JPH04241473A - Avalanche photo diode - Google Patents

Avalanche photo diode

Info

Publication number
JPH04241473A
JPH04241473A JP3002927A JP292791A JPH04241473A JP H04241473 A JPH04241473 A JP H04241473A JP 3002927 A JP3002927 A JP 3002927A JP 292791 A JP292791 A JP 292791A JP H04241473 A JPH04241473 A JP H04241473A
Authority
JP
Japan
Prior art keywords
layer
superlattice
type
avalanche
photo diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3002927A
Other languages
Japanese (ja)
Other versions
JP2745826B2 (en
Inventor
Isao Watanabe
功 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3002927A priority Critical patent/JP2745826B2/en
Publication of JPH04241473A publication Critical patent/JPH04241473A/en
Application granted granted Critical
Publication of JP2745826B2 publication Critical patent/JP2745826B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an avalanche photo diode having light reception sensitivity in a 1.55mum band and having low noise and high speed response characteristics with high ionization rate of alpha/beta. CONSTITUTION:An end face incident type avalanche photo diode comprises a superlattice of an In0.52Al0.48As/In1-xGaxAsyP1-y system which is lattice-aligned with InP used as an avalanche multiplier, layer, wherein a p<->-type In0.53Ga0.47As light absorbing layer 13 is made into a thin film up to 0.6mum and a part of the n<->-type superlattice multiplier layer 15 as thick as 1.0mum and an n<+>-type InP cap layer 18 are made into a part of a rib waveguide path with a mesa formed where depth extends to an upper part of a p<+>-type InP field lower layer 7 and width is 10mum. Its ionization ratio is approximately up to 10, and noise reduction is performed wherein excessive noise index is up to 0.3 while wide band characteristics of approximately 10GHz can be obtained. External quantum efficiency is 60 to 70% with respect to wavelength of 1.55mum.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高速・低雑音特性を有
するアバランシェフォトダイオード(APD)に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an avalanche photodiode (APD) having high speed and low noise characteristics.

【0002】0002

【従来の技術】高速大容量光通信システムを構成するに
は、超高速かつ、低雑音高感度特性を有する半導体受光
素子が不可欠である。このため、近年シリカ系ファイバ
の低損失波長域1.0〜1.6μmに適応できるInP
/InGaAs系アバランシェフォトダイオード(AP
D)の高速化・高感度化に対する研究が活発となってい
る。このInP/InGaAs系APDでは現在、小受
光径化による低容量化、層厚最適化によるキャリア走行
時間の低減、ヘテロ界面への中間層導入によるキャリア
トラップの抑制により、利得帯域幅(GB)積75GH
zの高速化が実現されている。しかしながら、この素子
構造では、アバランシェ増倍層であるInPのイオン化
率比β/αが〜2と小さいため(α:電子のイオン化率
、β:正孔のイオン化率)、過剰雑音指数x(イオン化
率比が小さいほど大きくなる)が〜0.7と大きくなり
、低雑音化・高感度化には限界がある。これは、他のバ
ルクのIII−V族化合物半導体をアバランシェ増倍層
に用いた場合も同様であり、低雑音化・高GB積化(高
速応答特性)を達成するにはイオン化率比α/βを人工
的に増大させる必要がある。
2. Description of the Related Art In order to construct a high-speed, large-capacity optical communication system, a semiconductor light-receiving element having ultra-high speed, low noise, and high sensitivity characteristics is essential. For this reason, InP, which can be applied to the low-loss wavelength range of 1.0 to 1.6 μm for silica-based fibers, has recently been developed.
/InGaAs avalanche photodiode (AP
Research into increasing the speed and sensitivity of D) is active. In this InP/InGaAs APD, the gain bandwidth (GB) and 75GH
z speed has been realized. However, in this device structure, the ionization rate ratio β/α of InP, which is the avalanche multiplication layer, is as small as ~2 (α: electron ionization rate, β: hole ionization rate); (The smaller the rate ratio is, the larger it is) is as large as ~0.7, and there is a limit to lower noise and higher sensitivity. This is also true when other bulk III-V compound semiconductors are used in the avalanche multiplication layer, and in order to achieve low noise and high GB stacking (high-speed response characteristics), the ionization rate ratio α/ It is necessary to artificially increase β.

