JPS59163878A - Semiconductor photo detector - Google Patents

Semiconductor photo detector

Info

Publication number
JPS59163878A
JPS59163878A JP58038519A JP3851983A JPS59163878A JP S59163878 A JPS59163878 A JP S59163878A JP 58038519 A JP58038519 A JP 58038519A JP 3851983 A JP3851983 A JP 3851983A JP S59163878 A JPS59163878 A JP S59163878A
Authority
JP
Japan
Prior art keywords
layer
layers
type
indium
ionization rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58038519A
Other languages
Japanese (ja)
Inventor
Fukunobu Aisaka
逢坂 福信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58038519A priority Critical patent/JPS59163878A/en
Publication of JPS59163878A publication Critical patent/JPS59163878A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To increase an ionization rate ratio of electrons to holes, and to reduce multiplication noises by forming a multiplication layer in an APD in superlattice structure. CONSTITUTION:Superlattice structure 12 in which N<-> type InP layers 12a and N<-> type In0.53Ga0.47As layers 12b are laminated alternately is formed onto a P<+> type InP substrate 11. An N<-> type In0.53Ga0.47As optical absorption layer 13 is formed while being in contact with the structure 12. A mesa type etching in depth reaching to the substrate 11 is executed. A non-reflection coating film 14 is formed on the surface of the layer 13. A surface protective film 15 is shaped to a mesa etching surface. The films 14, 15 are formed by Si3N4, etc. An N side electrode 16 is formed to the layer 13 by AuGe. A P side electrode 17 is shaped to the substrate 11 by AnZn. When holes generated in the layer 13 enter to the layers 12b from the layers 12a, the state in which apparently excessive energy is obtained only by the energy difference of valence bands is brought. The ionization rate of holes is increased, and an ionization rate ratio is augmented.

Description

【発明の詳細な説明】 +a+  発明の技術分野 本発明は半導体受光装置、特に受光波長1〔珈〕以上1
.65Cμm〕以内の帯域に適合して雑音が物性的制約
を超えて低減される構造を有するアバランシフォトダイ
オードに関する。
[Detailed Description of the Invention] +a+ Technical Field of the Invention The present invention relates to a semiconductor light receiving device, and particularly to a light receiving wavelength of 1 [C] or more.
.. The present invention relates to an avalanche photodiode having a structure that is suitable for a band of 65 C μm or less and whose noise is reduced beyond physical limitations.

(1))技術の背景 光を情報信号の媒体とする光通信その他のシステムにお
いて、光信号を電気信号に変換する半導体受光装置は重
要で基本的な構成要素の一つであり、既に多数実用化さ
れている。これらの半導体受光装置のうち、光電流がな
だれ降伏によって増倍されて感度が高められるアバラン
シフォトダイオード(以下APDと略称する)は光検知
器の信号対雑音比を改善する効果が大きい。
(1)) Technology background In optical communications and other systems that use light as a medium for information signals, semiconductor photodetectors that convert optical signals into electrical signals are one of the important and basic components, and many are already in use. has been made into Among these semiconductor light receiving devices, an avalanche photodiode (hereinafter abbreviated as APD), whose sensitivity is increased by multiplying the photocurrent by avalanche breakdown, is highly effective in improving the signal-to-noise ratio of a photodetector.

半導体受光装置応用の代表例として光フアイバ通信にお
いては、光伝送に用いられる石英(sro2)系光ファ
イバの材料分散(屈折率の波長依存性に基づく)は波長
1.3〔μm〕付近において非常に小さくなり材料分散
と構造分散(伝搬定数の波長依存性に基づく)との和す
なわちモード内分散は波長1.3乃至1.55Cμm〕
において小さくなる。
In optical fiber communication, which is a typical example of semiconductor photodetector applications, the material dispersion (based on the wavelength dependence of the refractive index) of silica (SRO2) optical fiber used for optical transmission is extremely high near the wavelength of 1.3 [μm]. The sum of material dispersion and structural dispersion (based on the wavelength dependence of the propagation constant), that is, intra-mode dispersion, is 1.3 to 1.55 Cμm at wavelength.
becomes smaller at .

