JPS5968910A - Superconductive coil - Google Patents

Superconductive coil

Info

Publication number
JPS5968910A
JPS5968910A JP18102482A JP18102482A JPS5968910A JP S5968910 A JPS5968910 A JP S5968910A JP 18102482 A JP18102482 A JP 18102482A JP 18102482 A JP18102482 A JP 18102482A JP S5968910 A JPS5968910 A JP S5968910A
Authority
JP
Japan
Prior art keywords
coil
magnetic field
winding
divided
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18102482A
Other languages
Japanese (ja)
Other versions
JPH0365002B2 (en
Inventor
Shunji Yamamoto
俊二 山本
Tadatoshi Yamada
山田 忠利
Masatami Iwamoto
岩本 雅民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18102482A priority Critical patent/JPS5968910A/en
Publication of JPS5968910A publication Critical patent/JPS5968910A/en
Publication of JPH0365002B2 publication Critical patent/JPH0365002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor

Abstract

PURPOSE:To obtain a supreconductive coil which can generate high uniform magnetic field by a method wherein the superconductive coil is divided into a plurality of blocks and different exciting current is applied to a winding in each block and the space distribution of the magnetic field is changed optionally. CONSTITUTION:A plurality of protruded dividing strips 13a with a constant thickness S are provided around a drum 13 with a constant block length l and main coil windings 11a are wound between those dividing strips 13a individually. If there is a space remained in each block, it is filled by a filler 15 of a length DELTAl. A jumper wire 11b is connected to the winding 11a and, if necessary, connected to the adjacent winding 11a through a jumper notch 13b provided to the protruded dividing strip 13a. With this constitution, the windings 11a are composed of a required number of independent windings and the current applied to each winding is controlled individually so that the uniformity of the magnetic field generated by the main coil is improved one figure up.

Description

【発明の詳細な説明】 この発明は、超電導コイルに関するものであり、とりわ
け、磁界の空間均一度が高い超電導コイルに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting coil, and particularly to a superconducting coil with high spatial uniformity of magnetic field.

従来、この種の装置として第1図に示すものがあった。Conventionally, there has been a device of this type as shown in FIG.

図において主コイルl、磁界補正コイルユが巻枠3に巻
回されてなり、高均一磁界領域lを形成する。ここに軸
方向2.半径方向rも示した。主コイル/は主磁界を発
生するコイルであり、コイルが有限長であるために生ず
る大きな不均一磁界を補正するコイル等も含んでいる。
In the figure, a main coil 1 and a magnetic field correction coil 2 are wound around a winding frame 3 to form a highly uniform magnetic field region 1. Here, the axial direction 2. The radial direction r is also shown. The main coil / is a coil that generates a main magnetic field, and also includes a coil that corrects a large non-uniform magnetic field that occurs because the coil has a finite length.

磁界補正コイルコはシムコイルとも呼ばれるものであり
、小さな不均一磁界を補正することにより、高均一磁界
領域q中での磁界の空間均一度を高めるためのコイル群
である。
The magnetic field correction coil is also called a shim coil, and is a group of coils for improving the spatial uniformity of the magnetic field in the highly uniform magnetic field region q by correcting a small non-uniform magnetic field.

