JPH07202252A - Superlattice avalanche photodiode - Google Patents
Superlattice avalanche photodiodeInfo
- Publication number
- JPH07202252A JPH07202252A JP5337170A JP33717093A JPH07202252A JP H07202252 A JPH07202252 A JP H07202252A JP 5337170 A JP5337170 A JP 5337170A JP 33717093 A JP33717093 A JP 33717093A JP H07202252 A JPH07202252 A JP H07202252A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type
- superlattice
- conductivity type
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Light Receiving Elements (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光通信用の超格子アバ
ランシェフォトダイオードに関する。FIELD OF THE INVENTION The present invention relates to a superlattice avalanche photodiode for optical communication.
【0002】[0002]
【従来の技術】高速・高感度・高信頼性の光通信システ
ムを構成するには、高速応答、低暗電流、かつ、高信頼
性を有する半導体受光素子が不可欠である。このため、
近年シリカ系光ファイバの低損失波長域1.3〜1.6
μmに適応できるInP/InGaAs系アバランシェ
フォトダイオード(APD)やpinフォトダイオード
(pinPD)の高速化・高感度化に対する研究が活発
となっている。現在、InP/InGaAs系APDで
は、利得帯域幅(GB)積80GHz程度、最大帯域8
GHz程度の高速・高信頼性の素子が実用化されてい
る。2. Description of the Related Art In order to construct an optical communication system of high speed, high sensitivity and high reliability, a semiconductor light receiving element having high speed response, low dark current and high reliability is indispensable. For this reason,
Recently, low loss wavelength range of silica optical fiber 1.3 to 1.6
Research on high-speed and high-sensitivity InP / InGaAs avalanche photodiodes (APDs) and pin photodiodes (pinPDs) applicable to μm is active. At present, InP / InGaAs APDs have a gain bandwidth (GB) product of about 80 GHz and a maximum bandwidth of 8
High-speed and high-reliability elements of about GHz have been put into practical use.
【0003】しかしながら、この素子構造では、アバラ
ンシェ増倍層であるInPのイオン化率比β/α(α:
電子のイオン化率、β:正孔のイオン化率比)が約2と
小さいため、GB積の最大値が80〜100GHz程度
に制限され、また、過剰雑音指数X(イオン化率比が小
さいほど大きくなる)が約0.7と大きくなり、高速化
・低雑音高感度化には限界がある。これは、他のバルク
の3−5族化合物半導体をアバランシェ増倍層に用いた
場合も同様であり、高GB積化(高速応答特性)・低雑
音化を達成するにはイオン化率比α/βを意図的に増大
させる必要がある。However, in this device structure, the ionization ratio of InP, which is the avalanche multiplication layer, is β / α (α:
Since the electron ionization rate and β: hole ionization rate ratio are as small as about 2, the maximum value of the GB product is limited to about 80 to 100 GHz, and the excess noise figure X (the smaller the ionization rate ratio is, the larger it is. ) Becomes as large as about 0.7, and there is a limit to speeding up and low noise and high sensitivity. This is the same when other bulk 3-5 group compound semiconductors are used for the avalanche multiplication layer, and in order to achieve high GB product (fast response characteristics) and low noise, the ionization rate ratio α / It is necessary to increase β intentionally.
【0004】そこでカパッソ(F.Capasso)等
は、アプライド・フィジックス・レターズ(Appli
ed Physics Letters)1982年、
第40巻、第1号、38〜40頁で超格子による伝導帯
エネルギー不連続量ΔEcを電子の衝突イオン化に利用
してイオン化率比α/βを人工的に増大させる構造を提
案し、実際にGaAs/GaAlAs系超格子でイオン
化率比α/βの増大(バルクGaAsの約2に対して超
格子で約8)を確認した。[0004] Therefore, F. Capasso and the like, Applied Physics Letters (Appli
ed Physics Letters), 1982,
In Vol. 40, No. 1, pp. 38-40, we proposed a structure that artificially increases the ionization rate ratio α / β by utilizing the conduction band energy discontinuity ΔEc by superlattice for electron impact ionization. It was confirmed that the ionization rate ratio α / β was increased in the GaAs / GaAlAs superlattice (about 8 in the superlattice compared to about 2 in the bulk GaAs).