【0003】そこで  カパッソ(F.Capasso
)等はアプライド・フィジックス・レター(Appl.
Phys.Lett.)、40(1)巻、p.38〜4
0、1982年で、超格子による伝導帯エネルギー不連
続量ΔEcを電子の衝突イオン化に利用してイオン化率
比α/βを人工的に増大させる構造を提案し、実際にG
aAs/GaAlAs系超格子でイオン化率比α/βの
増大(バルクGaAsの〜2に対して超格子層で〜8)
を確認した。さらに、香川らは、アプライド・フィジッ
クス・レター(Appl.Phys.Lett.)、p
.1895−1897,(18)巻、1990年で、長
距離光通信に用いられる波長1.3〜1.6μm帯に受
光感度を有するInGaAs/InAlAs系超格子を
用いて同様の構造を形成し、やはりイオン化率比α/β
の増大(バルクInGaAsの〜2に対して超格子層で
〜10)を確認した。そのバイアス印加時のエネルギー
バンド図を図3に示す。この構造に用いられているn−
 型InAlAs障害層31/n− 型InGaAs井
戸層32からなる超格子増倍層では伝導帯不連続量ΔE
c33が0.5eVと価電子帯不連続量ΔEv 34の
0.2eVより大きく、井戸層32に入ったときバンド
不連続により獲得するエネルギーが電子391の方が正
孔392より大きく、これによって電子がイオン化しき
い値エネルギーに達しやすくなることで電子イオン化率
を増大させ、イオン化率比α/βを増大させている。さ
らに、基板表面から入射する波長1.55μmの光39
3を厚さ1.7μmのp− 型In0.53Ga0.4
7As光吸収層36で〜73%吸収させることで、電子
のイオン化率比α/βが大きいInAlAs/InGa
As超格子にほぼ純粋な電子注入を実現し、イオン化率
比α/β増大による低雑音化を実現している。
[0003] Therefore, F. Capasso
) etc. are Applied Physics Letters (Appl.
Phys. Lett. ), Volume 40(1), p. 38-4
0. In 1982, he proposed a structure in which the ionization rate ratio α/β was artificially increased by utilizing the conduction band energy discontinuity ΔEc due to the superlattice for electron impact ionization.
Increase in the ionization rate ratio α/β in the aAs/GaAlAs superlattice (~8 in the superlattice layer compared to ~2 in bulk GaAs)
It was confirmed. Furthermore, Kagawa et al., Applied Physics Letters (Appl. Phys. Lett.), p.
.. 1895-1897, volume (18), 1990, a similar structure was formed using an InGaAs/InAlAs superlattice having light receiving sensitivity in the wavelength band of 1.3 to 1.6 μm used for long-distance optical communications. Again, the ionization rate ratio α/β
(~10 in the superlattice layer versus ~2 in bulk InGaAs) was observed. FIG. 3 shows an energy band diagram when the bias is applied. n- used in this structure
In the superlattice multiplier layer consisting of the type InAlAs obstacle layer 31/n- type InGaAs well layer 32, the conduction band discontinuity amount ΔE
c33 is 0.5 eV, which is larger than the valence band discontinuity amount ΔEv 34 of 0.2 eV, and when the electron 391 enters the well layer 32, the energy acquired by the band discontinuity is greater than that of the hole 392. As a result, the electron ionization rate increases and the ionization rate ratio α/β increases. Furthermore, light 39 with a wavelength of 1.55 μm incident from the substrate surface
3 is a p-type In0.53Ga0.4 with a thickness of 1.7 μm.
By absorbing ~73% in the 7As light absorption layer 36, InAlAs/InGa has a large electron ionization rate ratio α/β.
Almost pure electron injection into the As superlattice is achieved, and noise reduction is achieved by increasing the ionization rate ratio α/β.

【0004】0004

【発明が解決しようとする課題】しかしながら、この構
造のアバランシェフォトダイオードは、十分な量子効率
を得るために光吸収層36が1.7μmと厚く、この層
を超格子アバランシェ増倍層で発生した増倍2次正孔が
走行する時間遅れによって、素子の周波数応答帯域が、
イオン化率比α/β増大によるGB積増大効果(正孔の
超格子井戸層へのトラップ効果がなければGB積100
程度)により期待できるほどには大きくならないという
欠点を有する。
[Problems to be Solved by the Invention] However, in the avalanche photodiode with this structure, the light absorption layer 36 is as thick as 1.7 μm in order to obtain sufficient quantum efficiency, and this layer is generated by a superlattice avalanche multiplication layer. Due to the time delay in which the multiplied secondary holes travel, the frequency response band of the device changes.
The effect of increasing the GB product by increasing the ionization rate ratio α/β (If there is no trapping effect of holes in the superlattice well layer, the GB product is 100
It has the disadvantage that it does not become as large as expected depending on the degree of

【0005】そこで、本発明は、波長1.55μm帯に
受光感度を有し、高イオン化率比α/βで低雑音と同時
に高速応答特性のアバランシェフォトダイオードを実現
することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to realize an avalanche photodiode which has light receiving sensitivity in the wavelength band of 1.55 μm, has a high ionization ratio α/β, low noise, and has high-speed response characteristics.