かかる構成により主コイルlに、時間的に変化しない定
電流を流すと、高均一磁界領域ダに高均一磁界が発生す
る。磁界の均一度、すなわち、磁界の空間分布の均一性
をよくするために、高均一磁界領域ダの寸法に較べて、
主コイルlの直径および長さを大きくしている。しかし
ながら、主コイル/の電流密度分布が、主コイル断面内
で完全に一様にはできないこと、主コイル/を完全な円
筒状にはできないこと、主コイルlの長さが有限でk)
ること等の理由により、主コイルlのみが発生する磁界
の均一度をよくすることが困靴であった。そこで、磁界
の均一度を向上させるために、磁界補正コイル2が一般
に用いられる。磁界補正コイル2は、円形コイル、鞍型
コイル、矩形コイル等、種々の形状のコイル多数で構成
されており、高均一磁界領域グ内の磁界分布中の不均一
磁界、成分圧対応して磁界補正コイル2の発生する磁界
を調整し、高均一磁界領域ダ内の磁界均一度を向上させ
ていた。しかしながら、磁界補正コイル2の出力磁界中
には、主コイルlが発生する不均一磁界を打消す磁界成
分の他に、不均一磁界の補正には全く関与しない誤差磁
界成分がわずかながら含まれ、磁界補正コイルλの出力
磁界を増大させると、このような誤差磁界成分も増大す
る。従って、主コイルlの発生する磁界の均一度がある
程度よくないと、磁界補正コイル−を用いても、磁界均
一度の向上は困難であった。
With this configuration, when a constant current that does not change over time is passed through the main coil 1, a highly uniform magnetic field is generated in the highly uniform magnetic field region DA. In order to improve the uniformity of the magnetic field, that is, the uniformity of the spatial distribution of the magnetic field, compared to the dimensions of the highly uniform magnetic field area,
The diameter and length of the main coil l are increased. However, the current density distribution of the main coil cannot be made completely uniform within the cross section of the main coil, the main coil cannot be made completely cylindrical, and the length of the main coil l is finite.
For these reasons, it has been difficult to improve the uniformity of the magnetic field generated only by the main coil l. Therefore, in order to improve the uniformity of the magnetic field, a magnetic field correction coil 2 is generally used. The magnetic field correction coil 2 is composed of a large number of coils of various shapes such as a circular coil, a saddle-shaped coil, and a rectangular coil. The magnetic field generated by the correction coil 2 is adjusted to improve the uniformity of the magnetic field within the highly uniform magnetic field region. However, in the output magnetic field of the magnetic field correction coil 2, in addition to the magnetic field component that cancels out the non-uniform magnetic field generated by the main coil 1, a small amount of error magnetic field component that is not involved in the correction of the non-uniform magnetic field is included. When the output magnetic field of the magnetic field correction coil λ is increased, such error magnetic field components also increase. Therefore, unless the uniformity of the magnetic field generated by the main coil l is not good to some extent, it is difficult to improve the uniformity of the magnetic field even if a magnetic field correction coil is used.

次に、主コイル/の電流密度の、主コイル/断面内の分
布が磁界の均一度に与える影響について考察する。第2
図は主コイルlの巻線に使用する超電導線材のバラツキ
ΔWの実測値を示す。ここで、線材の断面寸法は1mの
オーダであり、線材長はkmのオーダである。線材の幅
のバラツキの範囲は20μmで、そのバラツキは、線材
そのものの仕上げ精度と、線材表面に施す電気絶縁物の
厚さの精度とによって決まる。第2図に示した線材幅の
バラツキは、線材の製造技術からみて、これ以下の値と
するのは困難である。線材の厚さのバラツキも幅のバラ
ツキと同様である。このように、線材の幅にバラツキの
ある線材を主コイルに巻回した際の巻線断面を図式的に
示したものが第3図で′ある。/aはコイル巻線であり
、同図は、1層分の巻線断面のみを表わし、Z軸方向の
単位長当りの巻数が場所によって異なることを示してい
る。
Next, the influence of the distribution of the current density of the main coil within the cross section of the main coil on the uniformity of the magnetic field will be considered. Second
The figure shows the actual measured value of the variation ΔW of the superconducting wire used for the winding of the main coil l. Here, the cross-sectional dimension of the wire is on the order of 1 m, and the wire length is on the order of km. The range of variation in the width of the wire is 20 μm, and the variation is determined by the finishing accuracy of the wire itself and the accuracy of the thickness of the electrical insulator applied to the surface of the wire. It is difficult to reduce the variation in wire width shown in FIG. 2 to a value smaller than this in view of wire manufacturing technology. The variation in the thickness of the wire is similar to the variation in the width. FIG. 3' schematically shows a cross-section of the winding when a wire rod having varying widths is wound around the main coil. /a is a coil winding, and the figure shows only a cross section of the winding for one layer, indicating that the number of turns per unit length in the Z-axis direction varies depending on the location.

各ターンには同一電流が流れているから、Z軸方向の各
場所によって電流密度が異なることになる。
Since the same current flows through each turn, the current density differs depending on the location in the Z-axis direction.

いま、Z方向に対する電流密度りいW)を次式で定義す
る。
Now, the current density (W) in the Z direction is defined by the following equation.