従って光通信用の半導体受光装置として波長1〔μm〕
以上の帯域特に1.3〔μm〕乃至1.65(μm〕程
度の帯域において優れた特性を有するAPDが要求され
ている。
Therefore, as a semiconductor photodetector for optical communication, the wavelength is 1 [μm].
There is a demand for an APD having excellent characteristics in the above band, particularly in the band of about 1.3 [μm] to 1.65 (μm).

(C1従来技術と問題点 波長1〔μm〕以上の帯域を対象とするAPDとしては
、既にゲルマニウム(Ge)又はTTT −V族化合物
半導体を用いて多くの提案がなされている。
(C1 Prior Art and Problems Many proposals have already been made using germanium (Ge) or TTT-V group compound semiconductors as APDs targeting a wavelength band of 1 [μm] or more.

■−v族化合物半導体のうち、インジウム・燐(InP
)結晶に格子整合するインジウム・ガリウム・砒素(I
nGaAs )もしくはインジウム・ガリウム・砒素・
燐(InGaAsP )混晶を用いだAPDは、この波
長帯域において良好々受光感度をもち、かつ現在実用化
されているGeに比較して低雑音、低暗電流となる物性
をもつために、この波長帯域に対応する受光装置として
重要な位置を占めている。
■- Among the V group compound semiconductors, indium phosphorus (InP)
) Indium-gallium-arsenic (I) lattice-matched to the crystal
nGaAs) or indium, gallium, arsenic,
APDs using phosphorus (InGaAsP) mixed crystals have good light-receiving sensitivity in this wavelength band, and have physical properties such as lower noise and lower dark current than Ge, which is currently in practical use. It occupies an important position as a light receiving device that supports wavelength bands.

第1図はI nP −I nGaAs系APDの代表的
構造を示す断面図である。図において、1はn++In
P基板、2はn型InPバッファ層、3はn型I nG
aA(s光吸収層、4はn型InPウィンド層、5はI
nPウィンド層4に形成されたp型領域、6はガードリ
ングを構成するp型領域、7は保護絶縁膜、8は反射防
止膜、9はp側電極、10はn側電極を示す。
FIG. 1 is a sectional view showing a typical structure of an InP-InGaAs APD. In the figure, 1 is n++In
P substrate, 2 is n-type InP buffer layer, 3 is n-type InG
aA (s light absorption layer, 4 is n-type InP window layer, 5 is I
A p-type region formed in the nP window layer 4, 6 a p-type region constituting a guard ring, 7 a protective insulating film, 8 an antireflection film, 9 a p-side electrode, and 10 an n-side electrode.

このAPDにn側電極10を正、p側電極9を負の極性
とする逆バイアー電圧を印加することにより、p?接合
すなわちp+型領領域5n型InPウィンド層4との界
面を挟んで空乏層が形成され、これがn型I nGaA
s光吸収層3までひろがり、この光吸収層3内で入力信
号光によって電子が伝導帯に励起されることによって、
電子正孔対が発生し、電子はn(I′III電極10、
正孔はp側電極9に向ってドリフトし、n型InPウィ
ンド層4においてはとの正孔を一次キャリアとするなだ
れ増倍が行なわれる。このためにn型InPウィンド層
4はまた増倍層もしくは増倍領域とも呼ばれる。
By applying a reverse bias voltage to this APD, with the n-side electrode 10 being positive and the p-side electrode 9 being negative, p? A depletion layer is formed across the junction, that is, the interface between the p + -type region 5 and the n-type InP window layer 4, and this is an n-type InP layer.
s extends to the light absorption layer 3, and within this light absorption layer 3, electrons are excited to the conduction band by the input signal light,
Electron-hole pairs are generated, and the electrons are n(I'III electrode 10,
The holes drift toward the p-side electrode 9, and avalanche multiplication occurs in the n-type InP window layer 4 using the holes as primary carriers. For this reason, the n-type InP window layer 4 is also called a multiplication layer or a multiplication region.

