JPS63283105A - Superconducting coil - Google Patents

Superconducting coil

Info

Publication number
JPS63283105A
JPS63283105A JP11921487A JP11921487A JPS63283105A JP S63283105 A JPS63283105 A JP S63283105A JP 11921487 A JP11921487 A JP 11921487A JP 11921487 A JP11921487 A JP 11921487A JP S63283105 A JPS63283105 A JP S63283105A
Authority
JP
Japan
Prior art keywords
coil
superconducting
superconducting coil
winding frame
sliding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11921487A
Other languages
Japanese (ja)
Inventor
Kazuki Moritsu
森津 一樹
Shigenori Kuroda
黒田 成紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11921487A priority Critical patent/JPS63283105A/en
Publication of JPS63283105A publication Critical patent/JPS63283105A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To contrive accomplishment of lightweightedness and miniaturization of the title superconducting coil by a method wherein a sliding material is inserted between a spool and a superconducting wire material. CONSTITUTION:A sliding material 30 is inserted between a spool 21 and a superconducting coil 22, and the heating value when the coil slips is suppressed. To be more precise, when the surface preussure between the coil 22 and the spool 21 is set at (P) and a frictional coefficient is set at (mu), frictional force is indicated by (muP), and the heating value when the coil slips is in proportion to the frictional force. Accordingly, if the frictional coefficient is small, the heating value is small. Consequently, the quenching generating when the heat is generated by the slipping of the coil 22 can be prevented, the constitution of the coil 22 is simplified, and the lightweightedness and miniaturization of the coil can be made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 塞発明は、超電導コイル励磁時等に発生する超電導破壊
現象(以後クエンチと記、す。)を防止することにより
超電導マグネットの信慎性?向上させるためのものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention improves the integrity of superconducting magnets by preventing the superconductor breakdown phenomenon (hereinafter referred to as quench) that occurs when superconducting coils are excited. It is intended to improve.

〔従来の技術〕[Conventional technology]

超電導マグネットは極低温下で使用されるため、液体ヘ
リウム等により冷却されるが、巻枠上に超電導線材を巻
回することによって成る超電導コイルでは、冷却時に巻
枠と超電導線材との間の熱収縮率差により応力が発生す
る。この状態で運転に入れば電磁力により前記応力が解
放され、超電導コイルはスリップとおこす。このスリッ
プによる発熱がクエンチの大きな要因になっている。
Superconducting magnets are used at extremely low temperatures, so they are cooled with liquid helium, etc. However, in superconducting coils, which are made by winding superconducting wire on a winding frame, the heat between the winding frame and the superconducting wire is absorbed during cooling. Stress is generated due to the difference in shrinkage rate. If operation is started in this state, the stress is released by electromagnetic force, causing the superconducting coil to slip. The heat generated by this slip is a major factor in quenching.

従来は、スリップによる発熱を防止するため、超電導線
材を巻回する際大きな張力で巻回し、電磁力が印加され
た場合でもスリップを発生させない様にするか、あるい
はあらかじめ応力以上の力でコイルを締め付け、冷却時
に応力が残らない様な構造をとるのが一般的である。第
2A、B図はこの様なあらかじめコイル?締め付ける構
造を持つ超電導マグネットの一例を示す断面図である。
Conventionally, in order to prevent heat generation due to slipping, superconducting wires were wound with high tension to prevent slipping even when electromagnetic force was applied, or the coil was wound with a force that exceeded the stress in advance. Generally, the structure is such that no stress remains during tightening and cooling. Figures 2A and B are pre-coils like this? FIG. 2 is a cross-sectional view showing an example of a superconducting magnet having a tightening structure.

図において、■に円筒状の巻枠、+21ij巻枠Ill
上に超電導線材を巻回してなる超電導コイルである。超
電導コイル)21は常温で巻枠Ill上に巻回された後
、巻枠+11との間がスライジする端板13)及び締付
は棒(4)、ナツト161によって軸方向の締め付けが
行なわれる。(6)ケ超電導コイル(2)?−極低温に
保つ液体ヘリウム槽、171 ij熱シールド板、+8
1 fl熱シールド板(7)全液体チッソ温度に保つた
めの液体チッソ槽、(9)は真空槽を示す。
In the figure, ■ is a cylindrical winding frame, and +21ij is a winding frame Ill.
This is a superconducting coil made by winding a superconducting wire on top. After the superconducting coil) 21 is wound on the winding frame Ill at room temperature, the end plate 13) that slides between it and the winding frame +11 is tightened in the axial direction using a rod (4) and a nut 161. . (6) Superconducting coil (2)? -Liquid helium bath kept at extremely low temperature, 171 ij heat shield plate, +8
1 fl heat shield plate (7) A liquid nitrogen tank for keeping the total liquid nitrogen temperature, (9) shows a vacuum tank.