【0006】[0006]

【課題を解決するための手段】本発明のアバランシェフ
ォトダイオードは、以下の特徴を有する。
Means for Solving the Problems The avalanche photodiode of the present invention has the following features.

【0007】半導体超格子層をアバランシェ増倍層とす
る構造のフォトダイオードにおいて、該超格子アバラン
シェ増倍層が導波路構造の一部をなし、端面入射型であ
ることを特徴とする。
A photodiode having a structure in which a semiconductor superlattice layer is an avalanche multiplication layer is characterized in that the superlattice avalanche multiplication layer forms a part of a waveguide structure and is of an end-incident type.

【0008】または上記超格子アバランシェ増倍層が、
In(Alz Ga1−z )As(z=0〜1)、I
n1−x Gax Asy P1−y (x=0〜1,
y=0〜1)の組合せにより構成されることを特徴とす
る。
Alternatively, the superlattice avalanche multiplication layer is
In(AlzGa1-z)As(z=0-1), I
n1-x Gax Asy P1-y (x=0~1,
It is characterized by being configured by a combination of y=0 to 1).

【0009】[0009]

【作用】本発明は、上述の構成により従来より特性を改
善した。図1は、アバランシェフォトダイオードの一例
を示す構造斜視図、図2は、本発明及び、従来構造の走
行時間制限による応答遮断周波数の増倍率依存性を示す
図である。
[Operation] The present invention has improved characteristics compared to the conventional one by the above-mentioned structure. FIG. 1 is a structural perspective view showing an example of an avalanche photodiode, and FIG. 2 is a diagram showing the dependence of the response cutoff frequency on the multiplication factor due to transit time limitations of the present invention and the conventional structure.

【0010】この図2において、点線は従来構造(光吸
収・増倍分離型=SAM型)の、直線は本発明の導波路
構造の走行時間制限による応答遮断周波数の増倍率依存
性を示す。どちらの場合も、超格子井戸層へ正孔トラッ
プがない場合の計算結果である。
In FIG. 2, the dotted line indicates the dependence of the response cutoff frequency on the multiplication factor due to transit time limitations of the conventional structure (light absorption/multiplication separation type = SAM type), and the straight line indicates the dependence of the response cut-off frequency on the transit time limit of the waveguide structure of the present invention. In both cases, the calculation results are obtained when there is no hole trap in the superlattice well layer.

【0011】これらの図を用いて本発明の作用を説明す
る。従来の表面入射型構造では(図3のもの)、十分な
量子効率を得るために光吸収層36が1.7μmと厚く
、この層を超格子アバランシェ増倍層で発生した増倍2
次正孔が走行する時間遅れによって、素子の周波数応答
帯域が、イオン化率比α/β増大によるGB積増大効果
(正孔の超格子井戸層へのトラップ効果がなければGB
積100程度)により期待できるほどには大きくならな
いという欠点を有する。
The operation of the present invention will be explained using these figures. In the conventional front-illuminated structure (the one in FIG. 3), the light absorption layer 36 is as thick as 1.7 μm in order to obtain sufficient quantum efficiency, and this layer is used as the multiplication layer 2 generated by the superlattice avalanche multiplication layer.
Due to the time delay for the next hole to travel, the frequency response band of the device changes due to an increase in the ionization rate ratio α/β, which increases the GB product (if there is no hole trapping effect in the superlattice well layer, the GB
It has the disadvantage that it does not become as large as expected due to the product (approximately 100).