なだれ増倍の過程においてはキャリアと結晶格子を構成
する原子との衝突回数に統計的なゆらぎが存在して、こ
れによって固有のショット雑音が現われる。この雑音は
通常増倍雑音と呼ばれる。
In the process of avalanche multiplication, there is statistical fluctuation in the number of collisions between carriers and atoms constituting the crystal lattice, which causes inherent shot noise. This noise is usually called multiplication noise.

なだれ増倍の過程において、電子が単位長当たり衝突電
離を起す回数すなわち電子のイオン化率をα、正正孔イ
オン化率をβとするとき、イオン化率比k(β/αもし
くはα/β)が1に近いときに増倍雑音が大きく、イオ
ン化率比が大きいと3− きに増倍雑音は減少する。
In the process of avalanche multiplication, when the number of times electrons undergo collision ionization per unit length, that is, the electron ionization rate is α and the hole ionization rate is β, the ionization rate ratio k (β/α or α/β) is When the ratio is close to 1, the multiplication noise is large, and when the ionization rate ratio is large, the multiplication noise decreases when the ratio is 3-.

先に説明したI nP −I nGaAs系APDの従
来例においてはイオン化率比に=α/βは2乃至3程度
と小さく、その増倍雑音には物性的制約がある。
In the conventional example of the I nP - I nGaAs APD described above, the ionization rate ratio = α/β is as small as about 2 to 3, and there are physical restrictions on the multiplication noise.

他方、種々の半導体装置に関して超格子構造の導入が提
案されており、APDに関しても増倍層をガリウム・砒
素(GaAs )とガリウムΦアルミニウム・砒素(G
aAtAs )とが交互に積層された超格子構造として
、GaAs層とGaAtAs層とのへテロ接合界面に生
ずるエネルギーバンドの不連続性によって、キャリアの
見掛上のイオン化エネルギーを増減させ、電子と正孔と
のイオン化率比を拡大して増倍雑音を低減する構造が既
に知られている。
On the other hand, the introduction of superlattice structures has been proposed for various semiconductor devices, and for APDs, the multiplier layer is made of gallium arsenide (GaAs) and gallium Φ aluminum arsenide (G
As a superlattice structure in which layers (aAtAs ) are alternately stacked, the apparent ionization energy of carriers increases or decreases due to the discontinuity in the energy band that occurs at the heterojunction interface between the GaAs layers and the GaAtAs layers, and electrons and positive Structures that reduce multiplication noise by increasing the ionization rate ratio with holes are already known.

しかしながらGaAs −GaAtAs系半導体材料に
よっては、波長帯域1.0〔μm〕以上に対応する受光
装置を構成することは不可能であって、この波長帯域に
対応し得るInP −InGaAsもしくはIn−Ga
AsP系半導体材料を使用して、かつ先に述べた物性的
制約を超えるAPDの構造が要望されている。
However, depending on the GaAs-GaAtAs-based semiconductor material, it is impossible to construct a light receiving device that supports a wavelength band of 1.0 [μm] or more.
There is a demand for an APD structure that uses AsP-based semiconductor materials and that exceeds the physical limitations described above.

4− +d+  発明の目的 本発明は波長1〔μm〕以上の帯域、特に波長1.3〔
μm〕乃至1.65〔μm〕の帯域に対応して、しかも
雑音がきわめて少ないアバランシフォトダイオードを提
供することを目的とする。
4- +d+ Purpose of the Invention The present invention provides a wavelength range of 1 [μm] or more, particularly a wavelength of 1.3 [μm] or more.
It is an object of the present invention to provide an avalanche photodiode that is compatible with the band from [μm] to 1.65 [μm] and has extremely low noise.

