JP2745780B2 - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JP2745780B2
JP2745780B2 JP13926190A JP13926190A JP2745780B2 JP 2745780 B2 JP2745780 B2 JP 2745780B2 JP 13926190 A JP13926190 A JP 13926190A JP 13926190 A JP13926190 A JP 13926190A JP 2745780 B2 JP2745780 B2 JP 2745780B2
Authority
JP
Japan
Prior art keywords
superconducting
bobbin
coil
superconducting wire
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13926190A
Other languages
Japanese (ja)
Other versions
JPH0432207A (en
Inventor
保川  幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13926190A priority Critical patent/JP2745780B2/en
Publication of JPH0432207A publication Critical patent/JPH0432207A/en
Application granted granted Critical
Publication of JP2745780B2 publication Critical patent/JP2745780B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超電導磁石、特にNb3Sn,V3Gaなどの化合物
系超電導線を巻回してなる高磁界用の超電導磁石に関す
る。
Description: TECHNICAL FIELD The present invention relates to a superconducting magnet, and more particularly to a superconducting magnet for a high magnetic field formed by winding a compound superconducting wire such as Nb 3 Sn or V 3 Ga.

〔従来の従来〕[Conventional conventional]

10Tesla以上の高磁界用の超電導磁石は、通常、臨界
磁界の高いNb3Sn,V3Gaなどの化合物系超電導線を巻回
して製作する。ところが、これら化合物系超電導材料は
わずかの歪みによって特性が劣化するのでコイルとして
巻くためには、例えば、変形可能なNbおよびSnであらか
じめコイルの形に巻いておき、つぎにコイル全体を1000
℃程度に加熱してそれらの材料を反応させNb3Snを形成
させる。
A superconducting magnet for a high magnetic field of 10 Tesla or more is usually manufactured by winding a compound superconducting wire such as Nb 3 Sn or V 3 Ga having a high critical magnetic field. However, these compound-based superconducting materials deteriorate in their characteristics due to slight distortion.To be wound as a coil, for example, the coil is wound in advance with deformable Nb and Sn in the form of a coil, and then the entire coil is cooled to 1000 mm.
The materials are reacted by heating to about ° C. to form Nb 3 Sn.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、前述の高磁界用の超電導磁石において
は、Nb3Snそのものを変形させて歪を与えることはなく
なるが、加熱温度が1000℃程度の高温であるため、大形
の磁石の製作に適用するのは困難である。
However, in the above-described superconducting magnet for a high magnetic field, Nb 3 Sn itself is not deformed to give a strain, but since the heating temperature is as high as about 1000 ° C., it is applied to the production of a large magnet. It is difficult.

本発明の課題は、あらかじめ加熱処理し化合物、例え
ば、Nb3Snになっている化合物系超電導線を直接巻回し
てなる高磁界用の超電導磁石を提供することにある。
It is an object of the present invention to provide a superconducting magnet for a high magnetic field, which is obtained by directly winding a compound superconducting wire which has been heat-treated into a compound, for example, Nb 3 Sn.

〔課題を解決するための手段〕[Means for solving the problem]

前述の課題を解決するために、本発明の高磁界用の超
電導磁石においては、非磁性の巻枠とこの巻枠の両端部
にそれぞれ設けられた非磁性の固定および可動フランジ
と前記巻枠に超電導線を巻回してなる超電導コイルとか
らなり、前記超電導コイルは極低温に冷却された時に前
記巻枠との間に生じる熱収縮量の差を補償するよう巻線
張力をかけて前記超電導線が巻回され、前記固定および
可動フランジを介し前記超電導線を巻回する際に生じた
該超電導線間の軸方向の隙間をなくすよう軸方向に圧縮
力が加えられてなるようにする。
In order to solve the above-mentioned problems, in the superconducting magnet for a high magnetic field of the present invention, a non-magnetic bobbin and a non-magnetic fixed and movable flange provided at both ends of the bobbin and the bobbin, respectively. A superconducting coil formed by winding a superconducting wire, wherein the superconducting coil is applied with a winding tension so as to compensate for a difference in heat shrinkage generated between the superconducting coil and the bobbin when cooled at a cryogenic temperature. Is wound, and a compressive force is applied in the axial direction so as to eliminate an axial gap between the superconducting wires generated when the superconducting wires are wound through the fixed and movable flanges.