【0005】さらに、香川らは、ジャーナル・オブ・ク
ォンタム・エレクトロニクス(Journal of
Quantum Electronics)1992
年、第28巻、第6号、1419〜1423頁で長距離
光通信に用いられる波長1.3〜1.6μm帯に受光感
度を有するInGaAsP/InAlAs系超格子を用
いて同様の構造を形成し、やはりイオン化率比α/βの
増大(バルクInGaAsの約2に対して超格子層で約
10)を報告した。その素子構造を図3に示す。この超
格子構造では伝導帯不連続量ΔEcが0.39eVと価
電子帯不連続量ΔEvの0.03eVより大きく、井戸
層に入ったときバンド不連続により獲得するエネルギー
が電子の方が正孔より大きく、これによって電子がイオ
ン化しきい値エネルギーに達しやすくなることで電子イ
オン化率が増大し、イオン化率比α/βの増大とそれに
よる低雑音化が図られている。In addition, Kagawa et al., Journal of Quantum Electronics (Journal of
Quantum Electronics) 1992
, Vol. 28, No. 6, pp. 1419-1423, a similar structure is formed using an InGaAsP / InAlAs superlattice having a photosensitivity in the wavelength 1.3-1.6 .mu.m band used for long-distance optical communication. However, it also reported an increase in the ionization ratio α / β (about 10 for the superlattice layer compared to about 2 for bulk InGaAs). The device structure is shown in FIG. In this superlattice structure, the conduction band discontinuity ΔEc is 0.39 eV, which is larger than the valence band discontinuity ΔEv of 0.03 eV, and the energy acquired by the band discontinuity when entering the well layer is that the electron is a hole. The electron ionization rate is increased by increasing the value, which makes it easier for electrons to reach the ionization threshold energy, thereby increasing the ionization rate ratio α / β and thereby reducing noise.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、この従
来の超格子アバランシェフォトダイオードは、メサ側壁
の半導体33,34,35/SiN表面パッシベーショ
ン膜310界面における界面順位、半導体表面の残留酸
化膜・欠陥を介して経時的にリーク電流が発生増大し、
実用的な増倍率領域(10〜20)において暗電流が
0.8〜数μAオーダ程度となり、この暗電流による雑
音増加がイオン化率比改善による低雑音効果を打ち消し
てしまうという欠点を有する。However, in this conventional superlattice avalanche photodiode, the interface order at the semiconductor 33, 34, 35 / SiN surface passivation film 310 interface on the mesa side wall, the residual oxide film / defects on the semiconductor surface are eliminated. Through which leakage current will increase and increase,
In a practical multiplication factor region (10 to 20), the dark current is on the order of 0.8 to several μA, and the noise increase due to this dark current has a drawback that the low noise effect due to the improvement of the ionization ratio is canceled.
【0007】また、このパッシベーション界面は従来報
告されているように一般的な信頼性試験の条件(例えば
雰囲気温度200℃、逆方向電流100μAのバイアス
条件)のもとでは経時的に不安定であり、暗電流増加に
よる素子特性の信頼性が十分でないという欠点を有す
る。Further, as previously reported, this passivation interface is unstable over time under general reliability test conditions (for example, an ambient temperature of 200 ° C. and a reverse current of 100 μA bias condition). However, there is a drawback that the reliability of device characteristics due to an increase in dark current is not sufficient.
【0008】一方、図4に示すように、中村等がプロシ
ーディングス・オブ・ユーロピアン・コンファレンス・
オン・オプティカル・ファイバ・コムニケーション(P
roceedings of European Co
nference on Optical−fiber
Communication)TuC5−4、261
−264頁、1991年で報告したポリイミド膜410
をメサパッシベーション膜に用いた超格子APDの構造
においても、高電界時におけり界面順位、半導体表面の
残留酸化膜・欠陥を介して発生するリーク暗電流・信頼
性の問題は図3の従来例の場合と本質的に同様である。On the other hand, as shown in FIG. 4, Nakamura et al.