【0012】これは、図2に点線で示す応答遮断周波数
の増倍率依存性に示される。この点線は超格子層厚1.
0μm、超格子のイオン化率は電子αがバルクInGa
Asの2倍、電界400kV/cmのときのイオン化率
比α/βが14、正孔トラップなしという条件での、光
吸収層厚1.7μmのときの光吸収・増倍分離型(SA
M型)表面入射構造の計算結果である。これより、GB
積が70、増倍率Mが10の時の遮断周波数fcは6G
Hzであり、低増倍率(M<7)での帯域も高々7GH
zであることがわかる。イオン化率比α/βが14程度
のときのエモンズの理論式から予想されるGB積100
より小さい値となっているは、前述の理由、すなわち、
光吸収層が1.7μmと厚く、この層を超格子アバラン
シェ増倍層で発生した増倍2次正孔が走行する時間遅れ
による。
This is shown in the dependence of the response cutoff frequency on the multiplication factor shown by the dotted line in FIG. This dotted line indicates a superlattice layer thickness of 1.
0 μm, the ionization rate of the superlattice is that electron α is bulk InGa
The light absorption/multiplication separation type (SA
These are the calculation results for the M type) front-incidence structure. From now on, GB
When the product is 70 and the multiplication factor M is 10, the cutoff frequency fc is 6G.
Hz, and the band at low multiplication factor (M < 7) is at most 7 GHz.
It turns out that it is z. GB product 100 predicted from Emmons's theoretical formula when the ionization rate ratio α/β is about 14
The reason for the smaller value is the above-mentioned reason, namely,
This is due to the fact that the light absorption layer is as thick as 1.7 μm, and there is a time delay in the travel of multiplied secondary holes generated in the superlattice avalanche multiplication layer through this layer.

【0013】これは、実線で示す、光吸収層厚を0.6
μmと薄くして他のパラメーターは従来例と同じとした
計算結果と比較すれば明らかである。光吸収層を0.6
μmまで薄くすると増倍2次正孔の走行時間遅れは低減
でき、GB積が〜100、増倍率Mが10の時の遮断周
波数fcが9GHz、低増倍率(M<6)での帯域も1
0GHz以上の広帯域化が可能である。しかし、従来の
表面入射構造では光吸収層を0.6μmと薄くすると波
長1.55μmに対する量子効率は〜15%と極端に低
下し、広帯域特性と、高感度特性を同時に満足できない
[0013] This means that the light absorption layer thickness shown by the solid line is 0.6
This becomes clear when compared with calculation results assuming that the thickness is μm and other parameters are the same as in the conventional example. The light absorption layer is 0.6
When the thickness is reduced to μm, the transit time delay of multiplied secondary holes can be reduced, and when the GB product is ~100 and the multiplication factor M is 10, the cutoff frequency fc is 9 GHz, and the band at low multiplication factors (M < 6) is also reduced. 1
A wide band of 0 GHz or more is possible. However, in the conventional front-illuminated structure, when the light absorption layer is made as thin as 0.6 μm, the quantum efficiency at a wavelength of 1.55 μm is extremely reduced to ~15%, and broadband characteristics and high sensitivity characteristics cannot be satisfied at the same time.

【0014】これに対して、図1に示す本発明の構造で
は、キャップ層18、及び、超格子アバランシェ増倍層
15の一部が、p+ 型InP電界降下層14の上部ま
でエッチング除去し、幅20〜30μm以下のメサを形
成することで、このメサと光吸収層13、ワイドギャッ
プ電界降下層14とでリブ導波路が構成される。この様
な導波路構造に端面から光入射させれば光吸収層が0.
6μm程度と薄くても導波路長を数100μm程度にす
れば十分の光吸収が得られ、かつ接合容量はメサ幅を狭
くすることで小さくすることができるので、広帯域特性
と高感度特性を同時に満足できる。
On the other hand, in the structure of the present invention shown in FIG. 1, the cap layer 18 and a part of the superlattice avalanche multiplication layer 15 are etched away to the top of the p+ type InP field drop layer 14. By forming a mesa with a width of 20 to 30 μm or less, a rib waveguide is formed by this mesa, the light absorption layer 13, and the wide gap electric field drop layer 14. When light enters such a waveguide structure from the end face, the light absorption layer becomes 0.
Even if the waveguide is as thin as about 6 μm, sufficient light absorption can be obtained by making the waveguide length several hundred μm, and the junction capacitance can be reduced by narrowing the mesa width, so broadband characteristics and high sensitivity characteristics can be achieved at the same time. Satisfied.

【0015】以上の効果により、本発明の構造によって
、光吸収層を超格子アバランシェ増倍層で発生した増倍
2次正孔が走行する時間遅れによって、素子の周波数応
答帯域が、イオン化率比α/β増大によるGB積増大効
果(正孔の超格子井戸層へのトラップ効果がなければG
B積100程度)により期待できるほどには大きくなら
ないという欠点を克服できる。
As a result of the above-mentioned effects, the structure of the present invention allows the frequency response band of the device to change to the ionization rate ratio due to the time delay in which the multiplied secondary holes generated in the superlattice avalanche multiplication layer move through the light absorption layer. Effect of increasing GB product due to increase of α/β (If there is no trapping effect of holes in the superlattice well layer, G
B product (approximately 100) can overcome the drawback that it is not as large as expected.