〔作用〕[Action]

本発明の高磁界用の超電導磁石は、非磁性の巻枠とこ
の巻枠の両端部にそれぞれ設けられた非磁性の固定およ
び可動フランジと前記巻枠に化合物系超電導線を巻回し
てなる超電導コイルとからなっている。この非磁性の巻
枠はステンレスあるいはアルミなどの材料で作られ、そ
れらの熱収縮量は常温から4.2Kの極低温で、ステンレス
の場合0.31%,アルミの場合0.42%であり、一方、化合
物系超電導線は0.3%である。超電導磁石は、通常、液
体ヘリウム温度(4.2K)程度の極低温に冷却して使用す
るが、冷却による巻枠の熱収縮量は化合物系超電導線の
熱収縮量より大きいため、一般には、冷却時に巻枠と超
電導コイルの間に半径方向の隙間が生じるが、本発明に
おいては超電導コイルはこの熱収縮量の差を補償するよ
う巻線張力をかけて化合物系超電導線を巻回しているの
で、冷却時巻枠と超電導コイルとの間に半径方向の隙間
が生じることがなく、通常時、超電導コイルが移動して
クエンチが生じ、超電導状態が破られることはなくな
る。しかも、熱収縮量の差は巻枠がステンレスの場合0.
01%,アルミの場合0.12%であり、この程度の歪であれ
ば、巻回の際巻線張力により超電導線に与えられてもそ
の特性が劣化することはない。更に、巻枠の両端部にそ
れぞれ設けられた固定および可動フランジを介して超電
導コイルの軸方向に圧縮力をかけ、超電導線を巻回する
際生じた超電導線間の軸方向の隙間をなくするようした
ので、通電時、超電導コイルにかかる軸方向の圧縮力に
よって超電導線が軸方向に移動することもなくなり、従
って、クエンチが発生することが防止される。なお、通
電時、超電導コイルにかかる半径方向の拡張力は外周側
にある超電導線ほどより大きい変位を受けるので、超電
導線間に周方向の摩擦はなく、これによってクエンチの
発生はない。
A superconducting magnet for a high magnetic field according to the present invention is a superconducting magnet formed by winding a compound superconducting wire around a nonmagnetic bobbin, nonmagnetic fixed and movable flanges provided at both ends of the bobbin, and the bobbin. Consists of coils. This non-magnetic bobbin is made of a material such as stainless steel or aluminum, and its heat shrinkage is from room temperature to extremely low temperature of 4.2K. It is 0.31% for stainless steel and 0.42% for aluminum. Superconducting wire accounts for 0.3%. Superconducting magnets are usually used by cooling them to extremely low temperatures such as liquid helium temperature (4.2K). However, since the amount of heat shrinkage of the bobbin due to cooling is larger than that of compound superconducting wires, generally Sometimes a gap in the radial direction is created between the winding frame and the superconducting coil, but in the present invention, the compound superconducting wire is wound by applying a winding tension so as to compensate for this difference in the amount of heat shrinkage. There is no gap in the radial direction between the winding frame and the superconducting coil at the time of cooling, and the superconducting coil normally moves to cause quench and the superconducting state is not broken. In addition, the difference in heat shrinkage is 0 when the reel is stainless steel.
It is 0.1% for aluminum and 0.12% for aluminum. With such a degree of distortion, the characteristics are not deteriorated even if the superconducting wire is given to the superconducting wire by winding tension during winding. Further, a compressive force is applied in the axial direction of the superconducting coil via fixed and movable flanges provided at both ends of the winding frame, and an axial gap between the superconducting wires generated when the superconducting wire is wound is eliminated. As a result, during energization, the superconducting wire does not move in the axial direction due to the axial compressive force applied to the superconducting coil, and therefore, occurrence of quench is prevented. During energization, the radial expansion force applied to the superconducting coil receives a larger displacement than the superconducting wires on the outer peripheral side, so that there is no circumferential friction between the superconducting wires, and thus no quench occurs.