On Optical Fiber Communication (P
rosecedings of European Co
nference on Optical-fiber
Communication) TuC5-4, 261
-Page 264, polyimide film 410 reported in 1991
Even in the structure of a superlattice APD using a mesa passivation film, the problem of leak dark current / reliability caused by the interfacial interface order, residual oxide film / defects on the semiconductor surface at high electric field, and the conventional example of FIG. It is essentially the same as the case of.
【0009】他方、図5に示すように、特開平4−10
478号公報に記載されたプレーナ型の素子では、超格
子増倍層55をキャリア濃度1016cm-3以下のp- 型
のドーピングにより形成しなければならないが、現在用
いられている結晶成長法では、このような低濃度のp型
ドーピングを行ったアルミニウムを含む混晶を結晶性を
損うことなく再現性良く形成することが困難であるとい
う問題がある。On the other hand, as shown in FIG.
In the planar type element described in Japanese Patent No. 478, the superlattice multiplication layer 55 must be formed by p − type doping with a carrier concentration of 10 16 cm −3 or less, which is currently used. Then, there is a problem that it is difficult to form such a mixed crystal containing aluminum that has been subjected to such low concentration p-type doping with good reproducibility without impairing the crystallinity.
【0010】本発明の目的は、メサ型pn接合フォトダ
イオードで問題となる表面リーク暗電流を低減し低暗電
流で信頼性の高い超格子アパランシェフォトダイオード
を提供することにある。An object of the present invention is to provide a superlattice avalanche photodiode having a low dark current and a high reliability, which reduces a surface leak dark current which is a problem in a mesa type pn junction photodiode.
【0011】[0011]
【課題を解決するための手段】本発明の超格子アバラン
シェフォトダイオードは、高濃度の一導電型InP基板
上に順次積層して形成した高濃度の一導電型バッファ
層、高濃度の一導電型光吸収層、一導電型の電界緩和
層、アンドープもしくは低濃度の逆導電型超格子層、低
濃度の逆導電型キャップ層からなるメサ形の積層構造
と、前記逆導電型キャップ層内に形成した高濃度の逆導
電型拡散領域を有する。A superlattice avalanche photodiode according to the present invention comprises a high-concentration one-conductivity type buffer layer and a high-concentration one-conductivity type buffer layer sequentially formed on a high-concentration one-conductivity type InP substrate. A mesa-shaped laminated structure consisting of a light absorption layer, a one conductivity type electric field relaxation layer, an undoped or low concentration reverse conductivity type superlattice layer, and a low concentration reverse conductivity type cap layer, and formed in the reverse conductivity type cap layer It has a high-concentration opposite conductivity type diffusion region.
【0012】[0012]
【実施例】次に、本発明について図面を参照して説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.
【0013】図1は本発明の一実施例を示す断面図であ
る。FIG. 1 is a sectional view showing an embodiment of the present invention.
【0014】図1に示すにうに、p+ 型InP基板11
の上に厚さ0.5μmのp+ 型Inpバッファ層12
(バンドギャップEg1 )と、厚さ1μmでキャリア濃
度約2×1015cm-3のp- 型InGaAs光吸収層1
3(バンドギャップEg2 )と、厚さ0.2μmでキャ
リア濃度約5×1017cm-3のp+ 型InP電界緩和層
14(バンドギャップEg3 )と、厚さ0.23μmで
キャリア濃度約1×1015cm-3のアンドープi型もし
くはn- 型InAlGaAs/InAlAs超格子増倍
層15と、厚さ0.5μmでキャリア濃度約5×1015
cm-3のn型InPキャップ層16(バンドギャップE
g4 )と、厚さ0.1μmでキャリア濃度約1×1016
cm-3のn型InGaAsコンタクト層17(バンドギ
ャップEg5 )とを順次ガスソース分子線成長法(ガス
ソースMBE法)により積層して形成する。As shown in FIG. 1, p + type InP substrate 11
On top of the p + -type Inp buffer layer 12 having a thickness of 0.5 μm
(Band gap Eg 1 ) and p − type InGaAs light absorption layer 1 having a thickness of 1 μm and a carrier concentration of about 2 × 10 15 cm −3.