L(△−)−(wo+〜) ここで、I:主コイル電流値、 wo:線材の基準幅、 ΔW:線材幅の基準幅WOからのずれ、いま、線材幅を
W(7=/ ’1m 、線材幅のずれをΔW=±5μg
 、 L(、lを基準電流値として電流密度を求めてみ
ると、 L(+よml/蜘=/−1×10−’ ” (−rp、) / L(1) = t + s x
 t o−’となる。すなわち、第2図に線材幅の精度
を示したような、実用的に得られるコイル巻線を用いて
主コイルlを巻回した場合、その電流密度は、場所によ
って基準値L((4に対して!X10  程度の範囲で
変動する。主コイルlの発生する磁界は、電流密度りに
対応して変化するので、ここで示したような電流密度変
化については、基準磁界に対1、てlθ 程度のオーダ
で変動することになる。
L(△-)-(wo+~) Here, I: main coil current value, wo: standard width of wire, ΔW: deviation of wire width from standard width WO, now wire width is W(7=/' 1m, deviation of wire width ΔW = ±5μg
, L(, When calculating the current density using l as the reference current value, L(+yoml/spider=/-1×10-' ” (-rp,) / L(1) = t + s x
It becomes t o-'. In other words, when the main coil l is wound using a practically obtained coil winding wire as shown in Figure 2, the current density will vary depending on the location from the reference value L ((4). The magnetic field generated by the main coil l changes in accordance with the current density. It will fluctuate on the order of lθ.

jrお、線材の厚さのバラツキによっても同様のことが
生じる。NMR(核磁気共鳴)現象等に必要とされる高
均一磁界超電導コイルにおける磁界の均一度は、試料位
置においてio  以下であることが必要といわれてい
る。従って、このような高均一磁界を実現するため忙は
、補正コイル2により、主コイルノの作る磁界を補正す
る必要がある。
Also, a similar problem occurs due to variations in the thickness of the wire. It is said that the uniformity of the magnetic field in a high uniform magnetic field superconducting coil required for NMR (nuclear magnetic resonance) phenomena etc. needs to be less than io at the sample position. Therefore, in order to realize such a highly uniform magnetic field, it is necessary to use the correction coil 2 to correct the magnetic field created by the main coil.

従来の高均一磁界超電導コイルは、以上のように線材断
面寸法にバラツキのある線材で巻回されていたので、主
コイル断面内の電流密度の分布が均一ではなく、主コイ
ルlの発生磁界の均一度が低下するので、礎界補正コイ
ルコによる磁界の補正量が大きくなり、そのため、磁界
補正コイル2が大形化する欠点があると共忙、均一度の
高い補正が行えなくなるという欠点があった。
Conventional high-uniform magnetic field superconducting coils are wound with wires whose cross-sectional dimensions vary as described above, so the current density distribution within the cross-section of the main coil is not uniform, and the magnetic field generated by the main coil l is As the uniformity decreases, the amount of correction of the magnetic field by the base field correction coil increases, which has the disadvantage of increasing the size of the magnetic field correction coil 2. Ta.

この発明は、上記のような従来のものの欠点を除去する
ためになされたもので、巻枠を一定寸法の多数のブロッ
クに分割し、そのブロック内の巻数を所定の値とした巻
線構造により、高均一磁界を発生できる超電導コイルを
提供することを目的とするものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and uses a winding structure in which the winding frame is divided into a large number of blocks of fixed dimensions, and the number of turns in each block is set to a predetermined value. The object of the present invention is to provide a superconducting coil that can generate a highly uniform magnetic field.

また、この発明の目的は、コイルを複数個のブロックに
分け、各ブロックの巻線に異なる励磁電流が流せるよう
に、各ブロックを電気的に互いに独立させることにより
、磁界の空間分布を任意に変化させて高均一磁界領域内
の磁界均一度を著しく改善できる超電導コイルを提供す
ることである。
Another object of the invention is to divide the coil into a plurality of blocks and make each block electrically independent so that different excitation currents can flow through the windings of each block, thereby arbitrarily controlling the spatial distribution of the magnetic field. It is an object of the present invention to provide a superconducting coil that can significantly improve magnetic field uniformity in a highly uniform magnetic field region by changing the magnetic field uniformity.