【0016】なお、導波路構造のアバランシェフォトダ
イオードとしては、アイトリプルイー、エレクトロンデ
バイスレターズ(IEEE,ELECTRON  DE
VICE  LETTERS)、EDL−7巻、PP.
330−332、1986年にSi/SiGe系の受光
素子が報告されているが、この構造では、光吸収層がS
iGe短周期歪層超格子でアバランシェ増倍層がSiで
各々構成されている。これは光吸収層がバルクInGa
Asでアバランシェ増倍層が超格子(InAlAs/I
nGaAsP系)で構成される本発明とは異なるもので
あり、本発明では長距離光通信に用いられる波長1.5
5μmに受光感度を有するのに対して、SiGe系の従
来例ではこの系の吸収端の関係から波長1.3μmより
短い波長の光にしか受光感度を有しない。
[0016] As an avalanche photodiode having a waveguide structure, ITriple E, Electron Device Letters (IEEE, ELECTRON DE
VICE LETTERS), EDL-7 volume, PP.
330-332, a Si/SiGe-based light receiving element was reported in 1986, but in this structure, the light absorption layer is S
In the iGe short-period strain layer superlattice, avalanche multiplication layers are each made of Si. This is because the light absorption layer is made of bulk InGa.
In As, the avalanche multiplication layer is a superlattice (InAlAs/I
This is different from the present invention, which is composed of a
While it has a light receiving sensitivity at 5 μm, the conventional SiGe type has a light receiving sensitivity only for light having a wavelength shorter than 1.3 μm due to the absorption edge of this system.

【0017】従って、本発明の実施例に示す半導体を用
いることではじめて、波長1.55μm帯に受光感度を
有し、イオン化率比α/β改善による低雑音特性と高速
応答特性を同時に満たす、アバランシェフォトダイオー
ドが実現できる。
Therefore, by using the semiconductor shown in the embodiment of the present invention, it is possible to have light receiving sensitivity in the wavelength band of 1.55 μm and simultaneously satisfy low noise characteristics and high-speed response characteristics by improving the ionization rate ratio α/β. An avalanche photodiode can be realized.

【0018】[0018]

【実施例】以下、本発明の実施例として、InPに格子
整合するIn0.52Al0.48As/In1−x 
Gax Asy P1−y 系超格子アバランシェフォ
トダイオードを用いて説明する。
[Example] As an example of the present invention, In0.52Al0.48As/In1-x which is lattice matched to InP will be described below.
This will be explained using a Gax Asy P1-y based superlattice avalanche photodiode.

【0019】図1に示す本発明のアバランシェフォトダ
イオードの一実施例を以下の工程によって製作した。
An embodiment of the avalanche photodiode of the present invention shown in FIG. 1 was manufactured by the following steps.

【0020】p+ 型InP基板11に、p型InPバ
ッファ層12を0.5μm厚に、キャリア濃度〜2×1
015cm−3のp− 型In0.53Ga0.47A
s光吸収層13を〜0.6μm厚に、キャリア濃度〜1
×1017cm−3のp型InP電界降下層14を0.
2μm厚に、キャリア濃度〜1×1015cm−3のn
− 型In0.52Al0.48As障害層16/In
1−x Gax Asy P1−y 井戸層17よりな
る超格子アバランシェ増倍層15を1.0μm厚に、キ
ャリア濃度〜5×1018cm−3のn+ 型InPキ
ャップ層18を1μm厚に順次、化学分子線気相成長法
(CBE)を用いて成長する。
A p-type InP buffer layer 12 is formed on a p+-type InP substrate 11 with a thickness of 0.5 μm and a carrier concentration of ~2×1.
015cm-3 p-type In0.53Ga0.47A
The light absorption layer 13 has a thickness of ~0.6 μm and a carrier concentration of ~1
x1017 cm-3 p-type InP electric field drop layer 14.
2μm thick, carrier concentration ~1×1015cm−3 n
- type In0.52Al0.48As failure layer 16/In
1-x Gax Asy P1-y The superlattice avalanche multiplication layer 15 consisting of the well layer 17 is made 1.0 μm thick, and the n+ type InP cap layer 18 with a carrier concentration of ~5×10 18 cm −3 is made 1 μm thick. Growth is performed using linear vapor phase epitaxy (CBE).