(61発明の構成 本発明の前記目的は、インジウム・燐化合物半導体基板
と、該基板結晶に格子整合して形成された、インジウム
・ガリウム・砒素化合物もしくはインジウム・ガリウム
・砒素・燐化合物よりなる半導体光吸収領域と、インジ
ウム・燐化合物半導体層とインジウム・ガリウム・砒素
化合物もしくはインジウム・ガリウム・砒素・燐化合物
よりなる半導体層とが交互に積層された超格子構造を有
するなだれ増倍領域とを備えてうなる半導体受光装置に
より達成される。
(61 Structure of the Invention The object of the present invention is to provide an indium-phosphorus compound semiconductor substrate, and a semiconductor made of an indium-gallium-arsenic compound or an indium-gallium-arsenic-phosphorus compound formed by lattice matching with the crystal of the substrate. It includes a light absorption region and an avalanche multiplication region having a superlattice structure in which indium-phosphorus compound semiconductor layers and semiconductor layers made of an indium-gallium-arsenic compound or an indium-gallium-arsenic-phosphorus compound are alternately stacked. This is achieved by a semiconductor light receiving device that has a 300-degree turn.

特に超格子構造を構成するインジウム燐化合物半導体層
及びインジウム・ガリウム・砒素化合物もしくはインジ
ウム拳ガリウム・砒素・燐化合物よりなる半導体層の厚
さを30 (nm1以上70 (nm)以下とし、超格
子構造全体の厚さを0.5(μm〕以−ヒとするときに
最も聾真著な効果を得ることができる。
In particular, the thickness of the indium phosphorus compound semiconductor layer and the semiconductor layer made of an indium-gallium-arsenic compound or an indium-gallium-arsenic-phosphorus compound constituting a superlattice structure is 30 (nm) or more and 70 (nm) or less, and the superlattice structure is The most significant deafening effect can be obtained when the total thickness is 0.5 (μm) or more.

(f)  発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(f) Embodiments of the Invention The present invention will be specifically described below by way of embodiments with reference to the drawings.

第2図(a)及び(b)は本発明の実施例をその主要製
造工程について示す断面図である。
FIGS. 2(a) and 2(b) are cross-sectional views showing the main manufacturing steps of an embodiment of the present invention.

第2図ial参照 不純物濃度がI X 1018Ccrn−3:]程程度
上のp+型インジウム・燐化合物(InP )基板11
上に、何れも不純物濃度がI X 10”[crn−3
J程度以下であるに型+11p層12aとn−型インジ
ウム・ガリウム・砒素化合物(In053Qao、47
As )層12bとを交互に積層した超格子構造12を
例えば気相成長方法によって形成する。本実施例におい
ては、n−型InP層12a及びn−型I n o、5
3Ga 0.47As層12bの厚さはそれぞれ約50
〔nm〕とし、n−型InP層12aを11層、n″′
′型io、53Ga (1,47As層12bを10層
交互に順次形成して、超格子構造12全体の厚さを1〔
μm3強としている。
Figure 2 ial reference impurity concentration is moderately higher than I
Above, the impurity concentration is I x 10'' [crn-3
J or less, the +11p layer 12a and the n-type indium-gallium-arsenic compound (In053Qao, 47
A superlattice structure 12 in which As) layers 12b are alternately laminated is formed by, for example, a vapor phase growth method. In this embodiment, the n-type InP layer 12a and the n-type InP layer 12a and the n-type InP layer 12a and the n-type InP layer 12a and
The thickness of each 3Ga 0.47As layer 12b is approximately 50
[nm], 11 n-type InP layers 12a, n'''
' type io, 53Ga (10 layers of 1,47As layers 12b are formed alternately in sequence to reduce the total thickness of the superlattice structure 12 to 1[
It is set at a little over 3 μm.

更に超格子構造12に接して不純物濃度が1×1015
〔crn−S〕程度以下のn−7J ■nO,53Ga
 0.47AS層13を厚さ3〔μm〕程度に成長させ
て光吸収領域とする。
Furthermore, the impurity concentration is 1×1015 in contact with the superlattice structure 12.
n-7J below [crn-S] ■nO, 53Ga
A 0.47AS layer 13 is grown to a thickness of about 3 [μm] to form a light absorption region.

