JPS63282275A - Device for producting thin film - Google Patents

Device for producting thin film

Info

Publication number
JPS63282275A
JPS63282275A JP11415987A JP11415987A JPS63282275A JP S63282275 A JPS63282275 A JP S63282275A JP 11415987 A JP11415987 A JP 11415987A JP 11415987 A JP11415987 A JP 11415987A JP S63282275 A JPS63282275 A JP S63282275A
Authority
JP
Japan
Prior art keywords
plasma
thin film
substrate
manufacturing apparatus
plasma chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11415987A
Other languages
Japanese (ja)
Inventor
Hiroshi Ichikawa
洋 市川
Tomiyo Fukuda
福田 富代
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11415987A priority Critical patent/JPS63282275A/en
Publication of JPS63282275A publication Critical patent/JPS63282275A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To enhance the quality of a film synthesized in a vapor phase and simultaneously to increase the film forming rate by separating a plasma chamber into the sections for the different gases to be injected, converting the gases into plasmas, and allowing the plasmas to react with each other on a substrate. CONSTITUTION:A gas and a high-frequency power 14 are supplied into the plasma chamber 15 to generate the plasma, and another gas is also converted into the plasma in the plasma chamber 16. The plasmas are injected from the small holes 17 and 18 provided to the chamber 15 and 16, and a thin film is formed by vapor phase synthersis on the substrate 19 arranged within the mean free path length of the plasma particles from the small holes 17 and 18. Since the kinds of the gases introduced into the plasma chambers 15 and 16 differ from each other, the purity of the plasma is high, and a high-quality film can be formed. Moreover, since the different gases are allowed to react with each other, the ions converted into plasma excited on the substrate 19 react with each other, and the film forming rate can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜製造装置に関するものであり、特に生成
膜の高品質化、高速化に適した薄膜製造装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a thin film manufacturing apparatus, and particularly to a thin film manufacturing apparatus suitable for increasing the quality and speed of produced films.

従来の技術 高周波電力によるプラズマCVD法に関するもので、当
該技術の基礎は、菅野卓雄編著「半導体プラズマプロセ
ス技術」産業図書、昭和55年出版、138ページに体
系的に記載されている。
Conventional Technology This relates to a plasma CVD method using high-frequency power, and the basics of this technology are systematically described in "Semiconductor Plasma Process Technology" edited by Takuo Kanno, Sangyo Tosho, published in 1980, page 138.

第2図はこの従来例の薄膜製造装置の概略図を示スもの
であり、プラズマCVD法による窒化シリコン薄膜に関
するものである。同図において、マイクロ波導入窓3を
通してマイクロ波2をプラズマ室1に導入する。外部磁
場eによってプラズマ室1内に磁場を印加し、その磁場
の強さをマイクロ波2の周波数で決まるECR条件以上
にしておき、気体導入口4を通して窒素ガスをプラズマ
室1に注入してプラズマを生成し、外部磁場6の発散に
よって窒素のプラズマ流7を試料室8内に送り、気体導
入口6を通して試料室8に注入したシランガスと反応さ
せて基板9上に窒化シリコンしかしながら上記のような
構成では、窒素ガスだけがプラズマ化しており、分子状
態のままのシランガスと反応するため膜形成速度が遅い
という欠点があった。又、膜形成速度を速めるため、窒
素ガスとシランガスの混合ガスをプラズマ室1でプラズ
マ化し、基板9上に膜を形成しても、基板9に到達する
途中で反応が起りフリットができ膜質が低下するという
欠点があった。
FIG. 2 shows a schematic diagram of this conventional thin film manufacturing apparatus, which relates to a silicon nitride thin film produced by plasma CVD. In the figure, microwaves 2 are introduced into a plasma chamber 1 through a microwave introduction window 3. A magnetic field is applied in the plasma chamber 1 by an external magnetic field e, and the strength of the magnetic field is set to be higher than the ECR condition determined by the frequency of the microwave 2. Nitrogen gas is injected into the plasma chamber 1 through the gas inlet 4 to generate plasma. A nitrogen plasma stream 7 is sent into the sample chamber 8 by the divergence of the external magnetic field 6, and is reacted with the silane gas injected into the sample chamber 8 through the gas inlet 6 to form silicon nitride on the substrate 9. In this configuration, only the nitrogen gas is turned into plasma, which reacts with the silane gas in its molecular state, resulting in a slow film formation rate. Furthermore, in order to speed up the film formation speed, even if a mixed gas of nitrogen gas and silane gas is turned into plasma in the plasma chamber 1 and a film is formed on the substrate 9, a reaction occurs on the way to the substrate 9, causing frit and poor film quality. The disadvantage was that it decreased.

