JPS6315729B2 - - Google Patents

Info

Publication number
JPS6315729B2
JPS6315729B2 JP7853679A JP7853679A JPS6315729B2 JP S6315729 B2 JPS6315729 B2 JP S6315729B2 JP 7853679 A JP7853679 A JP 7853679A JP 7853679 A JP7853679 A JP 7853679A JP S6315729 B2 JPS6315729 B2 JP S6315729B2
Authority
JP
Japan
Prior art keywords
coil
superconducting
flange
magnet
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7853679A
Other languages
Japanese (ja)
Other versions
JPS562605A (en
Inventor
Hisashi Ikeda
Masaaki Ban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7853679A priority Critical patent/JPS562605A/en
Publication of JPS562605A publication Critical patent/JPS562605A/en
Publication of JPS6315729B2 publication Critical patent/JPS6315729B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Description

【発明の詳細な説明】 本発明は超電導スプリツトマグネツトの改良に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in superconducting split magnets.

一般に複数個のコイルからなる超電導スプリツ
トマグネツトは単一コイルからなる超電導マグネ
ツトに比較して安定性が悪く、所望の磁界に到達
することが出来ず、低い磁界で超電導状態が常電
導状態に遷移(クエンチとよぶ)することが多い
ものであつた。
In general, superconducting split magnets consisting of multiple coils are less stable than superconducting magnets consisting of a single coil, and cannot reach the desired magnetic field, and the superconducting state changes to the normal conducting state at low magnetic fields. There were many transitions (called quenches).

而して平角状の超電導線を用いた通常のスプリ
ツトマグネツトを第1図に示した。第1図は2個
のコイルをコイル軸方向に並設したスプリトマグ
ネツトをコイル軸方向に沿つて切断した断面の上
半部の断面図である。第1図に示す如く、ボビン
1,1′は円筒状の胴部2と両端3,3′及び中間
3″のフランジ(側板)からなつている。コイル
部分はその巻線方向からして、第1図の左側コイ
ル1′においては、その左側から超電導線4が引
込まれ、フランジ3′の内面に押しつけつつ順次
4′,4″,4…と巻かれている。ボビンの中間
フランジ3″と超電導線の最後のターンとの間に
超電導線の幅の精度から不可避的に空隙5を生ず
る。引続いて第2層目は中間フランジ3″に押し
付けて巻きつづけ空隙5′を生ずる。このように
して多数層巻きつける。又右側コイル1において
も左側コイル1′と同様の操作を行つて超電導線
をまきつける。この場合においても空隙部が交互
にフランジ3及び3″に生ずることになる。
FIG. 1 shows a conventional split magnet using a rectangular superconducting wire. FIG. 1 is a sectional view of the upper half of a split magnet in which two coils are arranged side by side in the coil axial direction, taken along the coil axial direction. As shown in Fig. 1, the bobbin 1, 1' consists of a cylindrical body 2, both ends 3, 3', and a flange (side plate) at the middle 3''.The coil portion has the following characteristics from the winding direction: In the left-hand coil 1' of FIG. 1, a superconducting wire 4 is drawn in from the left side and is sequentially wound 4', 4'', 4, . . . while being pressed against the inner surface of the flange 3'. A gap 5 is inevitably created between the intermediate flange 3'' of the bobbin and the last turn of the superconducting wire due to the precision of the width of the superconducting wire.Subsequently, the second layer is pressed against the intermediate flange 3'' and continues to be wound, leaving no gap. 5'. In this way, multiple layers are wound. Further, the same operation as the left coil 1' is performed on the right side coil 1 to wind the superconducting wire. In this case as well, voids will occur alternately in the flanges 3 and 3''.

このことを詳しく説明すると次の通りである。
即ち超電導線4自体は長手方向で見た場合、線幅
の微小なバラツキと微小な蛇行があるため、第1
図においてボビンの胴部2の長さ即ちフランジの
内壁間の間隔を線幅の整数倍になるように作つて
おいても必ず各巻層における最後のターンとフラ
ンジ内壁との間に線幅より狭い空隙5,5′…が
残る。例えば線幅1〜2mmの超電導線では20〜
30μ以上の空隙が残る。
This will be explained in detail as follows.
That is, when the superconducting wire 4 itself is viewed in the longitudinal direction, there are minute variations in line width and minute meandering, so the first
In the figure, even if the length of the bobbin body 2, that is, the distance between the inner walls of the flange, is made to be an integral multiple of the line width, the distance between the last turn in each winding layer and the inner wall of the flange is always narrower than the line width. Gaps 5, 5', . . . remain. For example, for a superconducting wire with a line width of 1 to 2 mm, the
A void of 30μ or more remains.