以下、この発明を第グ図に示す一実施例に′ついて説明
する。同図は、主コイルのコイル巻線//9−の1層分
を示しており、巻線は図の左から右に行う。巻枠13に
は、その外周面に厚さSの分割突条13aが複数形成さ
れており、隣りあう分割突条13a間にlブロン2分の
コイル巻線//&が巻回される。コイルは、全て長さ1
のブロックに分割されている。また、各ブロック内に残
余の空間があるときは詰物/3を施し、その長さをΔ1
で表わしている。1つのブロック内の巻数は一定である
。従って、詰物/、10幅Δ1は、線材の幅のバラツキ
によって変化するので、通常は、各々。
The present invention will be described below with reference to an embodiment shown in FIG. The figure shows one layer of coil winding //9- of the main coil, and the winding is performed from left to right in the figure. A plurality of divided protrusions 13a having a thickness of S are formed on the outer circumferential surface of the winding frame 13, and a coil winding of 1/2 length //& is wound between adjacent divided protrusions 13a. All coils are 1 length
It is divided into blocks. Also, if there is any remaining space in each block, fill it with /3 and increase its length by Δ1.
It is expressed as The number of turns within one block is constant. Therefore, since the filling width Δ1 changes depending on the variation in the width of the wire, it is usually each.

のブロックで詰物15の幅Δ!は異なる。ただし、ブロ
ック長りと分割突条/、?aの厚さSは、一定値である
Width Δ of filling 15 with blocks of! is different. However, the block length and dividing protrusion/? The thickness S of a is a constant value.

各ブロック間の巻線渡り部付近の巻線状態を第5図に示
す。図において、//bはコイル巻線1/aの渡り線で
あり、/、?bは分割突条/3eLに設けた渡り溝であ
る。あるブロック内で必要な巻数だけ巻回されたコイル
巻線1/aは、渡り線//1)を介して隣りのブロック
のコイル巻線tiaの巻始め位置に達する。巻線l/a
と渡り線//bとは同一線材の異なる位置の名称であり
、巻線l/aと渡り線//l)の間には線材を切断後接
続した箇所があってもよいし、なくてもよい。また、渡
り線71bは、分割突条/、7aの一部忙形成された渡
り溝/jl)中を通る。渡り溝/、?bは各分割突条/
Jaにl箇所あり、渡り線//1)が1本通る程度の溝
幅をもち、巻枠/3の最外層コイルが巻かれる直径以下
となるような溝深さになっている。また、渡り溝/3b
はZ軸と平行である。
FIG. 5 shows the winding state near the winding transition portion between each block. In the figure, //b is the crossover wire of coil winding 1/a, /, ? b is a transition groove provided on the split protrusion/3eL. The coil winding 1/a, which has been wound by the required number of turns in a certain block, reaches the winding start position of the coil winding tia of the adjacent block via the crossover wire (//1). Winding l/a
and crossover wire//b are the names of different positions of the same wire, and there may or may not be a point where the wire is connected after being cut between winding l/a and crossover wire//l). Good too. Further, the connecting wire 71b passes through the dividing groove /jl) which is partially formed in the divided protrusion 7a. Crossing ditch/? b is each divided protrusion/
There are l locations in Ja, the groove width is wide enough for one crossover wire //1) to pass through, and the groove depth is less than the diameter around which the outermost coil of winding frame /3 is wound. Also, crossing ditch/3b
is parallel to the Z axis.

次に、作用および効果について述べる。以上の構成にな
る主コイルは、lブロック当りで見たコイルの電流密度
りが一定になり、Z軸方向の場所によって変化しない。
Next, the action and effects will be described. In the main coil configured as described above, the current density of the coil as seen per block is constant and does not change depending on the location in the Z-axis direction.