問題点を解決するための手段 本発明は二個以上のプラズマ室に異種気体を導入し、高
周波電力によってプラズマ化し、それぞれ上記のプラズ
マ室に設けた小孔から、プラズマを噴出させ、上記小孔
からプラズマ粒子の平均自由行程距離内に設置した基板
上に薄膜を気相合成するものである。
Means for Solving the Problems The present invention introduces different gases into two or more plasma chambers, converts them into plasma using high-frequency power, and ejects the plasma from small holes provided in each of the plasma chambers. In this method, a thin film is synthesized in a vapor phase on a substrate placed within the mean free path distance of plasma particles.

作  用 前記の構成において、プラズマ室に気体と高周波電力を
注入してプラズマを発生させ、別のプラズマ室において
も異種の気体について同様にプラズマ化させる。ここで
、プラズマ室に導入する気体の種類を異ならせているた
め、ひとつのプラズマ室に異種の気体を導入しプラズマ
化する場合に比べ、プラズマの純度が高く、高品質な膜
が形成できる。また、互いに異なる気体をそれぞれプラ
ズマ化し反応させるので、基板上でプラズマ化され励起
されたイオンどうしが反応することになり膜の高速形成
ができる。さらに本発明ではプラズマ室に設けたプラズ
マ噴出用小孔と基板の距離をプラズマ粒子の平均自由行
程内に設定することにより、実験の結果、上記小孔と上
記基板間では相異るプラズマ粒子どうしが反応し、化合
物が生成することを防止できることを見出した。従って
、別々のプラズマ室から噴出される互いに異なる気体の
プラズマ粒子は基板に到達するまでに他種のプラズマ粒
子と反応してフリットを生じることなく基板表面付近で
反応することから、高品質な膜が形成できる。さらにそ
れぞれの気体をプラズマ化して使用するので、気体の利
用効率が高く、互いに異なる気体を導入してプラズマを
発生するプラズマ室を増すだけで生成膜の多元化、多層
化も容易であり、構造が簡単で小型化が可能である。
Operation In the above configuration, plasma is generated by injecting gas and high frequency power into the plasma chamber, and different types of gases are similarly turned into plasma in another plasma chamber. Here, since different types of gas are introduced into the plasma chamber, the purity of the plasma is higher and a high-quality film can be formed compared to the case where different types of gas are introduced into one plasma chamber and turned into plasma. Furthermore, since different gases are turned into plasma and reacted with each other, ions that are turned into plasma and excited on the substrate react with each other, making it possible to form a film at high speed. Furthermore, in the present invention, by setting the distance between the small plasma ejection hole provided in the plasma chamber and the substrate within the mean free path of the plasma particles, as a result of experiments, different plasma particles are separated between the small hole and the substrate. It has been found that it is possible to prevent the reaction and formation of compounds. Therefore, plasma particles of different gases ejected from separate plasma chambers react near the substrate surface without causing frit by reacting with other types of plasma particles before reaching the substrate, resulting in a high-quality film. can be formed. Furthermore, since each gas is converted into plasma and used, gas utilization efficiency is high, and by simply increasing the number of plasma chambers that generate plasma by introducing different gases, it is easy to create multiple and multilayered films. is simple and can be miniaturized.

実施例 第“1図aは本発明の一実施例の概要図である。Example FIG. 1a is a schematic diagram of an embodiment of the present invention.

