウィンド層兼ガードリ
ング層とを有し、受光領域を含んだ領域の該ウィンド層
兼ガードリング層を他導電型化してなる半導体受光装置
により達成される。
A window layer/guard ring layer made of a semiconductor of one conductivity type having a larger band gap than the well layer of the superlattice is provided on the multiplication layer, and the window layer/guard ring layer in a region including the light receiving region is provided. This is achieved by a semiconductor light receiving device made of a different conductivity type.

〔作用〕[Effect]

本発明は、超格子APDの受光領域の低ブレークダウン
電圧と、バンドギャップの大きいガードリング層の高耐
圧とを利用して強固なガードリング効果を得るものであ
る。
The present invention utilizes the low breakdown voltage of the light-receiving region of the superlattice APD and the high breakdown voltage of the guard ring layer with a large band gap to obtain a strong guard ring effect.

〔実施例〕〔Example〕

第1図は本発明の一実施例として AlInAs/GaInAs超格子増倍層を使用したA
PDの断面図である。
FIG. 1 shows an example of the present invention using an AlInAs/GaInAs superlattice multiplication layer.
It is a sectional view of PD.

つぎに、工程順に構造を説明する。Next, the structure will be explained in order of steps.

図において+  n”−InP基板1上に。In the figure, on the +n''-InP substrate 1.

増倍層としてn型の超格子(n−Alo、 4alno
、 sJs/Gao、 4tIno、 53AS) 2
 +光吸収層としてn−Gao、 4tin0.53A
s層3゜ウィンド層兼ガードリング層としてバリア層の
GaInAsよりバンドギャップの大きいn−InPn
連層順次成長し。
An n-type superlattice (n-Alo, 4alno
, sJs/Gao, 4tIno, 53AS) 2
+n-Gao as light absorption layer, 4tin0.53A
S layer 3゜N-InPn as a wind layer and guard ring layer, which has a larger band gap than GaInAs of the barrier layer.
Grows sequentially.

n−InPn連層表面よりp型不純物としてZn、また
はCdを拡散してp゛型領領域5形成する。
Zn or Cd is diffused as a p-type impurity from the surface of the n-InPn series layer to form a p-type region 5.

各層の次元はつぎの通りである。The dimensions of each layer are as follows.

図番 物質名 r−ハント  濃度   厚さくcIl
l−3)(μm) 5p”−6i域 Zn   lXl0I91.04  
n−InP    Sn   lXl0”   1.5
3   n−GaInAs   アンF−ブ   5X
10”      2.02  n−超格子 アンドー
プ      −        −1n”−1nP 
    Sn      lXl0”    350.
0n−超格子の層構成は。
Drawing number Substance name r-hunt Concentration Thickness cIl
l-3) (μm) 5p”-6i area Zn lXl0I91.04
n-InP Sn lXl0” 1.5
3 n-GaInAs Anne F-bu 5X
10" 2.02 n-superlattice undoped - -1n"-1nP
Sn lXl0" 350.
What is the layer structure of the 0n-superlattice?

厚さ150人、不純物濃度≦lXl0”cn+−’のn
−AlInAs層を20〜30層と。
Thickness: 150, impurity concentration ≦lXl0"cn+-'n
-20 to 30 AlInAs layers.

厚さ150人、不純物濃度≦1×10′sC「3ノn−
GaInAs層を20〜30層 を交互に積層したものである。
Thickness: 150, impurity concentration ≦1×10'sC "3-n-
20 to 30 GaInAs layers are alternately stacked.

つぎに、p゛型領領域5上p側電極6゜n”−InP基
板1の裏面にn側電極7を形成してAPDの主要部の形
成を終わる。
Next, an n-side electrode 7 is formed on the p-side electrode 6° on the p-type region 5 and on the back surface of the n''-InP substrate 1, completing the formation of the main part of the APD.