超電導マグネツトの良否は現状の技術において
は電磁力によつて線材の数十ミクロンの動きが生
じ、これを阻止できるかどうかである。マグネツ
トを励磁した際にはコイル内の磁界分布により電
磁力が発生し各々の巻線は力を受け微小に動いた
場合でも巻線の運動エネルギーは熱となつて線材
の温度上昇をもたらす。この温度上昇により超電
導状態を期待するための条件である臨界温度を超
え超電導状態から常電導状態へと遷移し線材の持
つている状態を十分に発揮しないこととなる。従
つてコイルターン間及び層間を密にし空隙を生成
しないように製作することが必要であり、上記の
如くコイルの両端に空隙部を生成した場合には、
この空隙部にパテ等の充填材を充填してターン間
に密着したコイルとしているものである。
The quality of superconducting magnets depends on whether or not current technology can prevent the movement of the wire by tens of microns due to electromagnetic force. When the magnet is excited, an electromagnetic force is generated due to the magnetic field distribution within the coil, and even if each winding receives force and moves slightly, the kinetic energy of the winding turns into heat and causes the temperature of the wire to rise. This temperature rise exceeds the critical temperature, which is a condition for expecting a superconducting state, and the wire changes from a superconducting state to a normal conducting state, and the wire does not exhibit its full potential. Therefore, it is necessary to manufacture the coil so that the spaces between the turns and between the layers are dense and no voids are formed.If voids are created at both ends of the coil as described above,
This gap is filled with a filler such as putty to form a coil that is tightly attached between the turns.

然しながら空隙部につめものを充填するとして
も各層毎の空隙間隔巾も異なり且つその精度を要
する充填物は不可能である。即ち超電導線の幅よ
り小さく10分の数mmとか数mmとなるのに対しマグ
ネツトの性能上10μm以下の超電導線の動きしか
許容されないためである。従つてつめものを充填
したコイル構造のマグネツトでは安定性に乏し
く、所望の磁界を発生しないものである。
However, even if the gap is to be filled with a filling material, the width of the gap is different for each layer, and it is impossible to fill the gap with a material that requires precision. That is, this is because the width of the superconducting wire is smaller than the width of the superconducting wire, which is several tenths of a millimeter or several millimeters, whereas the performance of the magnet only allows the superconducting wire to move within 10 μm. Therefore, a magnet having a coil structure filled with a material has poor stability and cannot generate a desired magnetic field.

又コイル内の電磁力の分布について、これを検
討すると、第1図の矢印(→)にて示した方向に
なつている。左右のコイルを1体としてみると、
電流を同方向に流すと左右のコイル間には引力を
生じ、逆方向に流すと斥力を生ずる。
Also, when considering the distribution of electromagnetic force within the coil, it is in the direction shown by the arrow (→) in FIG. Looking at the left and right coils as one unit,
When current flows in the same direction, an attractive force is created between the left and right coils, and when current flows in the opposite direction, a repulsive force is created.