第1図aにおいて、15.16は導体よりなる真空容器
10内を誘電体11で区切って作ったプラズマ室であり
、12.13は気体導入口、17゜18はプラズマ室1
5.16それぞれに設けたプラズマ噴き出し用小孔、1
9は薄膜を生成させる基板、14けプラズマを発生させ
るマイクロ波である。本実施例では、加工の容易さから
真空容器10を円筒型にした。その内径はマイクロ波1
4が進入することから、マイクロ波14のしゃ断波長身
上の寸法にする必要がある。本実施例では、マイクロ波
14に周波数2.45GHz (波長12.2crn)
を用い、真空容器1Qは内径7crn、長さ15筋の円
筒型にした。基板19にはシリコンウエノ・−を用いた
。第1図すは、第1図aにおける真空容器10の中心軸
に垂直な面で切った断面図である。
In FIG. 1a, 15.16 is a plasma chamber made by dividing the inside of a vacuum container 10 made of a conductor with a dielectric material 11, 12.13 is a gas inlet, and 17.degree. 18 is a plasma chamber 1.
5.16 Small holes for plasma ejection provided in each, 1
9 is a substrate for forming a thin film, and 14 is a microwave for generating plasma. In this embodiment, the vacuum container 10 is made into a cylindrical shape for ease of processing. Its inner diameter is microwave 1
4 enters the microwave, it is necessary to set the cutoff wavelength of the microwave 14 to a suitable size. In this embodiment, the microwave 14 has a frequency of 2.45 GHz (wavelength 12.2 crn).
The vacuum vessel 1Q had a cylindrical shape with an inner diameter of 7 crn and a length of 15 lines. For the substrate 19, silicon urethane was used. FIG. 1 is a sectional view taken along a plane perpendicular to the central axis of the vacuum vessel 10 in FIG. 1a.

以上の構成において、窒化シリコン膜製造について、以
下その動作を説明する。気体導入口12からシランガス
(S I H4、アルゴン希釈で20%のシラン濃度)
をプラズマ室15に導入し、気体導入口13から窒素ガ
ス(N2,99.9999%)をプラズマ室16に導入
し、圧力比3:4(総圧力0.5mtorr)  に保
った。そして、マイクロ波14をプラズマ室15.16
に一括して注入してプラズマを発生させた。この時、入
力したマイクロ波出力は10oWであった。基板19上
に膜を形成した。小孔17.18と基板19の距離が6
〜50圏の範囲で形成させた。その結果形成された膜の
緻密性を評価するため、緩衝フッ酸(BHF)によるエ
ッチ速度を従来のプラズマCVD法により形成された窒
化シリコン膜と比較した結果約10人/ minと従来
の約10分の1で、極めて緻密な高品質な膜が得られた
。さらに、膜の形成速度は約10nm/ minと従来
の約10倍の高速性が得られた。これは、上記した構成
により、別々にプラズマ化したシランガス、窒素ガスの
プラズマ粒子がそれぞれ小孔17.18から噴出し、途
中反応して化合物を生成することなしに基板19で反応
することによる形成された膜の高品性と、ともにプラズ
マ化され励起された状態のプラズマ粒子(イオン)どう
しが反応して基板19上に膜を高速に形成する高速性を
同時に生み出したと考えられる。
In the above configuration, the operation of manufacturing a silicon nitride film will be described below. Silane gas (S I H4, 20% silane concentration with argon dilution) from gas inlet 12
was introduced into the plasma chamber 15, and nitrogen gas (N2, 99.9999%) was introduced into the plasma chamber 16 from the gas inlet 13, maintaining the pressure ratio at 3:4 (total pressure 0.5 mtorr). Then, the microwave 14 is applied to the plasma chamber 15.16.
was injected all at once to generate plasma. At this time, the input microwave power was 10oW. A film was formed on the substrate 19. The distance between the small holes 17 and 18 and the substrate 19 is 6
It was formed in the range of ~50 circles. In order to evaluate the density of the resulting film, the etch rate using buffered hydrofluoric acid (BHF) was compared with that of a silicon nitride film formed by the conventional plasma CVD method, and the result was that it was about 10 people/min compared to the conventional etch rate of about 10 An extremely dense, high-quality film was obtained in 1/2 the time. Furthermore, the film formation rate was approximately 10 nm/min, approximately 10 times faster than conventional methods. With the above-described configuration, plasma particles of silane gas and nitrogen gas, which have been turned into plasma separately, are ejected from the small holes 17 and 18, and are formed by reacting on the substrate 19 without reacting during the process to generate a compound. It is thought that the high quality of the resulting film and the high speed of forming the film on the substrate 19 at high speed through the reaction between the plasma particles (ions), which are both turned into plasma and excited, are considered to have been produced at the same time.