3 (bandgap Eg 2 ), a p + type InP electric field relaxation layer 14 (bandgap Eg 3 ) having a thickness of 0.2 μm and a carrier concentration of about 5 × 10 17 cm −3 , and a carrier concentration of 0.23 μm. An undoped i-type or n - type InAlGaAs / InAlAs superlattice multiplication layer 15 of about 1 × 10 15 cm -3 and a carrier concentration of about 5 × 10 15 at a thickness of 0.5 μm.
cm −3 n-type InP cap layer 16 (band gap E
g 4 ), with a thickness of 0.1 μm and a carrier concentration of about 1 × 10 16
A cm −3 n-type InGaAs contact layer 17 (bandgap Eg 5 ) is sequentially formed by gas source molecular beam growth method (gas source MBE method).
【0015】次に、n型InGaAsコンタクト層17
の表面よりSiイオンを選択的にイオン注入してn型I
nPキャップ層16中に直径20μm程度でキャリア濃
度約1019cm-3のn+ 型拡散領域110およびn+ 型
コンタクト層17aを形成する。ここでn+ 型拡散領域
110の底部は超格子増倍層15の表面に接しているか
又はn型InPキャップ層16を介して0.1μm以下
に近接して形成しても良い。Next, the n-type InGaAs contact layer 17
N-type I by selectively implanting Si ions from the surface of
An n + type diffusion region 110 and an n + type contact layer 17a having a diameter of about 20 μm and a carrier concentration of about 10 19 cm −3 are formed in the nP cap layer 16. Here, the bottom of the n + -type diffusion region 110 may be formed in contact with the surface of the superlattice multiplication layer 15 or may be formed close to 0.1 μm or less via the n-type InP cap layer 16.
【0016】次に、n型InGaAsコンタクト層17
からp+ 型InPバッファ層12までを選択的に順次エ
ッチングしてn+ 型拡散領域110を同心円とする直径
30μmのメサ形状を形成し、メサの側面を含む表面に
パッシベーション膜112を形成する。次に、パッシベ
ーション膜112を選択的にエッチングして開口部を設
け、この開口部のn+ 型コンタクト層17aと接続する
AuGeNiからなるn側電極18およびp+ 型InP
基板11と接続するAuZnからなるp側電極19を形
成する。ここで、バッファ層12およびキャップ層17
としてInAlAs層を用いても良い。Next, the n-type InGaAs contact layer 17
To p + -type InP buffer layer 12 are selectively etched sequentially to form a mesa shape having a diameter of 30 μm with the n + -type diffusion region 110 as a concentric circle, and a passivation film 112 is formed on the surface including the side surface of the mesa. Next, the passivation film 112 is selectively etched to form an opening, and the n-side electrode 18 made of AuGeNi and the p + -type InP connected to the n + -type contact layer 17a in the opening are formed.
A p-side electrode 19 made of AuZn connected to the substrate 11 is formed. Here, the buffer layer 12 and the cap layer 17
Alternatively, an InAlAs layer may be used.
【0017】なお、各層のバンドギャップは次の関係に
ある。The band gap of each layer has the following relationship.
【0018】Eg1 〉Eg2 ,Eg3 〉Eg2 ,E
g4 〉Eg2 ,Eg5 〈Eg4 また、n型InGaAsコンタクト層17は省いても良
い。Eg 1 > Eg 2 , Eg 3 > Eg 2 , E
g 4 > Eg 2 , Eg 5 <Eg 4 Further , the n-type InGaAs contact layer 17 may be omitted.