上記締め付けは、超電導コイル(′11を極低温に冷却
した時、巻枠Il+とコイル121との間に心力が伐ら
ない程度以上の力で行なわれる。
The above-mentioned tightening is performed with a force greater than the level that does not cause tension between the winding frame Il+ and the coil 121 when the superconducting coil ('11) is cooled to an extremely low temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の超電導コイルに以上の様に構成されているので、
コイルがスリップしない様に大きな張力で巻回する場合
は大きな張力装置が必要でありかつ巻枠の板厚を厚くす
る必要があり、又従来例として図で示した場合では、コ
イル締付用部品及び締付装置が必要で、かつ締付スペー
スのために@電導マグネットが必要以上に大きくなるな
どの問題点があった。
Since the conventional superconducting coil is configured as described above,
If the coil is to be wound with a large tension to prevent it from slipping, a large tension device is required and the thickness of the winding frame must be increased. There are also problems such as a tightening device is required, and the conductive magnet becomes larger than necessary due to the tightening space.

大発明に、上記の様な問題点を解決するためになされた
もので、大きな張力装置や締付装置全必要とせず、しか
も安価で軽喰小型化された超電導マグネット装置を得る
ことを目的としている。
This major invention was made to solve the problems mentioned above, and the aim was to obtain a superconducting magnet device that was inexpensive, lightweight, and compact, without requiring any large tension devices or tightening devices. There is.

〔問題点を解決するための手段〕[Means for solving problems]

大発明に係る超電導コイルは、巻枠と超電導線材との間
に滑り材料を挿入したものである。
The superconducting coil according to the great invention has a sliding material inserted between the winding frame and the superconducting wire.

〔作用〕[Effect]

この発明においてに、滑り材料が存在するため巻枠と超
電導線材との間の摩擦係数が小さくなり、コイルにほと
んど発熱を生じることなくスリップして応力が除去され
る。
In this invention, since the sliding material is present, the coefficient of friction between the winding frame and the superconducting wire becomes small, and the coil slips and stress is removed without generating much heat in the coil.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例4図によって説明する。 An embodiment of the present invention will be explained below with reference to FIG.

第1A、B図において圓は巻枠を、G@は巻枠圓上に巻
かれる滑り材料で例えば極低温下でも使用できるポリイ
ミド系、テフロン系のフィルム材等が使用される。器は
その上に巻回される超電導コイルを示す・ 第2図VC示す従来例の様にコイル締付用部品が不要で
ある。
In FIGS. 1A and 1B, the circle is a winding frame, and G@ is a sliding material wound on the winding frame. For example, a polyimide film material, a Teflon film material, etc., which can be used even at extremely low temperatures, is used. The device shows a superconducting coil wound on top of the superconducting coil. Unlike the conventional example shown in Figure 2 VC, there is no need for coil tightening parts.

四は液体ヘリウム槽、271灯熱シールド板、HTri
熱シールド板0を液体チッソ温度に保つための液体チツ
ン漕、四に真空槽を示す。
4 is liquid helium tank, 271 lamp heat shield plate, HTri
A liquid nitrogen tank is shown to keep the heat shield plate 0 at the liquid nitrogen temperature, and a vacuum tank is shown in 4.

次に大発明の実施例の作用及び効果について説明する。Next, the functions and effects of the embodiments of the great invention will be explained.

本発明に巻枠21+と超電導コイル−との間に、滑り材
料を入れた事を特徴としているが、その作用上しては Il+lリスリップ時熱量を押える。
The present invention is characterized in that a sliding material is inserted between the winding frame 21+ and the superconducting coil-, and its function is to suppress the amount of heat during Il+l reslip.

超電導コイルと巻枠との間の面圧をPとし、躇擦係数を
μとすれば摩擦力はμPで表わされ、スリップ時の発熱
量は摩擦力に比例する。
If the surface pressure between the superconducting coil and the winding frame is P, and the coefficient of hesitation is μ, then the frictional force is expressed as μP, and the amount of heat generated during slipping is proportional to the frictional force.