〔実施例〕〔Example〕

第1図は本発明の一実施例における高磁界用の超電導
磁石の断面図である。ステンレスあるいはアルミなど非
磁性材料で作られた筒状の巻枠2には、一方の端部に非
磁性のフランジ3Bが固定され、他方の端部には非磁性の
フランジ3Aが、巻枠2の軸方向に移動可能なよう設けて
ある。1は超電導コイルで、筒状の巻枠2の上に化合物
系超電導線1Aを巻回して作られる。化合物系超電導線1A
は、例えば、Nb箔の表面をSn被覆し、熱処理によってSn
をNb中に拡散させ、Nb表面にNb3Snの薄い層を作り、Nb3
Snの表面を更に銅で被覆して低磁界での安定性を高める
とともにNb3Snの表面を保護したテープ状の超電導線で
あり、Nb3Snの層が薄いので、コイル巻きが可能であ
る。しかしながら、通常行われているように、化合物系
超電導線に強い巻線張力をかけて、完全に固定するよう
巻回したのでは、化合物系超電導線に歪がかかり、例え
ば、0.6%程度の歪でも、臨界電流値が約半分にまで劣
化してしまう。
FIG. 1 is a sectional view of a superconducting magnet for a high magnetic field in one embodiment of the present invention. A non-magnetic flange 3B is fixed to one end of the cylindrical reel 2 made of a non-magnetic material such as stainless steel or aluminum, and a non-magnetic flange 3A is fixed to the other end. It is provided so as to be movable in the axial direction of. Reference numeral 1 denotes a superconducting coil, which is formed by winding a compound superconducting wire 1A on a cylindrical bobbin 2. Compound superconducting wire 1A
For example, Sn coating the surface of the Nb foil,
Is diffused into Nb to form a thin layer of Nb 3 Sn on the Nb surface, and Nb 3
The surface of the Sn and further coated with copper is a tape-shaped superconducting wire that protects the surface of the Nb 3 Sn enhances the stability at low magnetic field, since the layer of Nb 3 Sn is thin, it is possible coil winding is . However, if the compound superconducting wire is wound so as to be completely fixed by applying a strong winding tension to the compound superconducting wire as usual, the compound superconducting wire will be strained, for example, a strain of about 0.6%. However, the critical current value is reduced to about half.

ところで、ステンレスあるいはアルミなどの材料で作
られた巻枠の熱収縮量は常温から4.2Kの極低温でステン
レスの場合0.31%,アルミの場合0.42%であり、一方、
化合物超電導線は0.3%である。従って冷却による巻枠
の熱収縮量は化合物系超電導線の熱収縮量より大きい。
本発明では超電導コイルはこの熱収縮量の差は補償する
よう巻線張力をかけて化合物系超電導線を巻回する。こ
れにより、超電導磁石を冷却した時に、巻枠と超電導コ
イルとの間に半径方向の隙間が生じることはない。しか
も、熱収縮量の差は巻枠がステンレスの場合0.01%,ア
ルミの場合0.12%であり、この程度の歪であれば巻回の
際、巻線張力により化合物系超電導線に与えられても、
その特性が劣化することはない。
By the way, the heat shrinkage of the bobbin made of materials such as stainless steel or aluminum is 0.31% for stainless steel and 0.42% for aluminum at cryogenic temperature from normal temperature to 4.2K.
Compound superconducting wire is 0.3%. Therefore, the heat shrinkage of the bobbin due to cooling is larger than the heat shrinkage of the compound superconducting wire.
In the present invention, the superconducting coil is wound around the compound superconducting wire by applying a winding tension so as to compensate for this difference in heat shrinkage. Thereby, when the superconducting magnet is cooled, no radial gap is formed between the bobbin and the superconducting coil. Moreover, the difference in the amount of heat shrinkage is 0.01% when the winding frame is stainless steel and 0.12% when the winding frame is aluminum. ,
Its characteristics do not deteriorate.