さらに、第1図a、bに示した構成において、ダイヤモ
ンド薄膜製造について、以下その動作を説明する。気体
導入口12からメタンガス(CH4)をプラズマ室15
に導入し、気体導入口13から水素ガス(H2)をプラ
ズマ室16に導入し、圧力比1:10o(総圧力50t
orr)に保つた。そしてマイクロ波14を一括して、
プラズマ室15.16に注入してプラズマを発生させた
Furthermore, the operation of manufacturing a diamond thin film in the configuration shown in FIGS. 1a and 1b will be described below. Methane gas (CH4) is introduced into the plasma chamber 15 from the gas inlet 12.
Hydrogen gas (H2) was introduced into the plasma chamber 16 from the gas inlet 13, and the pressure ratio was 1:10o (total pressure 50t).
orr). Then microwave 14 all at once,
A plasma was generated by injecting into the plasma chambers 15 and 16.

この時マイクロ波14の出力は300Wであるタンタル
ヒーターで8QO〜900℃に加熱した基板19上に膜
を形成した。小孔17.18と基板19の距離が6〜2
oIIIIIの範囲で形成させた。その結果形成された
膜のラマン分光スペクトルを測定した結果、1333c
nt のところに幅10crn(FWHM)の従来のプ
ラズマCVD法では得られなかった高品質なダイヤモン
ド膜が得られ、膜の形成速度も0.5 ttrn/h 
r  と従来例の倍以上の高速性が得られた。この理由
も前記した窒化シリコン膜製造についての実施例と同じ
と考えられる。
At this time, a film was formed on a substrate 19 heated to 8QO to 900° C. using a tantalum heater with a microwave 14 output of 300 W. The distance between the small holes 17 and 18 and the substrate 19 is 6 to 2
It was formed in the range oIII. As a result of measuring the Raman spectrum of the film formed as a result, 1333c
A high-quality diamond film with a width of 10 crn (FWHM), which could not be obtained with conventional plasma CVD, was obtained at the nt position, and the film formation rate was also 0.5 ttrn/h.
r and more than double the speed of the conventional example. The reason for this is also considered to be the same as in the embodiment regarding silicon nitride film manufacturing described above.

第2図は本発明の他の実施例の概要図であり、基本的に
第1図aに示した実施例と同じ構成であり、同一構成部
分には同一番号を付して詳細な説明を省略する。第1図
aの構成と異なるのは、ンレノイドコイル2oを用い、
小孔17.18から基板19方向に磁場を印加し、基板
19付近で磁束密度を最大した結果プラズマ粒子が基板
19に効率よく集中し、第1図aに示した実施例よりも
高速に膜を形成することができた。
FIG. 2 is a schematic diagram of another embodiment of the present invention, which basically has the same configuration as the embodiment shown in FIG. Omitted. What is different from the configuration in FIG. 1a is that a renoid coil 2o is used,
A magnetic field is applied in the direction of the substrate 19 from the small holes 17 and 18, and the magnetic flux density is maximized near the substrate 19. As a result, plasma particles are efficiently concentrated on the substrate 19, and the film is formed at a higher speed than in the embodiment shown in Fig. 1a. was able to form.

さらに、第2図の実施例において、基板19付近での磁
束密度をマイクロ波14の周波数2.45GHzについ
てECR条件を満たす875G以上にした結果、基板1
9付近で高効率のプラズマ発生が起こり、より高速な膜
の形成を確認した。
Furthermore, in the example shown in FIG.
Highly efficient plasma generation occurred near 9, confirming faster film formation.