ブロックの長さ1を主コイルの半径Rに比べて十分小さ
くすれば、主コイルの巻線断面内の電流密度の分布はほ
ぼ一様とみなすことができる。その結果、主コイルの発
生磁界の均一度が向上する。ここで、十分小さいとは、
70分の/以下のことである。なお、J−/R及びΔφ
If the block length 1 is made sufficiently smaller than the radius R of the main coil, the distribution of current density within the winding cross section of the main coil can be considered to be substantially uniform. As a result, the uniformity of the magnetic field generated by the main coil is improved. Here, sufficiently small means
70 minutes/or less. In addition, J-/R and Δφ
.

s、l の値は小さいほど、磁界の均一度向上の点では
望ましいが、巻線の作業性、分割突条/3a付巻枠13
の製作時の作業性、磁界均一度の改善度合から考えた上
で、適当な寸法を決めればよい。
The smaller the values of s and l are, the more desirable it is from the point of view of improving the uniformity of the magnetic field.
Appropriate dimensions may be determined based on the workability during manufacturing and the degree of improvement in magnetic field uniformity.

ここで、第3図に示す渡り線//bは、巻線//aとは
巻方向が異なるため、渡り線//bの部分に流れる電流
が発生する磁界は、不必要な磁界である。しかし、第1
層の渡り線1lblC流れる電流と、第一層の渡り線/
/l)に流れる電流とは、絶対値が等しく、向きが逆で
あるため、各々の渡り線//bが発生する磁界はほぼ相
殺される。
Here, since the connecting wire //b shown in Fig. 3 has a different winding direction from the winding wire //a, the magnetic field generated by the current flowing in the connecting wire //b is an unnecessary magnetic field. . However, the first
Layer crossover wire 1lblC current flowing and first layer crossover wire/
Since the current flowing through /l) has the same absolute value and opposite direction, the magnetic fields generated by each crossover wire //b are almost canceled out.

従って、渡り線//bが存在することによって発1本 生する不拘」磁界成分水車さく、渡り線//bから離れ
た位置にある高均一磁界領域グでは、全く問題にはなら
ない。
Therefore, the unrestricted magnetic field component generated due to the presence of the crossover wire //b does not pose any problem at all in the highly uniform magnetic field region located away from the water turbine and the crossover wire //b.

また、上記実施例では、各分割突条13aに渡り溝/3
bをl箇所だ、け設けたが、複数個の渡りilV;、 
/ 3 bがあってもよい。この場合には、1個の渡り
溝/ 、7 b、中にある全部の渡り線llbの電流の
向きによって正負の符号をつけた電流の総和がθになる
ように渡り線71bを渡せば、渡り線//b部の発生す
る不均一磁界はほとんどなぐなり、高均一磁界領域lI
において、渡り線//bの影響は全く問題とならない。
Further, in the above embodiment, the groove/3 extends across each divided protrusion 13a.
b was provided at l locations, but there were multiple crossings.
/ 3 b may be present. In this case, if the connecting wires 71b are passed in such a way that the sum of the currents with positive and negative signs is θ depending on the direction of the current of all the connecting wires llb in one connecting groove /7b, The non-uniform magnetic field generated at the connecting wire//b section is almost flattened, resulting in a high uniform magnetic field region lI
In this case, the influence of crossover wire //b is not a problem at all.

また、1個の分割突条/、?aK複数個の渡り溝/Jb
を形成した場合は、渡り溝/3bを分割突条/3&の円
周上に等間隔に配設してもよい。この場合には、渡り線
//bが発生するわずかな不均−m異成分を、円周上に
分散させることができ、Z軸に関して対称位置付近にあ
る渡り線//b同志が、高均一磁界領域qに与える影響
を互いに相殺できる。従って、同−渡り溝/3b中の複
数個の渡り線//l)の電流の総和をθにする場合より
も、さらに渡り線/lbの発生する磁界の高均一磁界領
域グに与える影響が小さくなるという特有の効果がある
Also, one split protrusion /,? aK Multiple crossing grooves/Jb
, the transition grooves /3b may be arranged at equal intervals on the circumference of the divided protrusions /3&. In this case, it is possible to disperse the slight non-uniform -m different component generated by the crossover wire //b on the circumference, and the crossover wires //b located near the symmetrical position with respect to the Z axis are The influences on the uniform magnetic field region q can be canceled out. Therefore, the influence of the magnetic field generated by the crossover wire /lb on the highly uniform magnetic field region is even greater than when the sum of the currents of the multiple crossover wires //l) in the same crossover groove /3b is set to θ. It has the unique effect of becoming smaller.