第2図(1))参照 以上の如く超格子構造12及びn−型I n o、53
Ga −0,47A8 光吸収層13をエピタキシャル
成長させた半導体基体を、図に示す如くp型InP基板
11に達する深さにメサ型にエツチングし、n−型:[
fi 0.53−GBo、47As光吸収層13面上に
無反射コート膜14、メサエッチング面に表面保膿膜1
5をそれぞれ窒化シリコン(S′13N4)等によって
形成し、♂型In−〇、53QB0.47A3光吸収層
13に接するn (ftll電極16を例えば金・ゲル
マニウム(AuGe)を用いて、p+型InP基板11
に接するp側電極17を例えば金・亜鉛(AnZn、 
)を用いて形成する。
See FIG. 2 (1)) As described above, the superlattice structure 12 and the n-type Ino, 53
The semiconductor substrate on which the Ga-0,47A8 light absorption layer 13 has been epitaxially grown is etched into a mesa shape to a depth that reaches the p-type InP substrate 11 as shown in the figure.
fi 0.53-GBo, 47As light absorbing layer 13 surface with anti-reflection coating film 14, mesa etching surface with surface retentive film 1
5 is formed of silicon nitride (S'13N4), etc., and the n(ftll) electrode 16 in contact with the light absorption layer 13 is made of, for example, gold-germanium (AuGe), and p+ type InP is formed using gold-germanium (AuGe). Substrate 11
The p-side electrode 17 in contact with the
).

以上説明した構造を有する本実施例に逆ノ(イアスミ圧
を印加したときのエネルギーダイヤグラムを第3図に示
し、第3図において第2図fa)及び(b)7− と同一符号によって対応する半導体層を示す。禁制帯幅
はInPが約1.35(eV]、I n 0.53Ga
 0.47Asが約0.74 (eV 〕であって、I
nP層12aとIfio、53−Ga0.47As層1
2bとのへテロ接合界面における伝導体の不連続性△E
c # 0.2 CeV 1価電子帯の不連続性△Ev
 # 0.4 (eV ’3である。
FIG. 3 shows an energy diagram when reverse pressure is applied to this embodiment having the structure explained above, and in FIG. 3, the same symbols as in FIG. A semiconductor layer is shown. The forbidden band width is approximately 1.35 (eV) for InP and 0.53 Ga for InP.
0.47As is about 0.74 (eV), and I
nP layer 12a and Ifio, 53-Ga0.47As layer 1
Conductor discontinuity △E at the heterojunction interface with 2b
c # 0.2 CeV Single valence band discontinuity △Ev
# 0.4 (eV'3).

本実施例のAPDに入射する光はn−型Ifi0.53
−生ずる。この電子はn (Jill電極16に流入し
、正孔は超格子構造12に注入されて、InP層12a
とI n 0.53QB 0.47AS層12bとを順
次通過する。
The light incident on the APD of this example has an n-type Ifi of 0.53.
-Arise. These electrons flow into the Jill electrode 16, and the holes are injected into the superlattice structure 12, forming the InP layer 12a.
and I n 0.53QB 0.47AS layer 12b.