さらに、第2図の実施例において、基板19付近と、プ
ラズマ室15.16のマイクロ波14人口とで極大とな
る磁場を印加したところ、プラズマ室15.16内のプ
ラズマ粒子の真空容器10の壁への衝突が減り、高密度
なプラズマが発生し、より高品質、高速形成の膜を得た
Furthermore, in the embodiment shown in FIG. 2, when a magnetic field that becomes maximum near the substrate 19 and the microwave 14 population in the plasma chamber 15.16 is applied, the plasma particles in the plasma chamber 15.16 are Collisions with walls were reduced, high-density plasma was generated, and a higher quality, faster-forming film was obtained.

また、第1図aに示した実施例において用いた真空容器
10をマイクロ波用空洞共振器構造にした結果、マイク
ロ波14の定在波が立ちプラズマ室16.16内に安定
したプラズマが発生し、より高品質な膜が得られた。
Furthermore, as a result of the vacuum vessel 10 used in the embodiment shown in FIG. However, a higher quality film was obtained.

さらに、第1図aに示した実施例において用いた真空容
器10をマイクロ波用同軸型導波路構造罠した結果、マ
イクロ波14の出力密度を高めることができ、より高速
な膜の形成を確認できた。
Furthermore, as a result of trapping the vacuum vessel 10 used in the example shown in FIG. did it.