以上のように、この発明は、主コイルの巻線断面内の電
流密度分布を均一化することにより、主コイルの発生す
る磁界の均一度を、従来のものよりも1桁以上向上させ
ることが可能である。従って、磁界補正コイルによる磁
界の補正量は小さくてよく、また、場合によっては磁界
補正コイルが不用になるという格別の効果がある。
As described above, the present invention makes it possible to improve the uniformity of the magnetic field generated by the main coil by more than one order of magnitude compared to the conventional method by making the current density distribution within the winding cross section of the main coil uniform. It is possible. Therefore, the amount of correction of the magnetic field by the magnetic field correction coil may be small, and there is a special effect that the magnetic field correction coil is unnecessary in some cases.

次に、他の実施例について説明する。上記実施例では渡
り線//bを介して全ブロックのコイル巻線//aが接
続されているが、ここでは渡り線//bをなくし各ブロ
ック内のコイル巻線llaを互いに独立させ、各ブロッ
ク内の巻mti=を互いに独立させ、各ブロック内の巻
線//aを各々独立した分割コイルとする7この場合、
分割突条/3aには渡り線//bを通すために必要であ
った溝切りを行う必要がない。このようにすると、各ブ
ロックの分割コイルごとに異なる電流を流すことができ
るので、磁界の空間分布を様々な態様イし に変死することが可能となる。すなわち、高均一磁界領
域グ内の磁界均一度が最も高くなるような電流値の組合
せを選ぶことができるという効果がある。また、各ブロ
ック別に、完全に独立してコイルの励磁ができるという
効果もある。高均一磁界を得るために用いる主コイルは
、一般には、単純ソレノイドコイルと、このコイルの両
端の外周部に取付けられたl対のノツチコイルから構成
されている。ここで述べたように、各分割コイル別に異
なる励磁電流が流せるようなコイル構成とすわば、主コ
イルの両端にある分割コイルの励磁電流を、その他の分
割コイルの励磁電流よりも大きくすることにより、l対
のノツチコイルを取付けたと同様の役割を果させること
が可能である。従つて、ノツチコイルが不要な非常に簡
単なコイル形状により、高均一磁界を得ることができる
効果がある。
Next, other embodiments will be described. In the above embodiment, the coil windings //a of all blocks are connected via the crossover wire //b, but here the crossover wire //b is eliminated and the coil windings lla in each block are made independent from each other. The windings mti = in each block are made independent of each other, and the windings //a in each block are each independent divided coils.7 In this case,
There is no need to cut a groove in the split protrusion /3a, which was necessary to pass the crossover wire /b. In this way, different currents can be applied to the divided coils of each block, making it possible to change the spatial distribution of the magnetic field in various ways. In other words, it is possible to select a combination of current values that provides the highest degree of magnetic field uniformity within the highly uniform magnetic field region. Another advantage is that the coils can be excited completely independently for each block. The main coil used to obtain a highly uniform magnetic field generally consists of a simple solenoid coil and one pair of notch coils attached to the outer periphery of the coil at both ends. As mentioned here, the coil configuration is such that a different excitation current can be passed through each divided coil, by making the excitation current of the divided coils at both ends of the main coil larger than the excitation current of the other divided coils. , it is possible to perform the same role as installing l pairs of notch coils. Therefore, a highly uniform magnetic field can be obtained with a very simple coil shape that does not require a notch coil.

なお、分割突条/、?aは、旋盤による削り出しにより
製作すれば、寸法精度が高く厚さが十分に薄い分割突条
/、?aをきわめて容易に得ることができる。
In addition, the split protrusion /,? If a is manufactured by machining with a lathe, the dimensional accuracy is high and the thickness is sufficiently thin. a can be obtained very easily.