正孔がInP層12aよりI n O,53Ga 0.
47AB層12bに入るときには、価電子帯のエネルギ
ー差△Evだけ見掛上余分にエネルギーを得た状態とな
り、見掛上のイオン化エネルギーが下ってイオン化率が
増大する。正孔がI n O,53Ga0.47A、8
層12bよりInP層12aに入るときにはイオン化率
は逆に減少するが、超格子構造12にかかる電界がlX
l0’(V/副〕程度以上となるように逆バイアス電圧
を印加8− することによって、正孔のエネルギーがなだれ増倍の閾
値近傍に到達してIn0.53Q80.47AS層12
bに注入されたときに、前記の見掛上のエネルギーが加
わることによってなだれ増倍が発生する。
Holes are transferred from the InP layer 12a to InO, 53Ga0.
When it enters the 47AB layer 12b, it is in a state where it has apparently obtained extra energy by the energy difference ΔEv in the valence band, and the apparent ionization energy decreases and the ionization rate increases. The hole is I n O,53Ga0.47A,8
When entering the InP layer 12a from the layer 12b, the ionization rate decreases, but the electric field applied to the superlattice structure 12
By applying a reverse bias voltage of approximately l0' (V/sub) or higher, the hole energy reaches near the avalanche multiplication threshold and the In0.53Q80.47AS layer 12
When injected into b, avalanche multiplication occurs due to the addition of the above apparent energy.

なだれ増倍によって生じた電子も超格子構造12の各層
に正孔とは逆方向に順次注入されるが、伝導帯のエネル
ギー差△Ecが小さいだめに正孔の場合の如き効果が殆
んどなく、正孔のイオン化率βは電子のイオン化率αの
10倍以上となる。この様にイオン化率比に=β/αが
大きくなる結果、本実施例のAPDの過剰雑音は充分に
小さくなる。
Electrons generated by avalanche multiplication are also sequentially injected into each layer of the superlattice structure 12 in the direction opposite to that of holes, but because the energy difference ΔEc in the conduction band is small, the effect as in the case of holes is almost non-existent. Therefore, the hole ionization rate β is 10 times or more the electron ionization rate α. As a result of increasing the ionization rate ratio =β/α in this way, the excess noise of the APD of this embodiment becomes sufficiently small.

超格子構造12を構成するInP層12a及びIn−0
,53Ga O,47AS層12bの厚さは、前記実施
例においては約50(nm)としているが、これらの各
層の厚さがキャリアのド・ブロイ波長程度以下になるな
らば厚さ方向の運動に量子力学的効果が現われてイオン
化率比が低下する。従って各層の厚さは約30(nm)
程度以上とすることが必要である。
InP layer 12a and In-0 forming superlattice structure 12
, 53GaO, 47AS layer 12b is approximately 50 (nm) in the above embodiment, but if the thickness of each of these layers is approximately equal to or less than the de Broglie wavelength of the carrier, movement in the thickness direction will occur. A quantum mechanical effect appears and the ionization rate ratio decreases. Therefore, the thickness of each layer is approximately 30 (nm)
It is necessary to make it more than a certain degree.

逆に各層の厚さを過大にするならばイオン化率比拡大の
効果が減少するために70(nm)程度以下とすること
が望ましい。
On the other hand, if the thickness of each layer is made too large, the effect of expanding the ionization rate ratio will be reduced, so it is desirable that the thickness be about 70 (nm) or less.

またなだれ増倍領域の厚さが過小であるならば、なだれ
増倍に必要とするエネルギーを正孔に与えるために電界
強度を大きくすることが必要となる。
Furthermore, if the thickness of the avalanche multiplication region is too small, it is necessary to increase the electric field strength in order to give holes the energy necessary for avalanche multiplication.

電界強度が大きくなるに伴って正孔の実効イオン化率比
βと電子の実効イオン化率比αとが接近するから、イオ
ン化率比に一β/αを10以上とするためには電界強度
を1.5 X 10’ 〔V/ctn〕程度以下とする
ことが必要であり、このために々だれ増倍領域である超
格子構造1zの厚さは少なくとも0.5〔μm〕以上と
する。
As the electric field strength increases, the effective ionization rate ratio β of holes and the effective ionization rate ratio α of electrons approach each other. .5×10' [V/ctn] or less, and for this purpose, the thickness of the superlattice structure 1z, which is the droop multiplication region, is at least 0.5 [μm] or more.