【0021】この超格子層15は、厚さ400A(オン
グストローム)のIn0.52Al0.48As16と
厚さ200A(オングストローム)のIn1−x Ga
x Asy P1−y 17を交互に17周期積層した
構造である。In1−x Gax Asy P1−y 
の組成Yは、正孔の超格子井戸層へのトラップを抑制す
るために、In0.52Al0.48Asとのあいだの
価電子帯不連続量ΔEvが0〜0.15eVの値となる
組成領域により決定した。
This superlattice layer 15 is made of In0.52Al0.48As16 with a thickness of 400A (angstroms) and In1-xGa with a thickness of 200A (angstroms).
It has a structure in which x Asy P1-y 17 are alternately stacked in 17 periods. In1-x Gax Asy P1-y
In order to suppress the trapping of holes into the superlattice well layer, the composition Y of is determined by a composition region in which the valence band discontinuity amount ΔEv between In0.52Al0.48As is 0 to 0.15 eV. Decided.

【0022】次に、通常のフォトリソグラフィーとウェ
ットエッチングの技術を用いて深さがp+ 型InP電
界降下層14の上部までの幅10μmのメサを形成し、
リブ導波路の一部とし、表面全体にSiN絶縁保護膜1
9を形成する。次にポリイミド絶縁埋込み層112をメ
サ横に形成し、その上に直径60μmφ程度のn側電極
パッドを形成するための領域を形成したのち、n側電極
110をAuGeNi/TiPtで形成、裏面研磨を行
ってからp側電極111をAuZnで形成した。素子は
へき開により長さ250μmとし、SiNによる無反射
コーティング膜113をへき開面に形成した。以上で本
実施例のアバランシェフォトダイオードが完成した。こ
の素子では入射先114を端面から入れて、光を検出す
る。
Next, using ordinary photolithography and wet etching techniques, a mesa with a width of 10 μm and a depth up to the top of the p+ type InP field drop layer 14 is formed.
As part of the rib waveguide, a SiN insulating protective film 1 is applied to the entire surface.
form 9. Next, a polyimide insulating buried layer 112 is formed on the side of the mesa, and a region for forming an n-side electrode pad with a diameter of about 60 μmφ is formed thereon. Then, an n-side electrode 110 is formed of AuGeNi/TiPt, and the back surface is polished. After that, the p-side electrode 111 was formed of AuZn. The element was cleaved to a length of 250 μm, and a non-reflective coating film 113 made of SiN was formed on the cleaved surface. With the above steps, the avalanche photodiode of this example was completed. In this element, light is detected by entering the light into the light source 114 from the end surface.

【0023】尚メサ幅は30μm以下であれば容量は十
分小さく高速応答でき、また導波路長は数100μm程
度あれば十分な光吸収が得られる。
[0023] If the mesa width is 30 μm or less, the capacitance is sufficiently small and high-speed response can be achieved, and if the waveguide length is about several 100 μm, sufficient light absorption can be obtained.

【0024】[0024]

【発明の効果】上記の実施例の構造では、電子のイオン
化率はバルクIn0.53Ga0.47Asの約2.0
倍程度に増大したのに対して、正孔のイオン化率はバル
クInGaAsの約1/3倍程度に小さくなり、イオン
化率比は〜10程度とバルクInGaAsの2に比較し
て増大され、過剰雑音指数も〜0.3と低雑音化がなさ
れた。しかも、周波数応答特性は、本発明のInGaA
s層光吸収層が0.6μm、超格子層厚1.0μmで導
波路構造であるため、容量が0.2pFと十分小さく走
行時間制限となって、図2の実線で示される遮断周波数
の増倍率依存性とほぼ等しい結果が得られた。量子効率
については、端面に先球ファイバを用いたバットカップ
リングを行うことで結合損失を片端面当り−1.5〜−
2dBにでき(この値は、導波路の厳密設計によりさら
に低減可能)、内部の吸収効率がほぼ100%であるこ
とから、外部量子効率として60〜70%が得られる。 なお、リブ超格子領域では、井戸層のIn1−x Ga
x Asy P1−y が波長1.55μmの光を吸収
しないので、InGaAs導波層からしみだした光がこ
こで吸収されて超格子に電子・正孔混合注入になること
はなく、雑音特性は悪化しない。
Effects of the Invention In the structure of the above embodiment, the electron ionization rate is about 2.0 of that of bulk In0.53Ga0.47As.
On the other hand, the hole ionization rate is about 1/3 times smaller than that of bulk InGaAs, and the ionization rate ratio is about 10, which is increased compared to 2 for bulk InGaAs. The noise was also reduced to an index of ~0.3. Moreover, the frequency response characteristics of the InGaA of the present invention
Since the S-layer optical absorption layer has a waveguide structure with a thickness of 0.6 μm and a superlattice layer thickness of 1.0 μm, the capacitance is sufficiently small at 0.2 pF, which limits the transit time, and the cutoff frequency shown by the solid line in FIG. A result almost equal to the multiplication factor dependence was obtained. Regarding quantum efficiency, by performing butt coupling using a spherical fiber at the end face, the coupling loss can be reduced from -1.5 to -1 per end face.
2 dB (this value can be further reduced by rigorous design of the waveguide), and since the internal absorption efficiency is approximately 100%, an external quantum efficiency of 60 to 70% can be obtained. In addition, in the rib superlattice region, the In1-x Ga of the well layer
Since x Asy P1-y does not absorb light with a wavelength of 1.55 μm, the light seeping out from the InGaAs waveguide layer is not absorbed here and becomes a mixed injection of electrons and holes into the superlattice, and the noise characteristics are It doesn't get worse.