また、超電導コイルに電流を流すと電磁力によってこ
のコイルには軸方向に圧縮力がかかり、半径方向に拡張
力がかかる。本発明によれば、更に巻枠2の両端部にそ
れぞれに設けられた固定フランジ3Bと可動フランジ2Aの
間を第1図でPで示すように軸方向に加圧し、超電導コ
イルに軸方向の圧縮力をかけ、超電導線を巻回する際生
じた超電導線間の軸方向の隙間をなくした上で可動フラ
ンジ3Aを巻枠2に固定するこれによって、通電時、超電
導コイルにかかる軸方向の圧縮力によって、超電導線が
軸方向に移動することはなくなり、従って、超電導状態
にクエンチが発生することが防止される。また、通電
時、超電導コイルにかかる半径方向の拡張力は外周側に
ある超電導線ほどより大きい変位を受けるので、超電導
線間の周方向の摩擦はなく、これによってクエンチの発
生はない。また、冷却による巻枠2と超電導コイル1と
の軸方向の熱収縮量は巻枠2の方が超電導コイル1より
僅か大きいので、この熱収縮量の差によって生じる応力
は、超電導コイル1を圧縮する方向に働くので、冷却時
に超電導線1A間に軸方向の隙間が生じることはない。
When a current is applied to the superconducting coil, a compressive force is applied to the coil by electromagnetic force in an axial direction and an expanding force is applied to the coil in a radial direction. According to the present invention, the space between the fixed flange 3B and the movable flange 2A provided at both ends of the winding frame 2 is further axially pressed as shown by P in FIG. The movable flange 3A is fixed to the winding frame 2 after applying a compressive force to eliminate the axial gap between the superconducting wires generated when winding the superconducting wire. The compressive force prevents the superconducting wire from moving in the axial direction, and thus prevents quench in the superconducting state. Further, at the time of energization, the radial expansion force applied to the superconducting coil is subjected to a larger displacement than the superconducting wires on the outer peripheral side, so that there is no circumferential friction between the superconducting wires, and thus no quench occurs. Further, since the amount of heat shrinkage in the axial direction between the winding frame 2 and the superconducting coil 1 due to cooling is slightly larger in the winding frame 2 than in the superconducting coil 1, the stress caused by this difference in the amount of heat shrinkage causes the superconducting coil 1 to be compressed. Therefore, there is no axial gap between the superconducting wires 1A during cooling.

なお、本発明はNbTiなど歪によって特性の劣化が比較
的少ない合金系超電導線を用いた超電導磁石に適用して
も、作用から明らかなように、それなりの効果がある。
Even if the present invention is applied to a superconducting magnet using an alloy-based superconducting wire whose characteristics are relatively less deteriorated due to strain such as NbTi, there is a certain effect as apparent from the operation.

〔発明の効果〕〔The invention's effect〕

本発明の高磁界用の超電導磁石は、非磁性の巻枠とこ
の巻枠の両端部にそれぞれ設けられた非磁性の固定およ
び可動フランジと前記巻枠に化合物系超電導線を巻回し
てなる超電導コイルとからなり、前記超電導コイルは極
低温に冷却された時に巻枠との間に生じる熱収縮量の差
を補償する巻線張力をかけて化合物系超電導線が巻回さ
れ前記固定および可動フランジを介し、化合物系超電導
線を巻回する際生じた超電導線間の軸方向の隙間をなく
すよう軸方向に圧縮力が加えられてなるようにした。こ
れによって、化合物系超電導線には、例えば、0.6%に
達するような大きな歪が与えられることはなく、確実に
固定されるので超電状態にクエンチが発生することはな
く、歪によって劣化しやすい化合物系超電導線を直接巻
回して、大形の10Tesla以上の高磁界用の超電導磁石を
得ることができる。なお、歪によって特性劣化が比較的
少ない合金系超電導線を用いた超電導磁石に適用して
も、作用から明らかなように、それなりの効果がある。
A superconducting magnet for a high magnetic field according to the present invention is a superconducting magnet formed by winding a compound superconducting wire around a nonmagnetic bobbin, nonmagnetic fixed and movable flanges provided at both ends of the bobbin, and the bobbin. The superconducting coil is wound with a compound superconducting wire by applying a winding tension to compensate for a difference in heat shrinkage generated between the superconducting coil and the bobbin when cooled to a very low temperature. , A compressive force is applied in the axial direction so as to eliminate an axial gap between the superconducting wires generated when the compound superconducting wire is wound. As a result, the compound superconducting wire is not subjected to a large strain of, for example, 0.6%, and is securely fixed. Therefore, no quench occurs in the superconducting state, and the compound superconducting wire is easily deteriorated by the strain. By directly winding a compound superconducting wire, a large superconducting magnet for a high magnetic field of 10 Tesla or more can be obtained. Even when applied to a superconducting magnet using an alloy-based superconducting wire whose characteristic deterioration is relatively small due to strain, there is a certain effect, as is clear from the operation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例になる超電導磁石の断面図で
ある。 1:超電導コイル、1A:超電導線(例えば、化合物系超電
導線)、2:巻枠、3A:可動フランジ、3B:固定フランジ。
FIG. 1 is a sectional view of a superconducting magnet according to one embodiment of the present invention. 1: superconducting coil, 1A: superconducting wire (for example, compound superconducting wire), 2: reel, 3A: movable flange, 3B: fixed flange.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】非磁性の巻枠とこの巻枠の両端部にそれぞ
れ設けられた非磁性の固定および可動フランジと前記巻
枠に超電導線を巻回してなる超電導コイルとからなり、
前記超電導コイルは極低温に冷却された時に前記巻枠と
の間に生じる熱収縮量の差を補償するよう巻線張力をか
けて前記超電導線が巻回され、前記固定および可動フラ
ンジを介し前記超電導線を巻回する際に生じた該超電導
線間の軸方向の隙間をなくすよう軸方向に圧縮力が加え
られてなることを特徴とする超電導磁石。
1. A non-magnetic bobbin, a non-magnetic fixed and movable flange provided at each end of the bobbin, and a superconducting coil formed by winding a superconducting wire around the bobbin,
When the superconducting coil is cooled to a very low temperature, the superconducting wire is wound by applying a winding tension so as to compensate for a difference in the amount of heat shrinkage generated between the superconducting coil and the bobbin, and the superconducting wire is wound through the fixed and movable flanges. A superconducting magnet, characterized in that a compressive force is applied in an axial direction so as to eliminate an axial gap between the superconducting wires generated when the superconducting wires are wound.
JP13926190A 1990-05-29 1990-05-29 Superconducting magnet Expired - Lifetime JP2745780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13926190A JP2745780B2 (en) 1990-05-29 1990-05-29 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13926190A JP2745780B2 (en) 1990-05-29 1990-05-29 Superconducting magnet