更に前記実施例においては、光吸収領域13ならびに超
格子構造12の条割帯幅の狭い層12bをn′″型In
O,53Ga0.47As層によって形成しているが、
これらの層をInP基板結晶に格子整合するIn1−x
GaXAsyPl−y層としても同様の効果を得ること
ができる。この場合I n 1−xGaXA s yP
 l−’lの組成比をIn0.530&0.47Asの
組成比(x=0.47 、 y=l )にできるだけ近
づける方が超格子構造によるイオン化率比増大の効果が
大きく、β/αを10以上とするにはyを0.9程度以
上とすることが必要である。
Furthermore, in the embodiment, the light absorption region 13 and the layer 12b of the superlattice structure 12 having a narrow band width are formed of n'' type In
Although it is formed by an O,53Ga0.47As layer,
In1-x to lattice match these layers to the InP substrate crystal.
Similar effects can be obtained using a GaXAsyPl-y layer. In this case I n 1-xGaXA syP
The effect of increasing the ionization rate ratio due to the superlattice structure is greater when the composition ratio of l-'l is made as close as possible to the composition ratio of In0.530 & 0.47As (x=0.47, y=l), and β/α is reduced to 10 In order to achieve the above value, it is necessary to set y to about 0.9 or more.

fg+  発明の詳細 な説明した如く本発明によれば、波長1〔μm〕以」二
の帯域特に波長1.3〔μm〕乃至1.65(μm〕の
帯域について大きい一一子効率を有し、しかもI nP
 −I nGaAsもしくはInGaAsPの物性の限
界より雑音が減少されたアバランシフォトダイオードを
提供することができる。
fg+ As described in detail, the present invention has a large one-child efficiency in the wavelength band of 1 [μm] or more, particularly in the wavelength band of 1.3 [μm] to 1.65 (μm). , and I nP
-In It is possible to provide an avalanche photodiode with reduced noise due to the physical property limitations of InGaAs or InGaAsP.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はInP −InGaAs系APDの従来例を示
す断面図、第2図(a)及び(blは本発明の実施例の
主要工程における状態を示す断面図、第3図は前記実施
例のエネルギーダイヤグラムを示す図である。 図において、11はp型InP基板、12はなだれ増倍
領域である超格子構造、12aはn−型InP/if!
、12 b Id、 n−礼’)I n O,5aQa
 0.47As層、13はn−型In −〇、53GB
 0.47AS光吸収領域、14は無反射コート膜、1
5は表面保護膜、16はn側電極、17はp側電極を示
す。 11− 察1町 ≠?囚 12− 蓼 :5 図
FIG. 1 is a sectional view showing a conventional example of an InP-InGaAs APD, FIGS. 2(a) and (bl) are sectional views showing the main steps of an embodiment of the present invention, and FIG. 3 is a sectional view of a conventional example of an InP-InGaAs APD. It is a figure showing an energy diagram. In the figure, 11 is a p-type InP substrate, 12 is a superlattice structure which is an avalanche multiplication region, and 12a is an n-type InP/if!
, 12 b Id, n-rei') I n O, 5aQa
0.47As layer, 13 is n-type In-〇, 53GB
0.47AS light absorption area, 14 is anti-reflection coating film, 1
5 is a surface protective film, 16 is an n-side electrode, and 17 is a p-side electrode. 11- Sen 1 Town ≠? Prisoner 12- Tada: 5 Figures

Claims (1)

【特許請求の範囲】[Claims] 厨 インジウム・燐化合物半導体基板と、該基板結晶に
格子整合して形成された、インジウム・ガリウム番砒素
化合物もしくはインジウム・ガリウム・砒素・燐化合物
よりなる半導体光吸収領域と、インジウム・燐化合物半
導体層とインジウム・ガリウム・砒素化合物もしくはイ
ンジウム・ガリウム・砒素・燐化合物よりなる半導体層
とが交互に積層された超格子構造を有するなだれ増倍領
域とを備えてなることを特徴とする半導体受光装置。
An indium-phosphorus compound semiconductor substrate, a semiconductor light absorption region made of an indium-gallium arsenide compound or an indium-gallium-arsenic-phosphorus compound formed by lattice matching to the substrate crystal, and an indium-phosphorus compound semiconductor layer. and an avalanche multiplication region having a superlattice structure in which semiconductor layers made of an indium-gallium-arsenic compound or an indium-gallium-arsenic-phosphorus compound are alternately stacked.
JP58038519A 1983-03-09 1983-03-09 Semiconductor photo detector Pending JPS59163878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038519A JPS59163878A (en) 1983-03-09 1983-03-09 Semiconductor photo detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038519A JPS59163878A (en) 1983-03-09 1983-03-09 Semiconductor photo detector