また、巻枠13は、一般には、単純円筒が用い→ ダれるが、この発明では、分割突条/、?aが付加され
ており、そのため、巻枠の機械的強度を増大させること
ができる。従つぞ、巻枠13基底部の厚さを薄(しても
、従来と同様の、またはそれ以上の機械的強度が得られ
る効果がある。さらに、コイルの総重量が@滅されるこ
とにより、超電導状態を作り出すために必要な液体ヘリ
ウムが冷却すべき重量、すなわち、被冷却重量を軽減す
ることができるので、コイル冷却時の液体ヘリウム消費
量が少ない経済的な超電導コイルを具現し得る効果があ
る。
Further, the winding frame 13 is generally a simple cylinder, but in this invention, a divided protrusion/, ? a is added, so that the mechanical strength of the winding frame can be increased. Accordingly, even if the thickness of the base of the winding frame 13 is made thinner, mechanical strength similar to or greater than that of the conventional method can be obtained.Furthermore, the total weight of the coil can be reduced. As a result, the weight of the liquid helium necessary to create a superconducting state that must be cooled, that is, the weight to be cooled, can be reduced, making it possible to realize an economical superconducting coil that consumes less liquid helium when cooling the coil. effective.

以上の実施例では、いずれも巻枠に巻線基準面となる分
割突条な設けて主コイルの巻線を行うので、巻線時に、
ブロック長!を測定しながら巻込む必要が全くなく、単
に分割突条側面にコイル巻線を沿わせて巻回するだけで
よいので、巻線作業がきわめて容易となる。
In all of the above embodiments, the main coil is wound by providing a dividing protrusion on the winding frame to serve as a winding reference surface, so that during winding,
Block length! There is no need to wind the coil while measuring it, and it is sufficient to simply wind the coil along the side surface of the divided protrusion, making the winding work extremely easy.

また、上記実施例は、超電導コイルについて説明したが
常電導コイルであってもよく、同様の効果を奏する。
Further, although the above embodiments have been described using superconducting coils, normal conducting coils may be used, and similar effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のものの縦断面図、第2図は一般に得られ
るコイル線材の幅のバラツキを示す線図、第3図は従来
のものの一部縦断面図、第グ図はこの発明の一実施例の
縦断面図、第5図は同じ(一部斜視図である。 //a・・主コイルのコイル巻線、//b−−渡り線、
/3・・巻枠、/、?’a・・分割突条、/、?b・・
渡り溝、グ・・高均一磁界領域、15・・詰物。 なお、各図中、同一符号は同−又は相当部分を先2図 十郭灯長さくAm) 手続補正書(自発) 特許1)長官1股 1、事件の表示    特願昭37−/110:14!
号2、発明の名称 超電導コイル 3、補正をする雪 代表者片山仁へ部 4、代理人 (り  明細書の発明の詳細な説明の欄ム 補正の内容 (11明細書第19頁第弘行 「巻回するだけ」を「巻回丁だけ」と補正する。
Fig. 1 is a longitudinal cross-sectional view of a conventional product, Fig. 2 is a line diagram showing variations in the width of generally obtained coil wires, Fig. 3 is a partial longitudinal cross-sectional view of a conventional product, and Fig. The longitudinal cross-sectional view of the embodiment and FIG. 5 are the same (partially a perspective view).
/3... winding frame, /,? 'a... split ridge, /,? b...
Crossing groove, G... Highly uniform magnetic field region, 15... Filling. In addition, in each figure, the same reference numerals indicate the same - or the corresponding parts are indicated by the previous two figures. 14!
No. 2, Name of the invention Superconducting coil 3, To the snow representative Hitoshi Katayama who makes the amendment Part 4, Agent Column for detailed explanation of the invention in the specification Contents of the amendment (11 Specification, page 19, Hiroyuki) Correct "just winding" to "just winding."

Claims (3)