発明の詳細 な説明したように、本発明によれば、二個以上のプラズ
マ室のそれぞれに互いに異なる気体を導入し、それぞれ
プラズマ化し、各プラズマ室に設けた小孔からプラズマ
粒子の平均自由行程距離内に設置した基板上に薄膜を気
相合成させることによって、形成させた膜の高品質性と
高速性を同時に得ることができた。本発明による薄膜製
造装置は、注入する気体ごとにプラズマ室を分け、それ
ぞれをプラズマ化し、基板上で各プラズマどうしを反応
させることから、多元結晶薄膜、多層薄膜への適用も可
能であり、産業上の利用効果は極めて大きい。
As described in detail, according to the present invention, different gases are introduced into each of two or more plasma chambers, each is turned into plasma, and the mean free path of the plasma particles is By performing vapor phase synthesis of a thin film on a substrate placed within a distance, we were able to simultaneously obtain high quality and high speed formation of the film. The thin film manufacturing apparatus according to the present invention separates the plasma chamber for each gas to be injected, converts each into plasma, and causes the plasmas to react with each other on the substrate, so it can be applied to multi-crystal thin films and multilayer thin films, and is suitable for industrial use. The effects of using the above are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図0.()=)は本発明の薄膜製造装置の一つの実
施例を説明するだめの概略断面図およびその真空容器の
要部断面図、第2図は本発明の他の実施例を説明するた
めの装置の概略断面図、第3図は従来の装置の概略断面
図である。 10・・・・・・真空容器、11・・・・・・誘電体、
12゜13.4.5・・・・・・気体導入口、14,2
・・・・・マイクロ波、1.15.16・・・・・プラ
ズマ室、17゜18・・・・・プラズマ噴出用小孔、1
9・・・・・基板、20.6・・・・外部磁場用ソレノ
イドコイル、了・・・プラズマ流、3・・・・マイクロ
波導入窓、8・・・・・試料室。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1 
111111’ cs:)鴨−ヘパ)寸怖くバ〉 ’+−+  ++  ++ N ++ \ \ ト、第
2図 第3図
Figure 1 0. ()=) is a schematic cross-sectional view of a vessel and a cross-sectional view of a main part of the vacuum container for explaining one embodiment of the thin film manufacturing apparatus of the present invention, and FIG. Schematic sectional view of the device, FIG. 3 is a schematic sectional view of a conventional device. 10... Vacuum container, 11... Dielectric material,
12゜13.4.5...Gas inlet, 14,2
...Microwave, 1.15.16...Plasma chamber, 17゜18...Small hole for plasma ejection, 1
9...Substrate, 20.6...Solenoid coil for external magnetic field, End...Plasma flow, 3...Microwave introduction window, 8...Sample chamber. Name of agent: Patent attorney Toshio Nakao and 1 other person1
111111' cs:)Duck-hepa) Scary bat〉 '+-+ ++ ++ N ++ \\ \ Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (1)それぞれ異種気体を導入した複数個のプラズマ室
に高周波電力を注入して上記気体をプラズマ化し、それ
ぞれ上記のプラズマ室に設けた小孔から上記プラズマを
噴出させ、上記小孔からプラズマ粒子の平均自由行程距
離内に設置した基板上に薄膜を気相合成することを特徴
とする薄膜製造装置。 (2)少なくともプラズマ室と基板の間に磁場を印加し
たことを特徴とする特許請求の範囲第1項記載の薄膜製
造装置。 (3)プラズマ室から基板の間の少なくとも一部分にお
いて、ECRの限界以上の磁界強度を有する磁場を印加
したことを特徴とする特許請求の範囲第1項記載の薄膜
製造装置。(4)基板付近で磁束密度が最大となる磁場
を印加したことを特徴とする特許請求の範囲第1項記載
の薄膜製造装置。 (5)プラズマ室の高周波電力入口付近と基板付近とで
磁束密度が極大となる磁場を印加したことを特徴とする
特許請求の範囲第1項記載の薄膜製造装置。 (6)プラズマ室をマイクロ波用空洞共振器構造にした
ことを特徴とする特許請求の範囲第1項記載の薄膜製造
装置。 (7)プラズマ室をマイクロ波用同軸型導波路構造にし
たことを特徴とする特許請求の範囲第1項記載の薄膜製
造装置。 (8)プラズマ室を誘電体で区切り、二つ以上のプラズ
マ室を設けたことを特徴とする特許請求の範囲第1項記
載の薄膜製造装置。 (9)一つのプラズマ室にシランガスを注入し、別のプ
ラズマ室に窒素ガスを注入し、高周波電力でプラズマを
発生させ、基板上に窒化シリコン薄膜を気相合成させる
ことを特徴とする特許請求の範囲第1項記載の薄膜製造
装置。 (10)一つのプラズマ室に炭化水素ガスを注入し、別
のプラズマ室に水素ガスを注入し、高周波電力でプラズ
マを発生させ、基板上にダイヤモンド薄膜を気相合成さ
せることを特徴とする特許請求の範囲第1項記載の薄膜
製造装置。
[Scope of Claims] (1) High-frequency power is injected into a plurality of plasma chambers into which different gases are introduced to turn the gas into plasma, and the plasma is ejected from small holes provided in each of the plasma chambers; A thin film manufacturing apparatus characterized in that a thin film is vapor-phase synthesized on a substrate placed within a mean free path distance of plasma particles from the small hole. (2) The thin film manufacturing apparatus according to claim 1, wherein a magnetic field is applied at least between the plasma chamber and the substrate. (3) The thin film manufacturing apparatus according to claim 1, wherein a magnetic field having a magnetic field strength exceeding the limit of ECR is applied to at least a portion between the plasma chamber and the substrate. (4) The thin film manufacturing apparatus according to claim 1, wherein a magnetic field is applied that has a maximum magnetic flux density near the substrate. (5) The thin film manufacturing apparatus according to claim 1, wherein a magnetic field is applied in which the magnetic flux density becomes maximum near the high frequency power inlet of the plasma chamber and near the substrate. (6) The thin film manufacturing apparatus according to claim 1, wherein the plasma chamber has a microwave cavity structure. (7) The thin film manufacturing apparatus according to claim 1, wherein the plasma chamber has a microwave coaxial waveguide structure. (8) The thin film manufacturing apparatus according to claim 1, wherein the plasma chamber is divided by a dielectric material to provide two or more plasma chambers. (9) A patent claim characterized in that silane gas is injected into one plasma chamber, nitrogen gas is injected into another plasma chamber, plasma is generated by high-frequency power, and a silicon nitride thin film is vapor-phase synthesized on a substrate. The thin film manufacturing apparatus according to item 1. (10) A patent characterized in that hydrocarbon gas is injected into one plasma chamber, hydrogen gas is injected into another plasma chamber, plasma is generated using high-frequency power, and a diamond thin film is vapor-phase synthesized on a substrate. A thin film manufacturing apparatus according to claim 1.
JP11415987A 1987-05-11 1987-05-11 Device for producting thin film Pending JPS63282275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11415987A JPS63282275A (en) 1987-05-11 1987-05-11 Device for producting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11415987A JPS63282275A (en) 1987-05-11 1987-05-11 Device for producting thin film