更に詳しく説明すると次の如くである。今隣接
するコイルがないとすれば独立の一つのコイルに
おいては右向きの力と左向きの力がバランスして
おり、結果として左右の力は相殺され力を生じな
い。これはコイル内における磁界分布が中心をは
さんだ左右対象となつているためである。一方、
第1図の如く二つのコイルが存在する場合には隣
りのコイルによつて磁界分布が変化し、左右対象
にならず相殺しきれない力が引力や斥力として残
る。従つて二つのコイルに同方向の電流を流す場
合には、一つのコイル断面内において左右の力は
バランスすることなく全体として中間フランジ
3″に押しつけられるような力(→)となつてい
る。従つて空隙部5,5′に詰めこんだ充填物の
精度が不十分なのでその役目を十分にはたすこと
が出来ず超電導線の動きを阻止するに到つていな
いと考えられる。
A more detailed explanation is as follows. If there are no adjacent coils, the rightward force and the leftward force in one independent coil are balanced, and as a result, the left and right forces cancel each other out and produce no force. This is because the magnetic field distribution within the coil is symmetrical with respect to the center. on the other hand,
When there are two coils as shown in FIG. 1, the magnetic field distribution changes depending on the adjacent coil, and the forces that cannot be canceled out remain as attractive or repulsive forces that are not symmetrical. Therefore, when currents flow in the same direction through two coils, the left and right forces are not balanced within the cross section of one coil, and the force as a whole is pressed against the intermediate flange 3'' (→). Therefore, it is considered that the accuracy of the filler packed into the voids 5, 5' is insufficient, so that it cannot fully fulfill its role and is unable to prevent the movement of the superconducting wire.

本発明はかかる現状に鑑み鋭意研究を行つた結
果、全体の力が働く方向に位置しているフランジ
に超電導線を密接せしめておくことにより、超電
導線の動く余地を皆無としておくことによつて、
もはや超電導線の移動を阻止できることを見出し
たものである。即ち本発明はコイル軸方向に分割
した超電導スプリツトマグネツトにおいて、各コ
イルに働く電磁力の方向にあるコイル側板に超電
導巻線を密接して配置したことを特徴とするもの
である。
As a result of intensive research in view of the current situation, the present invention was developed by keeping the superconducting wire in close contact with the flange located in the direction in which the overall force acts, thereby leaving no room for the superconducting wire to move. ,
They discovered that it is possible to prevent the superconducting wire from moving any longer. That is, the present invention is characterized in that, in a superconducting split magnet divided in the axial direction of the coil, superconducting windings are closely arranged on the coil side plates in the direction of the electromagnetic force acting on each coil.

本発明の1例を図面にもとづき詳細に説明す
る。第2図及び第3図も第1図の場合と同様に軸
対称構造であるので軸方向断面の上半部の断面を
示した。そこで第2図に示す如く電流を同方向に
流すコイルにおいてはボビン1,1′の中間フラ
ンジ3″に巻線が密接するように超電導線4,
4′,4″…を配置するものであり、このように各
層の巻線がすべて中間フランジ3″に密接するよ
うにして両端フランジ3,3′の附近に空隙5,
5′,5″…が生ずるようにしたものである。この
ような構造にすることにより励磁し電磁力が生じ
たとしても中間フランジ3″にて互のコイルの引
力をうけることとなる。又逆方向に電流を流す場
合には、第3図に示す如く超電導線4,4,′,
4″…を両端フランジ3及び3′に密接し、中間フ
ランジ3″の附近に空隙5,5′,5″…を生ずる
ようなコイルとすればよい。又ボビンを3個以上
コイル軸方向に並設して使用するスプリツトマグ
ネツトにおいても同様であり、各コイルについて
並設する他のコイルとの間で作用する電磁力が引
力になるか斥力になるかに従つてその力の方向に
位置しているコイル側板(フランジ)に巻線を空
隙が生じないように密接して巻けばよい。
An example of the present invention will be explained in detail based on the drawings. FIGS. 2 and 3 also have an axially symmetrical structure as in the case of FIG. 1, so the cross section of the upper half of the axial cross section is shown. Therefore, as shown in FIG. 2, in coils in which current flows in the same direction, superconducting wires 4,
4', 4'', etc. In this way, the windings of each layer are all in close contact with the intermediate flange 3'', and gaps 5,
5', 5'', . In addition, when the current is passed in the opposite direction, the superconducting wires 4, 4,',
4"... should be in close contact with both end flanges 3 and 3', and gaps 5, 5', 5"... may be created near the intermediate flange 3". Also, three or more bobbins may be arranged in the axial direction of the coil. The same applies to split magnets that are used in parallel, and the direction of the electromagnetic force acting between each coil and the other coils in parallel depends on whether it is attractive or repulsive. The winding wire may be wound closely around the coil side plate (flange) located therein so as not to create any gaps.