【0025】これより、本発明によって、波長1.55
μm帯に受光感度を有し、高イオン化率比α/βで低雑
音と同時に高速応答特性のアバランシェフォトダイオー
ドを実現することができ、その効果は大きい。
From this, according to the present invention, the wavelength 1.55
It is possible to realize an avalanche photodiode that has light receiving sensitivity in the μm band, has a high ionization rate ratio α/β, low noise, and has high-speed response characteristics, which is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のアバランシェフォトダイオードの一実
施例を示す構造斜視図である。
FIG. 1 is a structural perspective view showing an embodiment of an avalanche photodiode of the present invention.

【図2】本発明及び、従来構造の素子の走行時間制限に
よる応答遮断周波数の増倍率依存性を示す図である。
FIG. 2 is a diagram showing the dependence of the response cutoff frequency on the multiplication factor due to transit time limitations of elements of the present invention and a conventional structure.

【図3】従来例のアバランシェフォトダイオードの構造
を説明する図である。
FIG. 3 is a diagram illustrating the structure of a conventional avalanche photodiode.

【符号の説明】[Explanation of symbols]

11  p+ 型半導体基板 12  p型バッファー層 13  p− 型光吸収層 14  p型ワイドギャップ電界降下層15  n− 
型超格子アバランシェ増倍層16  半導体障壁層 17  半導体井戸層 18  n+ 型キャップ層 19  絶縁保護膜 110  n側電極 111  p側電極 112  絶縁埋込み層 113  無反射コーティング膜 114  入射光 31  n− 型In0.52Al0.48As障壁層
32  n− 型In0.53Ga0.47As井戸層
33  伝導帯不連続量ΔEc 34  価電子帯不連続量ΔEv 35  p+ 型In0.53Ga0.47As電界降
下層36  p− 型In0.53Ga0.47As光
吸収層37  p+ 型In0.52Al0.48As
キャップ層38  n+ 型In0.52Al0.48
Asバッファ層391  電子 392  正孔 393  入射光
11 p+ type semiconductor substrate 12 p type buffer layer 13 p− type light absorption layer 14 p type wide gap electric field drop layer 15 n−
type superlattice avalanche multiplication layer 16 semiconductor barrier layer 17 semiconductor well layer 18 n+ type cap layer 19 insulating protective film 110 n side electrode 111 p side electrode 112 insulating buried layer 113 anti-reflection coating film 114 incident light 31 n- type In0. 52Al0.48As barrier layer 32 n- type In0.53Ga0.47As well layer 33 conduction band discontinuity amount ΔEc 34 valence band discontinuity amount ΔEv 35 p+ type In0.53Ga0.47As electric field drop layer 36 p- type In0.53Ga0. 47As light absorption layer 37 p+ type In0.52Al0.48As
Cap layer 38 n+ type In0.52Al0.48
As buffer layer 391 Electrons 392 Holes 393 Incident light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半導体光吸収層と半導体超格子アバラ
ンシェ増倍層を有し、該超格子アバランシェ増倍層が導
波路構造の一部をなし、端面入射型であることを特徴と
するアバランシェフォトダイオード。
1. An avalanche photo comprising a semiconductor light absorption layer and a semiconductor superlattice avalanche multiplication layer, the superlattice avalanche multiplication layer forming part of a waveguide structure and being of an end-incident type. diode.
【請求項2】  超格子アバランシェ増倍層が、In(
Alz Ga1−z )As(Z=0〜1)とIn1−
x Gax Asy P1−y (x=0〜1,y=0
〜1)の組合せによる超格子で構成されることを特徴と
する請求項1記載のアバランシェフォトダイオード。
2. The superlattice avalanche multiplication layer is made of In(
Alz Ga1-z ) As (Z=0~1) and In1-
x Gax Asy P1-y (x=0~1, y=0
2. The avalanche photodiode according to claim 1, wherein the avalanche photodiode comprises a superlattice formed by a combination of the above.
JP3002927A 1991-01-16 1991-01-16 Avalanche photodiode Expired - Lifetime JP2745826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3002927A JP2745826B2 (en) 1991-01-16 1991-01-16 Avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3002927A JP2745826B2 (en) 1991-01-16 1991-01-16 Avalanche photodiode