第2図は本発明のAPDの深さ方向の距離Xに対する電
界Eの分布を示す図である。
FIG. 2 is a diagram showing the distribution of the electric field E with respect to the distance X in the depth direction of the APD of the present invention.

深さ方向の距離Xはpn接合面をOとして基板方向には
かり、電界E (V cm−’)は光吸収層3では漸減
するが、超格子増倍層2で一定となり。
The distance X in the depth direction is measured in the substrate direction with the pn junction plane as O, and the electric field E (V cm-') gradually decreases in the light absorption layer 3, but becomes constant in the superlattice multiplication layer 2.

基板1内では急減する様子を示している。It shows a rapid decrease within the substrate 1.

従来のInP系のAPDでは α/β=2.5.  過剰雑音指数F=5であったが、
実施例の超格子APDの場合はα/β=10.過剰雑音
指数F= 2〜3と向上した。
In the conventional InP-based APD, α/β=2.5. Although the excess noise figure was F=5,
In the case of the superlattice APD of the example, α/β=10. The excess noise figure improved to F=2-3.

さらに、バンドギャップは ガードリングのInPは1.35 eV。Furthermore, the bandgap is InP of the guard ring is 1.35 eV.

バリア層の八tlnAsは 1.45 eV。8tlnAs of the barrier layer is 1.45 eV.

ウェル層のGaInAsは 0.75 eV。GaInAs in the well layer has a voltage of 0.75 eV.

(または光吸収層) であるため、実施例の耐圧はInPガードリングで80
〜100 V、超格子の増倍層で30〜40 Vであり
、十分な耐圧差がとれ2強固なガードリング効果が得ら
れた。
(or light absorption layer), the breakdown voltage of the example is 80% with an InP guard ring.
~100 V, and 30 to 40 V in the multiplication layer of the superlattice, providing a sufficient breakdown voltage difference and a strong guard ring effect.

実施例では、ガードリングにInPを用いたが。In the example, InP was used for the guard ring.

これの代わりにバリア層と同じAlInAsを用いても
よいが、3元結晶であるためInPに比べて成長が複雑
となる。
AlInAs, which is the same as the barrier layer, may be used instead, but since it is a ternary crystal, growth is more complicated than with InP.

さらに、実施例では、超格子にAlInAs/Ga1n
Asを用いたが、これの代わりにAlSb/GaSb。
Furthermore, in the example, AlInAs/Ga1n is added to the superlattice.
AlSb/GaSb was used instead of As.

AlGaSb/GaSb、 InP/GaInAsを用
いても同様の効果が得られた。
Similar effects were obtained using AlGaSb/GaSb and InP/GaInAs.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、超格子増倍層を用
いた強固なガードリング効果を有するAPDが得られ、
かつ超格子使用による低雑音、超高速化が達成される。
As explained above, according to the present invention, an APD having a strong guard ring effect using a superlattice multiplication layer can be obtained,
In addition, low noise and ultra-high speed can be achieved by using a superlattice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例として AlInAs/Ga1nAs超格子増倍層を使用したA
PDの断面図。 第2図は本発明のAPDの深さ方向の距離Xに対する電
界Eの分布を示す図。 第3図は従来例を説明する1μm帯のInP系APDの
断面図である。 図において。 1はn”−InP基板。 2は増倍層でn−超格子(n−AlInAs/Ga1n
As ) 。 3は光吸収層でn−GalnAs層。 4はウィンド層兼ガードリング層でn−InP層。 5はp゛型領領域 6はp側電極。 7はn側電極 未発■■f)断酊2 竿1訂 届東イ列の南作叫用 茅 3 凹
Figure 1 shows an example of the present invention using an AlInAs/Ga1nAs superlattice multiplication layer.
A cross-sectional view of PD. FIG. 2 is a diagram showing the distribution of electric field E with respect to distance X in the depth direction of the APD of the present invention. FIG. 3 is a cross-sectional view of a 1 μm band InP-based APD to explain a conventional example. In fig. 1 is an n''-InP substrate. 2 is a multiplication layer made of n-superlattice (n-AlInAs/Ga1n
As). 3 is a light absorption layer, which is an n-GalnAs layer. 4 is an n-InP layer which is a wind layer and a guard ring layer. 5 is a p-type region 6 is a p-side electrode. 7 is the n-side electrode not fired ■■ f) Danshu 2 Rod 1st revision report East A row of southern action shouts 3 concave