【0019】図4に示す従来例では、パッシベーション
用のポリイミド膜410と、メサ側壁の半導体43,4
4,45の界面には多数の界面順位(2×1012cm-2
/eV以上)が存在する、この界面順位は通常の半導体
/ポリイミド膜界面のダングリングボンドと、メサ形成
後に生成した半導体自然酸化膜/半導体界面のタングリ
ングボンド、さらには、表面欠陥に起因するもの等が挙
げられる。特に、逆バイアス時に空乏化する半導体層
(43,44,45)の中で、比較的禁制帯幅の小さな
p- 型InGaAs光吸収層43中には前者が、また、
自然酸化されやすいアルミニウム原子を含む超格子増倍
層43,44中では後者が多く存在すると考えられる。
したがって、従来構造では、アバランシェ増倍が得られ
るような高電界(従来構造では電界分布はメサ中央、端
部ともに図2(a)に示すような電界強度分布になり、
その値は増倍層で約500から600kV/cm)にな
る。ときには、これらの界面順位を介する表面リーク暗
電流が発生し、μAオーダとなってしまう。また、経時
的にも高電界によるパッシベーション膜へのホットキャ
リア注入効果などでこれらの界面順位や表面欠陥が増大
し、暗電流が増加することで素子の信頼性は不十分なも
のとなる。In the conventional example shown in FIG. 4, a polyimide film 410 for passivation and semiconductors 43, 4 on the side walls of the mesa are formed.
A large number of interface orders (2 × 10 12 cm −2
/ EV or more), this interface order is caused by a normal semiconductor / polyimide film interface dangling bond, a semiconductor natural oxide film formed after mesa formation / a semiconductor interface tangling bond, and surface defects. The thing etc. are mentioned. In particular, in the semiconductor layers (43, 44, 45) depleted during reverse bias, the former is contained in the p − -type InGaAs light absorption layer 43 having a relatively small forbidden band, and
It is considered that the latter is abundant in the superlattice multiplication layers 43 and 44 containing aluminum atoms which are easily oxidized naturally.
Therefore, in the conventional structure, a high electric field capable of obtaining avalanche multiplication (in the conventional structure, the electric field distribution becomes the electric field intensity distribution as shown in FIG. 2A at both the center and the end of the mesa,
The value is about 500 to 600 kV / cm) in the multiplication layer. Occasionally, a surface leak dark current is generated through these interface orders, and is in the order of μA. Further, even with time, the interface order and surface defects increase due to the effect of hot carrier injection into the passivation film due to the high electric field, and the dark current increases, so that the reliability of the device becomes insufficient.
【0020】これに対して図1に示す本発明の実施例で
は、図2(a),(b)に示すように、メサ中央部に比
較して、メサ端部でn型キャップ層16にも空乏層が延
びるために最大電界強度が600kV/cm程度から3
00kV/cm程度に大幅に低減できる。さらに、キャ
ップ層16のキャリア濃度を適切な値(1016cm-3台
以下)に設定すれば、メサ端部では空乏層が超格子増倍
層とキャップ層だけに広がり、光吸収層側には広がらな
いようにする事ができ、禁制帯幅の小さなp-InGa
As光吸収層13のメサ表面の導電型反転が起きたとし
ても逆バイアス暗電流特性への影響を及ぼさなくする事
ができる。On the other hand, in the embodiment of the present invention shown in FIG. 1, as shown in FIGS. 2A and 2B, the n-type cap layer 16 is formed at the end of the mesa as compared with the center of the mesa. Since the depletion layer extends, the maximum electric field strength is about 600 kV / cm to 3
It can be significantly reduced to about 00 kV / cm. Further, if the carrier concentration of the cap layer 16 is set to an appropriate value (10 16 cm −3 or less), the depletion layer spreads only to the superlattice multiplication layer and the cap layer at the mesa end, and the light absorption layer side Can be prevented from spreading, and p - InGa with a narrow forbidden band can be
Even if the conductivity type inversion occurs on the mesa surface of the As light absorption layer 13, it is possible to prevent the reverse bias dark current characteristic from being affected.
【0021】このように、従来のメサ型のフォトダイオ
ード構造と比較して、本発明の構造ではメサ表面の電界
強度を緩和することでリーク暗電流が減少し、さらに経
時的変化についても従来と比較して抑制され、素子信頼
性が向上した半導体受光素子を実現できる。As described above, as compared with the conventional mesa type photodiode structure, the structure of the present invention reduces the leak dark current by relaxing the electric field strength on the surface of the mesa, and the change with time is also different from the conventional one. It is possible to realize a semiconductor light receiving element that is suppressed in comparison and has improved element reliability.