Publications (1)

Publication Number Publication Date
JPS59163878A true JPS59163878A (en) 1984-09-14

Family

ID=12527516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038519A Pending JPS59163878A (en) 1983-03-09 1983-03-09 Semiconductor photo detector

Country Status (1)

Country Link
JP (1) JPS59163878A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2597662A1 (en) * 1986-04-22 1987-10-23 Thomson Csf PIN PHOTODIODE REALIZED FROM AMORPHOUS SEMICONDUCTOR
FR2627013A1 (en) * 1988-02-05 1989-08-11 Thomson Csf Semiconductor photovoltaic generator made on a substrate of different mesh parameter
JPH0290575A (en) * 1988-09-28 1990-03-30 Hitachi Ltd Semiconductor photodetecting element
US4982255A (en) * 1988-11-18 1991-01-01 Nec Corporation Avalanche photodiode
JPH088455A (en) * 1994-06-21 1996-01-12 Nec Corp Semiconductor photodetector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2597662A1 (en) * 1986-04-22 1987-10-23 Thomson Csf PIN PHOTODIODE REALIZED FROM AMORPHOUS SEMICONDUCTOR
US4784702A (en) * 1986-04-22 1988-11-15 Thomson-Csf PIN photodiode formed from an amorphous semiconductor
FR2627013A1 (en) * 1988-02-05 1989-08-11 Thomson Csf Semiconductor photovoltaic generator made on a substrate of different mesh parameter
JPH0290575A (en) * 1988-09-28 1990-03-30 Hitachi Ltd Semiconductor photodetecting element
US4982255A (en) * 1988-11-18 1991-01-01 Nec Corporation Avalanche photodiode
JPH088455A (en) * 1994-06-21 1996-01-12 Nec Corp Semiconductor photodetector

Similar Documents

Publication Publication Date Title
CA1244121A (en) Heterojunction avalanche photodiode
JP2601231B2 (en) Superlattice avalanche photodiode
US4731641A (en) Avalanche photo diode with quantum well layer
JP2699807B2 (en) Compositionally modulated avalanche photodiode
EP0163295B1 (en) A semiconductor photodetector and fabrication process for the same
JPH065784B2 (en) Avalanche photodetector
EP3447806B1 (en) Optical waveguide integrated light receiving element and method for manufacturing same
Campbell et al. InP/InGaAsP/InGaAs avalanche photodiodes with 70 GHz gain‐bandwidth product
US5432361A (en) Low noise avalanche photodiode having an avalanche multiplication layer of InAlAs/InGaAlAs
JP3675223B2 (en) Avalanche photodiode and manufacturing method thereof
US5324959A (en) Semiconductor optical device having a heterointerface therein
US4725870A (en) Silicon germanium photodetector
JPS59163878A (en) Semiconductor photo detector
JPH051629B2 (en)
JP2844822B2 (en) Avalanche photodiode
JP3061203B2 (en) Semiconductor light receiving device
JPH04241473A (en) Avalanche photo diode
JPH07202254A (en) Semiconductor photodetector
JP2962069B2 (en) Waveguide structure semiconductor photodetector
JP7433540B1 (en) avalanche photodiode
JP2671569B2 (en) Avalanche photodiode
JP7059771B2 (en) Light receiving element
JPH0437591B2 (en)
KR100198423B1 (en) Long wavelength optic detector of avalanche photo diode type
JPH06260679A (en) Avalanche photodiode