【特許請求の範囲】[Claims] (1)巻枠と、この巻枠の外周面に形成され前記巻枠な
軸方向に等しい長さに分割した複数の分割突条と、この
分割突条で分割された各ブロックに同一巻数に巻回され
Iコイル巻線でなる主コイルを備えてなることを特徴と
する超電導コイル。
(1) A winding frame, a plurality of dividing ridges formed on the outer peripheral surface of the winding frame and divided into equal lengths in the axial direction of the winding frame, and each block divided by the dividing ridges having the same number of windings. A superconducting coil comprising a main coil wound with an I-coil winding.
(2)  コイル巻線を施したブロックの残余の空間に
詰物を充填した特許請求の範囲第7項記載の超電導コイ
ル。
(2) The superconducting coil according to claim 7, wherein the remaining space of the block on which the coil winding has been applied is filled with a filler.
(3)分割突条に形成され隣接するブロックのコイル巻
線間の渡り線を通す渡り溝を備えた特許請求の範囲第1
項記載の超電導コイル。 (り)巻枠と、この巻枠の外周面に形成され前記巻枠を
軸方向九等しい長さに分割した複数の分割突条と、この
分割突条で分割された各ブロックに同一巻数に巻回され
電気的に各独立の分割コイルでなる主コイルを備えてな
ることを特徴とする超′t1℃導コイル。 (j)  巻枠両端の分割コイルをそれぞれノツチコイ
ルとした特許請求の範囲第q項記載の超電導コイル。
(3) Claim 1, which is provided with a crossover groove formed in the divided protrusion and through which a crossover wire is passed between the coil windings of adjacent blocks.
Superconducting coil described in Section 1. (i) A winding frame, a plurality of dividing ridges formed on the outer peripheral surface of the winding frame and dividing the winding frame into nine equal lengths in the axial direction, and each block divided by the dividing ridges having the same number of windings. 1. A super 1°C conductive coil comprising a main coil which is wound and is electrically divided into independent divided coils. (j) The superconducting coil according to claim q, wherein the divided coils at both ends of the winding frame are each notch coils.
JP18102482A 1982-10-13 1982-10-13 Superconductive coil Granted JPS5968910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18102482A JPS5968910A (en) 1982-10-13 1982-10-13 Superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18102482A JPS5968910A (en) 1982-10-13 1982-10-13 Superconductive coil

Publications (2)

Publication Number Publication Date
JPS5968910A true JPS5968910A (en) 1984-04-19
JPH0365002B2 JPH0365002B2 (en) 1991-10-09

Family

ID=16093425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18102482A Granted JPS5968910A (en) 1982-10-13 1982-10-13 Superconductive coil

Country Status (1)

Country Link
JP (1) JPS5968910A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129434A (en) * 1974-09-02 1976-03-12 Kuraray Co Ritsutaikiseisareta fuaruneshirusakusan mataha sonoesuterurui no seizohoho
JPS562605A (en) * 1979-06-21 1981-01-12 Furukawa Electric Co Ltd:The Superconductive split magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129434A (en) * 1974-09-02 1976-03-12 Kuraray Co Ritsutaikiseisareta fuaruneshirusakusan mataha sonoesuterurui no seizohoho
JPS562605A (en) * 1979-06-21 1981-01-12 Furukawa Electric Co Ltd:The Superconductive split magnet

Also Published As

Publication number Publication date
JPH0365002B2 (en) 1991-10-09

Similar Documents

Publication Publication Date Title
JP3670452B2 (en) Coil unit for magnetic field generation and coil winding method
US20070226989A1 (en) Precision Rogowski Coil And Method For Manufacturing Same
JPS6135502A (en) Coil winding die and coil winding method
US3449703A (en) Current transformer having an accuracy unimpaired by stray flux from adjacent conductors
JPH0554977B2 (en)
JP2000040631A (en) Transformer
JPH0799723B2 (en) Uniform magnetic field coil
US4725803A (en) Gradient coil for nuclear magnetic resonance image forming apparatus
JPS5968910A (en) Superconductive coil
JPH0732096B2 (en) Superconducting device
JP4461032B2 (en) Coil unit for magnetic field generation and magnetic resonance imaging apparatus
US6765381B2 (en) Extended maxwell pair gradient coils
JP4004038B2 (en) Coil apparatus and magnetic resonance imaging apparatus
JP2603135B2 (en) Variable inductor
JPS60217608A (en) Uniform magnetic field coil
JPH0430164B2 (en)
CN116933696B (en) Current distribution calculation method for multi-strand multi-wire parallel structure of transformer
JPS61236107A (en) Uniform magnetic field generating device
JPH0838454A (en) Magnet of magnetic resonance image device
JP2534490Y2 (en) Helical wiggler
KR20150065872A (en) Cylindrical superconducting magnet
JPS61206203A (en) Superconducting coil
JPS5945204B2 (en) bipolar coil
JP2004325251A (en) Uniform magnetic field generation device and nuclear magnetic resonance device using it
JPH0345888B2 (en)