【0022】ここで、InAlAs/InAlGaAs
超格子を増倍層として用いた場合について説明したが、
InAlAs/InGaAs超格子、あるいはInAl
As/InGaAsP超格子を増倍層として用いた場合
も同様の効果が得られる。Here, InAlAs / InAlGaAs
The case where a superlattice is used as a multiplication layer has been described,
InAlAs / InGaAs superlattice or InAl
The same effect can be obtained when an As / InGaAsP superlattice is used as a multiplication layer.
【0023】[0023]
【発明の効果】以上説明したように本発明は、キャップ
層に高濃度の拡散領域を選択的に形成することにより、
波長1.3〜1.6μm帯に受光感度を有し、高イオン
化率比α/βで低雑音・高速応答特性と同時に、表面リ
ーク暗電流が小さく、高信頼性を有するアバランシェフ
ォトダイオードを実現することがでるという効果を有す
る。As described above, according to the present invention, by selectively forming the high concentration diffusion region in the cap layer,
Realizes a highly reliable avalanche photodiode with high photosensitivity in the wavelength range 1.3 to 1.6 μm, high ionization ratio α / β, low noise and high speed response characteristics, and small surface leak dark current. It has the effect of being able to do.
【図1】本発明の一実施例を示す模式的断面図。FIG. 1 is a schematic sectional view showing an embodiment of the present invention.
【図2】本発明の一実施例のメサ中央部およびメサ端部
の電界強度分布を示す図。FIG. 2 is a diagram showing electric field intensity distributions at a central portion of a mesa and an end portion of a mesa according to an embodiment of the present invention.
【図3】従来の超格子アバランシェフォトダイオードの
第1の例を示す模式的断面図。FIG. 3 is a schematic cross-sectional view showing a first example of a conventional superlattice avalanche photodiode.
【図4】従来の超格子アバランシェフォトダイオードの
第2の例を示す模式的断面図。FIG. 4 is a schematic cross-sectional view showing a second example of a conventional superlattice avalanche photodiode.
【図5】従来の超格子アバランシェフォトダイオードの
第3の例を示す模式的断面図。FIG. 5 is a schematic cross-sectional view showing a third example of a conventional superlattice avalanche photodiode.
11,51 p+ 型InP基板 12,52 p+ 型InPバッファー層 13,53 p- 型InGaAs光吸収層 14 p+ 型InP電界緩和層 15 アンドーブi型又はn- 型InAlGaAs/
InAlAs超格子増倍層 16 n型InPキャップ層 17 n型InGaAsコンタクト層 17a n+ 型コンタクト層 18,38,48 n側電極 19,39,49 p側電極 110 n+ 型拡散層 111 反射防止膜 112 表面パッシベーション膜 31,41 n+ 型InP基板 32 n+ 型InPバッファー層 33 n- 型InGaAsP/InAlAs超格子ア
バランシェ増倍層 34 p型InP電界緩和層 35,45 p- 型InGaAs光吸収層 36 p+ 型InPキャップ層 37,47 P+ 型InGaAsコンタクト層 310 SiNパッシベーション膜 311 ポリイミド膜 42 n+ 型InAlAsバッファー層 43 n- 型InGaAs/InAlAs格子アバラ
ンシェ増倍層 44 p型InAlAs電界緩和層 46 p+ 型InAlAsキャップ層 410 ポリイミドパッシベーション膜 411 反射防止膜 54 p型InGaAs電界緩和層 55 p型InGaAs/InAlAs超格子アバラ
ンシェ増倍層 56 p型InPキャップ層 57 高濃度n型InP領域 58 低濃度n型InP領域 59 AuGeNiオーミック電極 510 AuZnNiオーミック電極 511 光入射用窓11,51 p + type InP substrate 12,52 p + type InP buffer layer 13,53 p − type InGaAs light absorption layer 14 p + type InP electric field relaxation layer 15 andove i type or n − type InAlGaAs /
InAlAs superlattice multiplication layer 16 n-type InP cap layer 17 n-type InGaAs contact layer 17a n + -type contact layer 18, 38, 48 n-side electrode 19, 39, 49 p-side electrode 110 n + -type diffusion layer 111 antireflection film 112 surface passivation film 31, 41 n + type InP substrate 32 n + type InP buffer layer 33 n − type InGaAsP / InAlAs superlattice avalanche multiplication layer 34 p type InP electric field relaxation layer 35, 45 p − type InGaAs light absorption layer 36 p + type InP cap layer 37, 47 P + type InGaAs contact layer 310 SiN passivation film 311 polyimide film 42 n + type InAlAs buffer layer 43 n − type InGaAs / InAlAs lattice avalanche multiplication layer 44 p type InAlAs electric field relaxation layer 46 p + Type InAlA s Cap layer 410 Polyimide passivation film 411 Antireflection film 54 p-type InGaAs electric field relaxation layer 55 p-type InGaAs / InAlAs superlattice avalanche multiplication layer 56 p-type InP cap layer 57 high-concentration n-type InP region 58 low-concentration n-type InP region 59 AuGeNi ohmic electrode 510 AuZnNi ohmic electrode 511 Light incident window