次に本発明の実施例について説明する。胴部内
径60mm、外径70mm、フランジ径24.6mm、中間フラ
ンジ厚30mm両端フランジ厚25mm、コイル部分の内
幅45mmからなるステンレス製ボビンを作製した。
このボビンにはコイルが巻かれる部分のみマイラ
ー箔を貼り、コイルとボビンとの間を電気絶縁性
にした。又超電導線はNbTiフイラメントと銅マ
トリツクスからなる極細多芯線であり、その断面
積比は1:1.52である。その外形寸法は1mm×2
mmで約25μmのホルマール絶縁が施されている。
Next, examples of the present invention will be described. A stainless steel bobbin was fabricated with a body inner diameter of 60 mm, an outer diameter of 70 mm, a flange diameter of 24.6 mm, an intermediate flange thickness of 30 mm, both end flanges thickness of 25 mm, and an inner width of the coil portion of 45 mm.
Mylar foil was pasted on this bobbin only in the area where the coil was wound to provide electrical insulation between the coil and the bobbin. Furthermore, the superconducting wire is an ultrafine multifilamentary wire consisting of an NbTi filament and a copper matrix, and its cross-sectional area ratio is 1:1.52. Its external dimensions are 1mm x 2
Approximately 25μm of formal insulation is applied.

このようなボビン及び超電導線をマグネツト2
個分用意して本発明及び従来の超電導スプリツト
マグネツトについて比較した。
Such a bobbin and superconducting wire are connected to magnet 2.
A comparison was made between the present invention and a conventional superconducting split magnet.

従来例 第1図に示す左側コイルにおいて、超電導線
4,4′,4″を左側のフランジ3′に押付け、空
隙を生じないようにまた超電導線間にも空隙が生
じないように巻いた。ターンに巻いた後、フラン
ジ3″との間に約2mmの空隙5を生じた。その部
分に細いタンザク状のガラスエポキシ板を挿入し
た。引続いて第2層目は中間フランジ3″に押し
つけるようにして巻いた後、フランジ3′との間
に空隙5′に前記と同様ガラスエポキシ板を挿入
した。このような操作を繰返して70層まき(外径
約220mm)コイルを作製した。更に右側のボビン
1についても上記と同様にしてコイルを作製し
た。
Conventional Example In the left-hand coil shown in FIG. 1, the superconducting wires 4, 4', 4'' were pressed against the left-hand flange 3' and wound so as not to create any gaps or between the superconducting wires. After winding into a turn, a gap 5 of about 2 mm was created between it and the flange 3''. A thin tanzak-shaped glass epoxy plate was inserted in that area. Subsequently, the second layer was wrapped so as to be pressed against the intermediate flange 3'', and a glass epoxy plate was inserted into the gap 5' between the flange 3' and the flange 3' in the same manner as above.Such operations were repeated until 70 minutes. A layered coil (outer diameter of about 220 mm) was produced.A coil was also produced for bobbin 1 on the right side in the same manner as above.

実施例 まず最初に第1層目は第1図の第1層と全く同
じように巻き、空隙5が中間フランジ3″の左側
に生じるようにする。次に中間フランジ3″に最
も近いターンとその次に近いターンとの間にクサ
ビを入れ、空隙をあける。この結果中間フランジ
3″に最も近いターンは動いて中間フランジ3″に
密接し、代わりに空隙5はクサビを入れた位置に
動くことになる。次のターンについても、クサビ
を入れることにより、中間フランジに最も近いタ
ーンに密接させる。このような操作を繰返すこと
により、第1図の空隙5は動いて第2図の空隙5
の位置に生じることとなる。又第2層目は上記従
来例と同様に巻きつける。このような操作をくり
返して超電導線をすべて中間フランジ3″に密接
せしめて70層巻きを行い外径約220mmのものとし
た。又右側のボビン1についても同様の操作を行
つて各層の超電導線の空隙をすべて右側フランジ
3に生ずるようにした。
EXAMPLE First of all, the first layer is wound in exactly the same way as the first layer in FIG. Put a wedge between it and the next closest turn to create a gap. As a result, the turn closest to the intermediate flange 3'' will move into close contact with the intermediate flange 3'', and the air gap 5 will instead move into the wedged position. The next turn is also placed in close contact with the turn closest to the intermediate flange by inserting a wedge. By repeating such operations, the gap 5 in FIG. 1 moves and becomes the gap 5 in FIG. 2.
This will occur at the position. The second layer is wound in the same manner as in the conventional example. By repeating these operations, all of the superconducting wires were brought into close contact with the intermediate flange 3'', and wound in 70 layers to obtain an outer diameter of approximately 220 mm.The same operation was also performed on the bobbin 1 on the right side, and the superconducting wires of each layer were wound. All the voids were created in the right flange 3.