Publications (1)

Publication Number Publication Date
JPS63282275A true JPS63282275A (en) 1988-11-18

Family

ID=14630635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11415987A Pending JPS63282275A (en) 1987-05-11 1987-05-11 Device for producting thin film

Country Status (1)

Country Link
JP (1) JPS63282275A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235283A (en) * 1990-12-31 1992-08-24 Semiconductor Energy Lab Co Ltd Apparatus and method for forming coating film
JPH0544041A (en) * 1990-12-12 1993-02-23 Semiconductor Energy Lab Co Ltd Film forming device and film formation
FR2846471A1 (en) * 2002-10-23 2004-04-30 Bosch Gmbh Robert Anisotropic plasma etching apparatus, mixes reactive species produced from etching and passivation gases before action on substrate
WO2003075323A3 (en) * 2002-03-05 2004-07-15 Bosch Gmbh Robert Device and method for anisotropically plasma etching a substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544041A (en) * 1990-12-12 1993-02-23 Semiconductor Energy Lab Co Ltd Film forming device and film formation
JPH04235283A (en) * 1990-12-31 1992-08-24 Semiconductor Energy Lab Co Ltd Apparatus and method for forming coating film
WO2003075323A3 (en) * 2002-03-05 2004-07-15 Bosch Gmbh Robert Device and method for anisotropically plasma etching a substrate
US7285228B2 (en) 2002-03-05 2007-10-23 Robert Bosch Gmbh Device and method for anisotropic plasma etching of a substrate, a silicon body in particular
FR2846471A1 (en) * 2002-10-23 2004-04-30 Bosch Gmbh Robert Anisotropic plasma etching apparatus, mixes reactive species produced from etching and passivation gases before action on substrate
GB2396053B (en) * 2002-10-23 2006-03-29 Bosch Gmbh Robert Device and process for anisotropic plasma etching of a substrate,in particular a silicon body
US7288485B2 (en) 2002-10-23 2007-10-30 Robert Bosch Gmbh Device and method for anisotropic plasma etching of a substrate, particularly a silicon element

Similar Documents

Publication Publication Date Title
JP4273932B2 (en) Surface wave excitation plasma CVD equipment
JP6153118B2 (en) Microwave plasma processing equipment
JPH04337076A (en) High-speed film formation by plasma and radical cvd method under high pressure
JPS63282275A (en) Device for producting thin film
JP4273983B2 (en) Surface wave excitation plasma CVD equipment
JPS61241930A (en) Plasma chemical vapor deposition device
JPH07135094A (en) Material supply method and device for microwave induction plasma
JPH05117866A (en) Microwave plasma cvd device
JPH07122141B2 (en) Microwave plasma CVD device
JP2805506B2 (en) Diamond film synthesizer by microwave plasma CVD
JP3296392B2 (en) Dry etching method
JP3193178B2 (en) Thin film formation method
JPH01246357A (en) Production of cubic boron nitride film
JPS63185894A (en) Production of diamond thin film or diamond-like thin film
JPH1018042A (en) Thin film forming device
JPH03134175A (en) Digital cvd method
JPS62218575A (en) Plasma cvd method using microwave
JPS6034013A (en) Manufacture of solid thin film
JP3654438B2 (en) Dry etching method
JPH0244720A (en) Microwave plasma treatment device
JP2650326B2 (en) Plasma processing equipment
JPH01298174A (en) Formation of thin film using ion cyclotron resonance and device therefor
JPH0414822A (en) Microwave plasma etching method
JPS6255924A (en) Plasma cvd device
JPS63248119A (en) Formation of silicon carbide film