Claims (2)
層して形成した高濃度の一導電型バッファ層、高濃度の
一導電型光吸収層、一導電型の電界緩和層、アンドープ
もしくは低濃度の逆導電型超格子層、低濃度の逆導電型
キャップ層からなるメサ形の積層構造と、前記逆導電型
キャップ層内に形成した高濃度の逆導電型拡散領域を有
することを特徴とする超格子アバランシェフォトダイオ
ード。1. A high-concentration one-conductivity type buffer layer, a high-concentration one-conductivity type light absorption layer, a one-conductivity electric field relaxation layer, an undoped or It is characterized by having a mesa-shaped laminated structure including a low-concentration reverse-conductivity type superlattice layer and a low-concentration reverse-conductivity type cap layer, and a high-concentration reverse-conductivity type diffusion region formed in the reverse-conductivity type cap layer. A superlattice avalanche photodiode.
形成した逆導電型コンタクト層を有する請求項1記載の
超格子アバランシェフォトダイオード。2. The superlattice avalanche photodiode according to claim 1, further comprising a reverse conductivity type contact layer formed on a surface including a high concentration reverse conductivity type diffusion region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5337170A JP2730471B2 (en) | 1993-12-28 | 1993-12-28 | Superlattice avalanche photodiode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5337170A JP2730471B2 (en) | 1993-12-28 | 1993-12-28 | Superlattice avalanche photodiode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07202252A true JPH07202252A (en) | 1995-08-04 |
JP2730471B2 JP2730471B2 (en) | 1998-03-25 |
Family
ID=18306106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5337170A Expired - Lifetime JP2730471B2 (en) | 1993-12-28 | 1993-12-28 | Superlattice avalanche photodiode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2730471B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046276A1 (en) * | 2004-10-25 | 2006-05-04 | Mitsubishi Denki Kabushiki Kaisha | Avalanche photodiode |
JP2006302954A (en) * | 2005-04-15 | 2006-11-02 | Mitsubishi Electric Corp | Semiconductor light-receiving element and method of manufacturing the same |
JP2008028421A (en) * | 2007-10-10 | 2008-02-07 | Mitsubishi Electric Corp | Avalanche photodiode |
WO2009081585A1 (en) * | 2007-12-26 | 2009-07-02 | Nec Corporation | Semiconductor light-receiving device |
JP2012039026A (en) * | 2010-08-11 | 2012-02-23 | Nippon Telegr & Teleph Corp <Ntt> | Avalanche photodiode |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02100379A (en) * | 1988-10-07 | 1990-04-12 | Hikari Keisoku Gijutsu Kaihatsu Kk | Photo-detector |
JPH04241473A (en) * | 1991-01-16 | 1992-08-28 | Nec Corp | Avalanche photo diode |
-
1993
- 1993-12-28 JP JP5337170A patent/JP2730471B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02100379A (en) * | 1988-10-07 | 1990-04-12 | Hikari Keisoku Gijutsu Kaihatsu Kk | Photo-detector |
JPH04241473A (en) * | 1991-01-16 | 1992-08-28 | Nec Corp | Avalanche photo diode |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046276A1 (en) * | 2004-10-25 | 2006-05-04 | Mitsubishi Denki Kabushiki Kaisha | Avalanche photodiode |
JPWO2006046276A1 (en) * | 2004-10-25 | 2008-05-22 | 三菱電機株式会社 | Avalanche photodiode |