斯くして得られた2個のコイルを個別に液体ヘ
リウム中に浸漬し、直流電源をコイルに接続し、
直流電源の電流とコイルの中心に挿入された発生
電磁界測定甲のホール素子のホール電圧出力をX
−Yレコーダに記録するようにした電流を上昇さ
せてゆき、超電導状態が破れてコイル両端の電圧
が急激に立上がりこのために電流が降下し始める
時の発生磁界を読み、この操作を繰返し、励磁回
数に対する発生磁界の変化を調べた。その結果は
第4図に示す通りである。第4図Aは従来例のマ
グネツト第4図Bは本発明マグネツトであり、第
4図Aにおいては発生磁界のバラツキが大きく安
定した性能を発揮することが出来ない。又第4図
Bでは第3回目の励磁でほぼ安定した性能が得ら
れている。なお図面において曲線の点線部分は流
体ヘリウム中から出して室温まで温度を上昇せし
めたことを意味するものである。
The two coils thus obtained were individually immersed in liquid helium, a DC power source was connected to the coils,
X
- Increase the current recorded on the Y recorder, read the magnetic field generated when the superconducting state is broken and the voltage at both ends of the coil rises rapidly, and the current begins to drop. Repeat this operation to excite. The change in the generated magnetic field with respect to the number of times was investigated. The results are shown in FIG. FIG. 4A shows a conventional magnet, and FIG. 4B shows a magnet of the present invention. In FIG. 4A, the generated magnetic field varies greatly and cannot exhibit stable performance. Furthermore, in FIG. 4B, almost stable performance is obtained after the third excitation. In the drawings, the dotted line portion of the curve means that the helium was taken out of the fluid and the temperature was raised to room temperature.

これらの測定結果において、従来例のマグネツ
トでは超電導線4,4′,4″,…が空隙5の方向
に電磁力で移動し、その際に発生する熱で超電導
が破れると考えられ、コイルを室温まで昇温して
から再冷却した時には熱応力により初めの励磁の
状態に近い位置に超電導線4,4′,4″,…が戻
り超電導線間にも空隙を生じまた初めの励磁繰返
しに近い発生磁界の上昇傾向を示すものと考えら
れる。
In these measurement results, it is thought that in the conventional magnet, the superconducting wires 4, 4', 4'', etc. move in the direction of the air gap 5 due to electromagnetic force, and the superconductivity is broken by the heat generated at that time, causing the coil to When the temperature is raised to room temperature and then cooled again, the superconducting wires 4, 4', 4'', etc. return to the position close to the initial excitation state due to thermal stress, creating gaps between the superconducting wires and returning to the initial excitation repetition. This is thought to indicate an upward trend in the generated magnetic field in the near future.

一方、本発明の実施例では、フランジ3″と超
電導線4が密接し且つ、超電導線同志も密接して
いることから、超電導線4,4′,4″…の電磁力
による変位は極めて少なく最初の数回の励磁によ
り安定な位置に落着くものと考えられる。
On the other hand, in the embodiment of the present invention, since the flange 3'' and the superconducting wire 4 are in close contact with each other, and the superconducting wires are also in close contact with each other, the displacement of the superconducting wires 4, 4', 4'', etc. due to electromagnetic force is extremely small. It is thought that it settles into a stable position after the first few excitations.