Publications (2)

Publication Number Publication Date
JPH04241473A true JPH04241473A (en) 1992-08-28
JP2745826B2 JP2745826B2 (en) 1998-04-28

Family

ID=11542975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3002927A Expired - Lifetime JP2745826B2 (en) 1991-01-16 1991-01-16 Avalanche photodiode

Country Status (1)

Country Link
JP (1) JP2745826B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132307A (en) * 1992-10-19 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacturing method thereof
JPH06232443A (en) * 1993-02-04 1994-08-19 Nec Corp Superlattice avalanche photodiode and manufacture thereof
JPH07202252A (en) * 1993-12-28 1995-08-04 Nec Corp Superlattice avalanche photodiode
JPH08274366A (en) * 1995-03-31 1996-10-18 Nec Corp Semiconductor light receiving device
JP2008252145A (en) * 2002-10-30 2008-10-16 Fujitsu Ltd Avalanche photodiode
CN114497263A (en) * 2018-07-11 2022-05-13 斯坦福国际研究院 Photodiode without excessive noise

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259577A (en) * 1988-04-11 1989-10-17 Fujitsu Ltd Light-receiving element using superlattice structure
JPH02189982A (en) * 1989-01-18 1990-07-25 Nec Corp Wavelength multiple discrimination type semiconductor photodetector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259577A (en) * 1988-04-11 1989-10-17 Fujitsu Ltd Light-receiving element using superlattice structure
JPH02189982A (en) * 1989-01-18 1990-07-25 Nec Corp Wavelength multiple discrimination type semiconductor photodetector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132307A (en) * 1992-10-19 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacturing method thereof
JPH06232443A (en) * 1993-02-04 1994-08-19 Nec Corp Superlattice avalanche photodiode and manufacture thereof
JPH07202252A (en) * 1993-12-28 1995-08-04 Nec Corp Superlattice avalanche photodiode
JPH08274366A (en) * 1995-03-31 1996-10-18 Nec Corp Semiconductor light receiving device
JP2008252145A (en) * 2002-10-30 2008-10-16 Fujitsu Ltd Avalanche photodiode
CN114497263A (en) * 2018-07-11 2022-05-13 斯坦福国际研究院 Photodiode without excessive noise

Also Published As

Publication number Publication date
JP2745826B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP2699807B2 (en) Compositionally modulated avalanche photodiode
JP2937404B2 (en) Semiconductor light receiving element
JP2998375B2 (en) Avalanche photodiode
EP0506127B1 (en) Semiconductor photodetector using avalanche multiplication
JP2941349B2 (en) Super lattice APD
JP4702977B2 (en) Receiver
US5324959A (en) Semiconductor optical device having a heterointerface therein
JP2747299B2 (en) Semiconductor light receiving element
JPH0661521A (en) Avalanche photodiode
JPH04241473A (en) Avalanche photo diode
JPH0493088A (en) Avalanche photodiode
JPH03291979A (en) Avalanche photodiode
JP2671569B2 (en) Avalanche photodiode
JP3061203B2 (en) Semiconductor light receiving device
JPS6049681A (en) Semiconductor photodetector device
JPH07202254A (en) Semiconductor photodetector
JPS59163878A (en) Semiconductor photo detector
JP2962069B2 (en) Waveguide structure semiconductor photodetector
JP2739824B2 (en) Semiconductor light receiving element
JP3018589B2 (en) Semiconductor light receiving element
JP2669040B2 (en) Avalanche photodiode
US20230253516A1 (en) Photodetector
JPH03291978A (en) Avalanche photodiode
JPH06169100A (en) Semiconductor light receiving element
JPH04112582A (en) Avalanche photodiode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 13