Claims (1)

【特許請求の範囲】[Claims] 基板上に、バンドギャップの大きいバリア層とバンドギ
ャップの小さいウェル層を交互に積層した超格子よりな
る増倍層と、該増倍層上に該超格子のウェル層よりバン
ドギャップの大きい一導電型の半導体よりなるウインド
層兼ガードリング層とを有し、受光領域を含んだ領域の
該ウインド層兼ガードリング層を他導電型化してなるこ
とを特徴とする半導体受光装置。
A multiplication layer made of a superlattice in which a barrier layer with a large bandgap and a well layer with a small bandgap are alternately laminated on a substrate, and a conductive layer having a larger bandgap than the well layer of the superlattice on the multiplication layer. 1. A semiconductor light-receiving device comprising: a window layer/guard ring layer made of a type semiconductor, and a region including a light-receiving region of the window layer/guard ring layer is made of a different conductivity type.
JP62121511A 1987-05-19 1987-05-19 Semiconductor photodetector Pending JPS63285977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62121511A JPS63285977A (en) 1987-05-19 1987-05-19 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121511A JPS63285977A (en) 1987-05-19 1987-05-19 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS63285977A true JPS63285977A (en) 1988-11-22

Family

ID=14813012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121511A Pending JPS63285977A (en) 1987-05-19 1987-05-19 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS63285977A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295216A (en) * 1995-02-02 2006-10-26 Sumitomo Electric Ind Ltd Pin type light-receiving device, and method of manufacturing same
US7538367B2 (en) 2005-09-12 2009-05-26 Mitsubishi Electric Corporation Avalanche photodiode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006295216A (en) * 1995-02-02 2006-10-26 Sumitomo Electric Ind Ltd Pin type light-receiving device, and method of manufacturing same
US7538367B2 (en) 2005-09-12 2009-05-26 Mitsubishi Electric Corporation Avalanche photodiode

Similar Documents

Publication Publication Date Title
JP3141847B2 (en) Avalanche photodiode
EP3229279B1 (en) Avalanche photodiode
US4731641A (en) Avalanche photo diode with quantum well layer
JPH022691A (en) Semiconductor light receiving device
JP2747299B2 (en) Semiconductor light receiving element
JPS62259481A (en) Semiconductor light receiving device
KR20000024447A (en) Avalanche photodetector device and method for manufacturing the same
JPS63285977A (en) Semiconductor photodetector
JPS61170079A (en) Semiconductor light-receiving element
US4942436A (en) Superlattice avalanche photodetector
JPS63285976A (en) Semiconductor photodetector
JP5251131B2 (en) Semiconductor photo detector
RU2806342C1 (en) Laser radiation photo detector
CN116247118B (en) Avalanche photodetector with double carrier multiplication
WO2023040395A1 (en) Planar inp-based spad and application thereof
JPS59163878A (en) Semiconductor photo detector
JPH0437591B2 (en)
JPS61198688A (en) Semiconductor photodetector
JPH06105795B2 (en) Method for manufacturing group III-V semiconductor light receiving element
JP2995751B2 (en) Semiconductor light receiving element
JPH03244164A (en) Semiconductor photodetector
JPH0389566A (en) Superlattice avalanche photodiode
JPS63285975A (en) Semiconductor photodetector
JP2754652B2 (en) Avalanche photodiode
JPH06260679A (en) Avalanche photodiode