すなわちμが小さければ発熱量が小さい。In other words, the smaller μ, the smaller the amount of heat generated.

(21超電導コイル励磁の際小さい電流でスリップする
(21 Superconducting coil slips with small current when excited.

スリップは埜擦力に電磁力が打ち勝った際発生するから
小さい電磁力(すなわち定格電流  ゛よりずっと小さ
い電流)でスリップを発生させることができる。これは
超電導コイルがクエンチに至る筐での温度余裕が大傘い
ところでスリップが発生することであり、クエンチの発
生を防いでいる。
Slip occurs when electromagnetic force overcomes the friction force, so slip can be generated with a small electromagnetic force (that is, a current much smaller than the rated current). This occurs when the superconducting coil quenches at a point where there is a large temperature margin in the casing, which prevents quenching from occurring.

(3)冷却時の残留応力を小さくする。(3) Reduce residual stress during cooling.

冷却時に巻枠と超電導コイルとの熱収縮差によって発生
する残留応力は摩擦係数μに比例する。すなわちμの小
さい材料?挿入すれば残留応力自体を小さくすることが
できる。
The residual stress generated by the difference in thermal contraction between the winding frame and the superconducting coil during cooling is proportional to the friction coefficient μ. In other words, a material with small μ? By inserting it, the residual stress itself can be reduced.

史にこの発明の他の実施例と゛して、滑り材料と超電導
コイルと?例えば接着剤等により固定させれば、スリッ
プ面全挿入材料と巻枠との間に限定することができる。
What are other examples of this invention in history, including sliding materials and superconducting coils? For example, by fixing with adhesive or the like, the slip surface can be confined between the entire insertion material and the winding frame.

これは発生熱量のうち、−FiSt−挿入材料の熱容喰
として吸収でき、超電導コイルの温度上昇?一層抑制す
ることになる。
Is this because the generated heat can be absorbed by the heat capacity of the -FiSt- insertion material, resulting in an increase in the temperature of the superconducting coil? This will lead to further restraint.

又、挿入する材料が断熱材となる様な材料であれば、さ
らに超電導コイルの温度上昇を小さくすることができる
Furthermore, if the inserted material is a material that serves as a heat insulator, the temperature rise in the superconducting coil can be further reduced.

この場合、上記フィルム材を断面材として兼用させるた
めに汀、この様なフィルム材の多層巻き、又は同一材料
の薄板材なども適用することができる。
In this case, in order to make the film material also serve as a cross-sectional material, it is possible to use a layer, a multilayer winding of such a film material, or a thin plate material of the same material.

〔発明の効果〕〔Effect of the invention〕

以上の様[本発明によれは巻枠と超電導線材との間に滑
り材料を挿入することにより、巻枠と超電導線材との間
の0擦係数を小さくしたので、超電導コイルのスリップ
発熱によるクエンチが防止され、超電導コイルの構成が
単準化され、コンパクトになり価格も安価にでき、しか
も偏傾性の高いものが得られる効果がある。
[According to the present invention, the zero friction coefficient between the winding frame and the superconducting wire is reduced by inserting a slipping material between the winding frame and the superconducting wire, so that the quenching due to slip heat generation of the superconducting coil is reduced. This has the effect that the structure of the superconducting coil can be simplified, it can be made more compact, the price can be lowered, and a product with high eccentricity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図はこの発明の一実施例による超電導マグネット
装置を示す縦断面図、第1B図は第1A図IB−IBJ
O断面図、m2h図nw来例を示す@電導マグネット装
置の縦断面図、第2B図は第2A図の2B−2B線の断
面図である。 図において、3υけ巻枠、−は超電導コイル、・淵は滑
り材料である。 るお、各図中同一符号は同−父は相当部分を示す。
FIG. 1A is a vertical cross-sectional view showing a superconducting magnet device according to an embodiment of the present invention, and FIG.
O sectional view, m2h diagram nw A vertical sectional view of a conventional conductive magnet device, FIG. 2B is a sectional view taken along the line 2B-2B in FIG. 2A. In the figure, the 3υ winding frame, - is the superconducting coil, and the edge is the sliding material. The same reference numerals in each figure indicate corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)巻枠の外周に超電導線材を巻回してなる超電導コ
イルにおいて、上記巻枠と超電導線材との間に滑り材料
を挿入することにより、上記巻枠と超電導線材との間の
摩擦係数が上記滑り材料を挿入しない場合に比較して小
さくなるようにしたことを特徴とする超電導コイル。
(1) In a superconducting coil formed by winding a superconducting wire around the outer periphery of a winding frame, inserting a sliding material between the winding frame and the superconducting wire reduces the coefficient of friction between the winding frame and the superconducting wire. A superconducting coil characterized in that the size of the superconducting coil is smaller than that when the above-mentioned sliding material is not inserted.
(2)超電導線材と滑り材料とを相互に固着したことを
特徴とする特許請求の範囲第1項記載の超電導コイル。
(2) A superconducting coil according to claim 1, characterized in that a superconducting wire and a sliding material are fixed to each other.
(3)滑り材料は、低熱伝導率材からなり、上記滑り材
料と巻枠との間で発生する摩擦熱が超電導線材に伝達す
るのを抑制する断熱層を形成することを特徴とする特許
請求の範囲第3項記載の超電導コイル。
(3) A patent claim characterized in that the sliding material is made of a material with low thermal conductivity, and forms a heat insulating layer that suppresses frictional heat generated between the sliding material and the winding frame from being transmitted to the superconducting wire. The superconducting coil according to item 3.
JP11921487A 1987-05-15 1987-05-15 Superconducting coil Pending JPS63283105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11921487A JPS63283105A (en) 1987-05-15 1987-05-15 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11921487A JPS63283105A (en) 1987-05-15 1987-05-15 Superconducting coil

Publications (1)

Publication Number Publication Date
JPS63283105A true JPS63283105A (en) 1988-11-21

Family

ID=14755767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11921487A Pending JPS63283105A (en) 1987-05-15 1987-05-15 Superconducting coil

Country Status (1)

Country Link
JP (1) JPS63283105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214466A (en) * 2006-02-13 2007-08-23 Hitachi Ltd Superconducting coil
WO2010107080A1 (en) * 2009-03-18 2010-09-23 株式会社神戸製鋼所 Superconducting magnet
WO2015119222A1 (en) * 2014-02-06 2015-08-13 株式会社 日立メディコ Superconductor coil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214466A (en) * 2006-02-13 2007-08-23 Hitachi Ltd Superconducting coil
WO2010107080A1 (en) * 2009-03-18 2010-09-23 株式会社神戸製鋼所 Superconducting magnet
CN102349118A (en) * 2009-03-18 2012-02-08 株式会社神户制钢所 Superconducting magnet
WO2015119222A1 (en) * 2014-02-06 2015-08-13 株式会社 日立メディコ Superconductor coil
JP2015149377A (en) * 2014-02-06 2015-08-20 株式会社日立メディコ superconducting coil
CN105993054A (en) * 2014-02-06 2016-10-05 株式会社日立制作所 Superconductor coil

Similar Documents

Publication Publication Date Title
EP0139189B2 (en) A persistent current switch for high energy superconductive solenoids
US3559126A (en) Means to provide electrical and mechanical separation between turns in windings of a superconducting device
JP2008244249A (en) High-temperature superconducting coil
US4688132A (en) Superconducting magnet system for operation at 13k
EP0207286A1 (en) Conical, unimpregnated winding for MR magnets
JPS63283105A (en) Superconducting coil
JP2007214466A (en) Superconducting coil
JP6005386B2 (en) Superconducting coil device and manufacturing method thereof
JP2005294471A (en) Method for magnetizing bulk super-conductor
JP2745780B2 (en) Superconducting magnet
JPH04134808A (en) Superconducting magnet
Solovyov et al. Performance of layer wound epoxy-impregnated coils made from a multifilamentary cable of exfoliated YBCO
GB2438442A (en) Superconducting coil former and a method of using the said former
EP0625281A1 (en) Stable flux jumping resistant superconducting tape and superconducting magnet
JP3199782B2 (en) Superconducting coil manufacturing method
JPS6362084B2 (en)
Kantrowitz et al. Stable superconducting magnet
JPS6312109A (en) Superconducting magnet
JPS6320365B2 (en)
Lesensky et al. NbZr Superconducting Critical Current Dependence on dI/dt
JPH0727816B2 (en) Superconducting coil
JP2883071B1 (en) Superconducting field winding conductor
JPS6315729B2 (en)
Parizh et al. Transition of a sectioned superconducting winding to the normally conducting state. I
Martynyuk Mathematical modeling of thermal processes in a superconducting winding