以上詳述した如く本発明マグネツトによれば、
超電導線の巻層端部の空隙部に充填物を詰め込む
ことがないため製造方法が簡単であり、しかも安
定した磁界を発生せしめる等顕著な効果を有す
る。
As detailed above, according to the magnet of the present invention,
Since there is no need to fill the voids at the ends of the windings of the superconducting wire, the manufacturing method is simple, and it has remarkable effects such as generating a stable magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

番1図に従来のマグネツトにおいて軸を中心と
して上半分を示す断面図、第2図乃至第3図は本
発明の1例のマグネツトにおいて軸を中心として
上半分を示す断面図、第4図Aは従来のマグネツ
トにおける励磁回数と発生磁界の関係曲線図、第
4図Bは本発明マグネツトにおける励磁回数と発
生磁界との関係曲線図である。 1,1′……ボビン、2……胴、3,3′,3″
……フランジ、4,4′,4″……超電導線、5,
5′,5″……空隙部。
Figure 1 is a sectional view showing the upper half of a conventional magnet centered around the shaft, Figures 2 and 3 are sectional views of the upper half of a magnet according to an example of the present invention centered around the shaft, and Figure 4A. 4B is a curve diagram showing the relationship between the number of excitations and the generated magnetic field in the conventional magnet, and FIG. 4B is a diagram showing the relationship between the number of excitations and the generated magnetic field in the magnet of the present invention. 1, 1'...Bobbin, 2...Body, 3, 3', 3''
...Flange, 4,4',4''...Superconducting wire, 5,
5', 5''...Void portion.

Claims (1)

【特許請求の範囲】[Claims] 1 コイル軸方向に分割した超電導スプリツトマ
グネツトにおいて、各コイルに働く電磁力の方向
にあるコイル側板(フランジ)に超電導巻線を密
接して配置したことを特徴とする超電導スプリツ
トマグネツト。
1. A superconducting split magnet divided in the axial direction of the coil, characterized in that a superconducting winding is closely arranged on a coil side plate (flange) in the direction of electromagnetic force acting on each coil.
JP7853679A 1979-06-21 1979-06-21 Superconductive split magnet Granted JPS562605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7853679A JPS562605A (en) 1979-06-21 1979-06-21 Superconductive split magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7853679A JPS562605A (en) 1979-06-21 1979-06-21 Superconductive split magnet

Publications (2)

Publication Number Publication Date
JPS562605A JPS562605A (en) 1981-01-12
JPS6315729B2 true JPS6315729B2 (en) 1988-04-06

Family

ID=13664624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7853679A Granted JPS562605A (en) 1979-06-21 1979-06-21 Superconductive split magnet

Country Status (1)

Country Link
JP (1) JPS562605A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5968910A (en) * 1982-10-13 1984-04-19 Mitsubishi Electric Corp Superconductive coil
JPH0797528B2 (en) * 1985-03-15 1995-10-18 三菱電機株式会社 Superconducting magnet device
JP5511003B2 (en) * 2010-02-22 2014-06-04 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting coil and manufacturing method thereof

Also Published As

Publication number Publication date
JPS562605A (en) 1981-01-12

Similar Documents

Publication Publication Date Title
KR100635170B1 (en) Superconducting magnetic coil
US7777602B2 (en) Superconducting wire and superconducting coil made therewith
US3559126A (en) Means to provide electrical and mechanical separation between turns in windings of a superconducting device
JP2007201129A (en) Reactor
US3514730A (en) Cooling spacer strip for superconducting magnets
US3983427A (en) Superconducting winding with grooved spacing elements
JP2001244109A (en) High-temperature superconducting coil device
US3720777A (en) Low loss conductor for a.c.or d.c.power transmission
JPS6315729B2 (en)
US6163241A (en) Coil and method for magnetizing an article
US3233154A (en) Solenoid coil wound with a continuous superconductive ribbon
JP4559176B2 (en) Method and apparatus for magnetizing a permanent magnet
JPH0510809B2 (en)
JP2509633B2 (en) Solenoid type AC superconducting coil
JPH048885B2 (en)
US5177762A (en) Saturable reactor
JP4282628B2 (en) Non-inductive winding frame, permanent current switch, and superconducting magnet
JPS61271804A (en) Superconductive electromagnet
SU1153368A1 (en) Magnetic lens
JPH07320928A (en) Superconducting magnet
JPH0758646B2 (en) Method for manufacturing superconducting magnet device
JP2001332400A (en) Charged particle deflection electromagnet
De Hart Low drag conductor
JPS5814702Y2 (en) electromagnetic pump
JPS63283105A (en) Superconducting coil