Publications (2)

Publication Number Publication Date
JPH0432207A JPH0432207A (en) 1992-02-04
JP2745780B2 true JP2745780B2 (en) 1998-04-28

Family

ID=15241170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13926190A Expired - Lifetime JP2745780B2 (en) 1990-05-29 1990-05-29 Superconducting magnet

Country Status (1)

Country Link
JP (1) JP2745780B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5242490B2 (en) * 2009-04-24 2013-07-24 公益財団法人鉄道総合技術研究所 Production method of ground coil for magnetic levitation railway
DE102010040272B4 (en) * 2010-09-06 2018-04-19 Siemens Aktiengesellschaft High temperature superconductor (HTS) coil
JP6580966B2 (en) 2015-12-01 2019-09-25 株式会社東芝 Dose indexing device, dose indexing method, dose indexing program, and measuring device with dose indexing function
JP6486817B2 (en) 2015-12-02 2019-03-20 株式会社東芝 Superconducting coil and superconducting coil device

Also Published As

Publication number Publication date
JPH0432207A (en) 1992-02-04

Similar Documents

Publication Publication Date Title
JPH0260042B2 (en)
JPS61278109A (en) Conical impregnation-free winding for magnetic resonance
JP2745780B2 (en) Superconducting magnet
KR101454455B1 (en) Double pancake coil bobbin of co-winding structure
US4794360A (en) Inductive device having a core of an amorphous material
JPH04134808A (en) Superconducting magnet
JPS62108507A (en) Superconducting coil
JPH0851016A (en) Superconducting coil
JPH07320928A (en) Superconducting magnet
JP2561064Y2 (en) Superconducting wiggler
JPH09102414A (en) Superconducting coil
JPH0371604A (en) Superconducting winding
JP3146426B2 (en) Superconducting coil, method of manufacturing the same, and coil bobbin used for superconducting coil
JP2624831B2 (en) Superconducting magnet
JPH09139309A (en) Superconductive coil
JPH09148120A (en) Superconductive magnet and its manufacturing method
JPH02270307A (en) Winding method of superconducting coil
JP2788248B2 (en) High frequency magnetic core and method of manufacturing the same
JPH03261110A (en) Superconducting coil
JPS601811A (en) Superconductive coil
JPH04359406A (en) Superconducting coil
JPS63283105A (en) Superconducting coil
JPH09213520A (en) Superconducting coil
JPH0555026A (en) Method and apparatus for winding of superconducting pancake coil
JPS6238843B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 13