JP4609430B2 (en) * | 2004-10-25 | 2011-01-12 | 三菱電機株式会社 | Avalanche photodiode |
US9640703B2 (en) | 2004-10-25 | 2017-05-02 | Mitsubishi Electric Corporation | Avalanche photodiode |
JP2006302954A (en) * | 2005-04-15 | 2006-11-02 | Mitsubishi Electric Corp | Semiconductor light-receiving element and method of manufacturing the same |
JP4537880B2 (en) * | 2005-04-15 | 2010-09-08 | 三菱電機株式会社 | Semiconductor light receiving element and method of manufacturing the same |
JP2008028421A (en) * | 2007-10-10 | 2008-02-07 | Mitsubishi Electric Corp | Avalanche photodiode |
WO2009081585A1 (en) * | 2007-12-26 | 2009-07-02 | Nec Corporation | Semiconductor light-receiving device |
US8212286B2 (en) | 2007-12-26 | 2012-07-03 | Nec Corporation | Semiconductor light receiving element |
JP5218427B2 (en) * | 2007-12-26 | 2013-06-26 | 日本電気株式会社 | Semiconductor photo detector |
JP2012039026A (en) * | 2010-08-11 | 2012-02-23 | Nippon Telegr & Teleph Corp <Ntt> | Avalanche photodiode |
Also Published As
Publication number | Publication date |
---|---|
JP2730471B2 (en) | 1998-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2601231B2 (en) | Superlattice avalanche photodiode | |
JP2762939B2 (en) | Superlattice avalanche photodiode | |
JP3141847B2 (en) | Avalanche photodiode | |
US5539221A (en) | Staircase avalanche photodiode | |
US4651187A (en) | Avalanche photodiode | |
US7415185B2 (en) | Buried-waveguide-type light receiving element and manufacturing method thereof | |
JP2937404B2 (en) | Semiconductor light receiving element | |
US4840916A (en) | Process for fabricating an avalanche photodiode | |
US6350998B1 (en) | Ultraspeed low-voltage drive avalanche multiplication type semiconductor photodetector | |
Susa et al. | Characteristics in InGaAs/InP avalanche photodiodes with separated absorption and multiplication regions | |
US5432361A (en) | Low noise avalanche photodiode having an avalanche multiplication layer of InAlAs/InGaAlAs | |
JPH08111541A (en) | Semiconductor device | |
JP2000323746A (en) | Avalanche photodiode and its manufacture | |
JPH06232442A (en) | Semiconductor photodetector | |
US5789765A (en) | Photo diode providing high-linearity signal current in response to light receiving signal | |
JP2730471B2 (en) | Superlattice avalanche photodiode | |
US4894703A (en) | Restricted contact, planar photodiode | |
JP4058921B2 (en) | Semiconductor photo detector | |
JP2751846B2 (en) | Semiconductor light receiving element | |
JPH08274366A (en) | Semiconductor light receiving device | |
US4990989A (en) | Restricted contact planar photodiode | |
JP2894910B2 (en) | Superlattice avalanche photodiode and method of manufacturing the same | |
JP3061203B2 (en) | Semiconductor light receiving device | |
JPH051629B2 (en) | ||
JP2739824B2 (en) | Semiconductor light receiving element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19971118 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071219 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091219 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091219 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101219 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101219 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111219 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121219 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131219 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |