JPS6034013A - Manufacture of solid thin film - Google Patents

Manufacture of solid thin film

Info

Publication number
JPS6034013A
JPS6034013A JP14278783A JP14278783A JPS6034013A JP S6034013 A JPS6034013 A JP S6034013A JP 14278783 A JP14278783 A JP 14278783A JP 14278783 A JP14278783 A JP 14278783A JP S6034013 A JPS6034013 A JP S6034013A
Authority
JP
Japan
Prior art keywords
gas
chamber
molecules
energy
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14278783A
Other languages
Japanese (ja)
Other versions
JPH0459769B2 (en
Inventor
Uichi Ito
伊東 宇一
Masashi Kumada
熊田 虔
Nobuaki Washida
鷲田 伸明
Hajime Inoue
元 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14278783A priority Critical patent/JPS6034013A/en
Publication of JPS6034013A publication Critical patent/JPS6034013A/en
Publication of JPH0459769B2 publication Critical patent/JPH0459769B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Abstract

PURPOSE:To obtain a solid thin film with uniform quality by a method wherein a gas to be an energy source is excited by a plasma generated by a glow discharge and the ions and the light in the gas are removed and high energy molecules in semi-stable condition are taken out and decomposition reaction of material gas molecules in a high vacuum chamber is generated with those high energy molecules. CONSTITUTION:Argon gas A and xenon gas B, which are to be the 1st and the 2nd energy sources are supplied from containers 1 and 2 into an optical trap 4 in which a hollow cathode 3 for plasma generation is contained through valves 16 and 17 respectively. A semi-stable condition generating apparatus 6, in which ion collecting electrodes 5 are provided, is protruded from an opening at the center part of the trap 4 and the tip of the apparatus 6 is inserted into a reaction chamber 11. A holder on which a substrate 7 is held is provided in the chamber 11 and a heater 8 is provided outside the chamber 11 and to the backside of the holder. A high vacuum evacuator 9 with a valve 12 and a large capacity exhausting equipment 10 with a valve 13 are connected to the chamber 11. After the above preparation, silane gas C in a container 14 is introduced into the chamber 11 through a valve 15.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、準安定ガス状分子とガス状原料分子との衝
突時のエネルギーを利用する固体薄膜の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a solid thin film using the energy generated when metastable gaseous molecules collide with gaseous raw material molecules.

(従来技術とその問題点) 従来のガス状原料分子からの固体薄膜の製造方法には下
記■、■、■の方法かある。
(Prior art and its problems) Conventional methods for producing solid thin films from gaseous raw material molecules include the following methods (1), (2), and (2).

■ ガス原料を加熱分解して分解生成物を基板上に堆積
させる熱CVD法。
■ Thermal CVD method, in which gaseous raw materials are thermally decomposed and the decomposition products are deposited on a substrate.

■ グロー放電で作られたプラズマ中に原料ガスを導入
0分解し、基板上に堆積させるプラズマCVD法。
■ Plasma CVD method in which raw material gas is introduced into plasma created by glow discharge, decomposed, and deposited on a substrate.

■ 原料ガスに光を照射し、光化学反応により分解させ
基板上に堆積させる光CVD法。
■ Photo-CVD method in which raw material gas is irradiated with light, decomposed by photochemical reaction, and deposited on a substrate.

上記■および■においては、原料ガスに与えるエネルギ
ーの幅が広いため、イオン種、ラジカル種などの多種類
の分解生成物が生じ、膜質の均質化を阻害し膜成長速度
を抑える。
In the above cases (1) and (2), since the range of energy applied to the raw material gas is wide, many types of decomposition products such as ionic species and radical species are generated, which inhibits homogenization of film quality and suppresses the film growth rate.

また、上記■においては、照射する光の波長を選ぶこと
によって、特定の分解生成物を選択的に作り屯すことが
できるが、極端紫外域を利用する光源は種類が少なく、
低出力なので利用範囲が極めて限られてしまい反応槽内
への光の導入が妨げられる等の欠点があった。
In addition, in the case of (2) above, specific decomposition products can be selectively produced by selecting the wavelength of the irradiated light, but there are only a few types of light sources that utilize the extreme ultraviolet region.
Since the output is low, the range of use is extremely limited, and there are drawbacks such as preventing the introduction of light into the reaction tank.

(発明の目的) この発明は、上記の欠点を解消するためになされたもの
で、固有の高いエネルギーをもつ準安定状態分子を反応
に利用することによって均質な固体薄膜を得ることを目
的とする。
(Purpose of the invention) This invention was made to eliminate the above-mentioned drawbacks, and aims to obtain a homogeneous solid thin film by utilizing metastable molecules with inherent high energy in reactions. .

(発明の概要) この発明は、上記の目的を達成するため、固有の励起エ
ネルギーをもつ準安定状態のガス状分子と原料ガス分子
との反応によって、原料分子に特定の励起エネルギーを
与えて分解させ、基板上に分解生成物を堆積させるよう
にした固体薄膜の製造方法である。
(Summary of the Invention) In order to achieve the above object, the present invention provides specific excitation energy to raw material molecules through a reaction between gaseous molecules in a metastable state having unique excitation energy and raw material gas molecules to decompose them. This is a method for producing a solid thin film in which decomposition products are deposited on a substrate.

(発明の実施例) 以下、この発明の固体薄膜の製造方法の一実施例を図面
を参照しながら説明する。
(Embodiments of the Invention) Hereinafter, an embodiment of the method for producing a solid thin film of the present invention will be described with reference to the drawings.

図において、1,2は第1.第2エネルギー源となるガ
スAおよびガスBがそれぞれ充填された容器、3はプラ
ズマ発生のだめのホローカソード電極、4は前記ホロー
カソード電極3で発生した光を集光する光学トラップ、
5は前記ホローカソード電極3で発生した荷電子を集束
するイオンコンフタ電極、6は準安定状態分子を取り出
す準安定状態生成装置、Tは基板、8は前記基板Tを発
熱させるヒータ、9は高真空排気装置、10は大排気量
排気装置、11は分子エネルギー交換のための反応容器
、12.13は前記反応容器11内の排気を制御するパ
ルプ、14は前記反応容器11内に注入する原料ガスC
の容器、15は前記原料ガスCを制御するパルプ、16
.17は前記エネルギー源ガスA、Bを制御するパルプ
である。
In the figure, 1 and 2 are the first. A container filled with gas A and gas B serving as a second energy source, 3 a hollow cathode electrode for plasma generation, 4 an optical trap for condensing the light generated by the hollow cathode electrode 3;
5 is an ion converter electrode that focuses charged electrons generated in the hollow cathode electrode 3; 6 is a metastable state generation device that extracts molecules in a metastable state; T is a substrate; 8 is a heater that generates heat for the substrate T; 9 is a A high vacuum evacuation device, 10 a large displacement evacuation device, 11 a reaction vessel for molecular energy exchange, 12.13 pulp for controlling the exhaust inside the reaction vessel 11, and 14 for injecting into the reaction vessel 11. Raw material gas C
container, 15 is a pulp for controlling the raw material gas C, 16
.. 17 is a pulp that controls the energy source gases A and B;

次に動作について説明する。Next, the operation will be explained.

エネルギー源ガスとして、例えば希ガスを使用する場合
、ガスAの容器1およびガスBの容器2をパルプ16゜
1Tを介して接続する。
When using a rare gas as the energy source gas, for example, a container 1 for gas A and a container 2 for gas B are connected via a pulp 16° 1T.

ガスAはホローカソード電極3でグー−放電により励起
されズガスイオンA、および準安定状態のガスA、に分
離する。ホローカソード電極3内で発光した光は、光学
トラップ4で吸収され、イオン化したガスイオンA、は
イオンコレクタ電極5で取り除かれ、準安定状態ガスA
、だけが反応容器11に導入される。ここで、準安定状
態ガスの励起エネルギーケ変更する時はガスBの容器2
より、ガスBYパルグ11を介して準安定状態生成装置
6内に混入させて、ガスAによる準安定状態からガスB
による準安定状態へエネルギーを移動させることによっ
て、準安定状態生成装置6内ケ準安定状態のガスBのみ
にすることができる。
Gas A is excited by goo discharge at the hollow cathode electrode 3 and is separated into gas ions A and gas A in a metastable state. The light emitted within the hollow cathode electrode 3 is absorbed by the optical trap 4, and the ionized gas ions A are removed by the ion collector electrode 5.
, are introduced into the reaction vessel 11. Here, when changing the excitation energy of the metastable gas, use the container 2 of gas B.
Therefore, gas B is mixed into the metastable state generating device 6 through the gas BY pulse 11, and gas B is changed from the metastable state caused by gas A.
By transferring energy to the metastable state, only the gas B in the metastable state can be contained in the metastable state generating device 6.

一方1反応容器11内の基板Tをヒータ8により膜生長
に最適な温度に加熱しておき、高真空排気装置9により
反応容器11内を予め10”7torr。
On the other hand, the substrate T in one reaction vessel 11 is heated to the optimum temperature for film growth by the heater 8, and the inside of the reaction vessel 11 is preliminarily pumped to 10''7 torr by the high vacuum evacuation device 9.

以下の圧力まで排気された状態でパルプ16を閉じ、準
安定状態のガスA、の分子を導入し、パルプ1Tを開け
て大排気量排気装置10により10〜] torr、の
圧力になるようにパルプ1Tにより調節した後に原料ガ
スCy!−容器14よりパルプ15Y通じ′C反応容器
11に導入し、原料ガスCと準安定状態のガスA、の分
子と’e(Ilti突させると原料ガスCの分子は分解
し基板Tに堆積する。
Close the pulp 16 while being evacuated to the following pressure, introduce molecules of gas A in a metastable state, open the pulp 1T, and use the large displacement exhaust device 10 to raise the pressure to 10~] torr. After adjusting with pulp 1T, raw material gas Cy! - When the pulp 15Y is introduced into the reaction vessel 11 from the container 14 and the molecules of the raw material gas C and the metastable gas A collide with each other, the molecules of the raw material gas C are decomposed and deposited on the substrate T. .

次にこの発明の具体例、(11,f2)、 (atにつ
いて説明する。ここで、各具体例はいずれも下記条件の
ごとく準安定状態生成装置6および反応容器11内を設
定する。
Next, specific examples of the present invention, (11, f2), and (at) will be explained. Here, in each specific example, the inside of the metastable state generating device 6 and the reaction vessel 11 are set as the following conditions.

(条件) 反応容器110口径f 3 cm、反応容器11内の圧
力ft1torr0、大排気量排気装置10の排気量1
00m”/hr、ホローカソード電極3への印加電圧を
200〜250V、印加電流Yl〜lOmA とする。
(Conditions) Reaction vessel 110 diameter f 3 cm, pressure inside reaction vessel 11 ft 1 torr 0, displacement of large displacement exhaust device 10 1
00 m''/hr, the voltage applied to the hollow cathode electrode 3 is 200 to 250 V, and the applied current is Y1 to 10 mA.

〔具体例1〕 ガスAとしてアルゴンガスな用い、ガスBとしてキセノ
ンガスを用い、さらに原料ガスCとしてシランガスを使
用する。
[Specific Example 1] Argon gas is used as gas A, xenon gas is used as gas B, and silane gas is used as source gas C.

上記条件の下でアルゴンの準安定状態分子を作り、そこ
へキセノンガスを導入して8.2 eVのエネルギーを
もつキセノンの準安定状態分子を準安定状態生成装置6
で発生させ、それを反応容器11に導入し、20 mi
!/mi nの割合で原料ガスCのシランガスを混入さ
せると、250〜300℃に加熱した基板T上に水素系
アモルファスシリコン膜が堆積した。
A metastable state molecule of argon is created under the above conditions, and xenon gas is introduced thereto to produce a metastable state molecule of xenon having an energy of 8.2 eV.
was generated and introduced into the reaction vessel 11, and 20 mi
! When the silane gas of the raw material gas C was mixed at a ratio of /min, a hydrogen-based amorphous silicon film was deposited on the substrate T heated to 250 to 300°C.

また、上記具体例1mおいて、エネルギー源となるガス
としてアルゴンガスだげを使用し同様の条件下で反応さ
せると、11.5eVのエネルギー源持つアルゴンガス
の準安定状態分子が発生する。
Further, in the above specific example 1m, when argon gas is used as the energy source gas and the reaction is performed under the same conditions, metastable molecules of argon gas having an energy source of 11.5 eV are generated.

発生したアルゴンガスの準安定状態分子と前記シランガ
スを反応容器11に混入させると、シランガスはイオン
化されて微結晶を含む水素系アモルファスシリコン膜が
基板T上に堆積する。
When the metastable molecules of the generated argon gas and the silane gas are mixed into the reaction vessel 11, the silane gas is ionized and a hydrogen-based amorphous silicon film containing microcrystals is deposited on the substrate T.

〔具体例2〕 ガスAとしてアルゴンガス、ガスBとして窒素または酸
素、原料ガスCとしてシランガスを使用する。
[Specific Example 2] Argon gas is used as gas A, nitrogen or oxygen is used as gas B, and silane gas is used as source gas C.

上記菌性の下で反応させると、窒素または酸素の準安定
状態分子が発生する。発生した窒素または酸素の準安定
状態分子とシランガスを反応容器11に混入させると、
Siz N l−Xまたは5i)(0+−x薄膜が基板
T上に堆積した。
When reacted under the above-mentioned conditions, nitrogen or oxygen metastable molecules are generated. When the generated nitrogen or oxygen metastable molecules and silane gas are mixed into the reaction vessel 11,
A Siz N l-X or 5i) (0+-x thin film was deposited on the substrate T.

〔具体例3〕 上記具体例1の水素系アモルファスシリコン膜が基板T
上に堆積した後に、さらにガスAとしてアルゴンガス、
ガスBとして酸素を使用して上記県外の下で反応させる
と、水素系アモルファスシリコン膜の上にさらに5iz
O+−xの薄膜が堆積した。すなわち、半導性の水素系
アモルファスシリコン膜−絶縁体の酸化硅素膜の多層膜
が作成された。
[Specific Example 3] The hydrogen-based amorphous silicon film of Specific Example 1 above is used as the substrate T.
After being deposited on top, argon gas is added as gas A,
When oxygen is used as gas B and the reaction is performed outside the above prefecture, an additional 5iz is formed on the hydrogen-based amorphous silicon film.
A thin film of O+-x was deposited. That is, a multilayer film of a semiconducting hydrogen-based amorphous silicon film and an insulating silicon oxide film was created.

(発明の効果) この発明の固体薄膜の製造方法によれば、プラズマで分
解されたエネルギー源となるガスの多種類の分解生成物
を光学的および電気的手段によって除去し、ノベルの揃
った高いエネルギーを持つ準安定状態ガスな生成し、こ
の高いエネルギーで原料ガス分子を分解し堆積させるの
で薄膜の膜質な均一にできる。さらに、作製過程のくり
返しにより固体薄Mを多層に形成することも容易にでき
る等の利点夕有する。
(Effects of the Invention) According to the method for producing a solid thin film of the present invention, various decomposition products of gas decomposed by plasma and serving as an energy source are removed by optical and electrical means, and a novel and high-performance method is achieved. It generates a metastable gas with high energy, and uses this high energy to decompose and deposit source gas molecules, making it possible to form thin films with uniform quality. Further, it has the advantage that the solid thin M can be easily formed into multiple layers by repeating the manufacturing process.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明を実施するための装置の一例を示す構成
概略図である。 図中、1.2は第1.第2エネルギー源ガスが充填され
た容器、3はポー−カソード電極、4は光学トラップ、
5はイオンコンフタ電極、6は準安定状態生成装置、7
は基板、8はヒータ、9は晶真¥排気装置、1oは大排
気景排気装置、11は反応容器、12.13はバルブ、
14け原料ガス容器、15.16.17はパルプである
The drawing is a schematic configuration diagram showing an example of an apparatus for carrying out the present invention. In the figure, 1.2 is the first. a container filled with a second energy source gas; 3 a po-cathode electrode; 4 an optical trap;
5 is an ion converter electrode, 6 is a metastable state generator, 7 is
is the substrate, 8 is the heater, 9 is the crystalline exhaust system, 1o is the large exhaust system, 11 is the reaction vessel, 12.13 is the valve,
14 raw material gas containers, 15, 16, 17 are pulp.

Claims (1)

【特許請求の範囲】[Claims] 0) グルー放電で発生するプラズマでエネルギー源と
なるガスを励起し、発生した前記ガスのイオンおよび光
を除去して、高いエネルギーを持つ準安定状態分子を取
り出し、これを高真空の反応容器内に導き原料ガス分子
な前記高いエネルギー起し、この励起エネルギーを第2
エネルギー源ガスに力えて第2エネルギー源ガスの準安
定状態分子を作ることにより得ることを特徴とする特許
請求の範囲第(])項記載の固体薄膜の製造方法。
0) Excite a gas that serves as an energy source with plasma generated by glue discharge, remove ions and light from the generated gas, extract molecules in a metastable state with high energy, and introduce them into a high-vacuum reaction vessel. The high energy of the raw material gas molecules is induced, and this excitation energy is transferred to the second
A method for producing a solid thin film according to claim 1, wherein the solid thin film is obtained by creating metastable state molecules of a second energy source gas by applying force to an energy source gas.
JP14278783A 1983-08-04 1983-08-04 Manufacture of solid thin film Granted JPS6034013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14278783A JPS6034013A (en) 1983-08-04 1983-08-04 Manufacture of solid thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14278783A JPS6034013A (en) 1983-08-04 1983-08-04 Manufacture of solid thin film

Publications (2)

Publication Number Publication Date
JPS6034013A true JPS6034013A (en) 1985-02-21
JPH0459769B2 JPH0459769B2 (en) 1992-09-24

Family

ID=15323591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14278783A Granted JPS6034013A (en) 1983-08-04 1983-08-04 Manufacture of solid thin film

Country Status (1)

Country Link
JP (1) JPS6034013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174382A (en) * 1986-01-27 1987-07-31 Shindengen Electric Mfg Co Ltd Method and apparatus for depositing metallic alloy from vapor phase
JPS6446936A (en) * 1987-08-17 1989-02-21 Nippon Telegraph & Telephone Growth method of thin film
JPH0420901U (en) * 1990-06-12 1992-02-21

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362982A (en) * 1976-11-17 1978-06-05 Toshiba Corp Plasma cvd apparatus
JPS5667538A (en) * 1979-11-06 1981-06-06 Fujitsu Ltd Plasma oxidation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362982A (en) * 1976-11-17 1978-06-05 Toshiba Corp Plasma cvd apparatus
JPS5667538A (en) * 1979-11-06 1981-06-06 Fujitsu Ltd Plasma oxidation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174382A (en) * 1986-01-27 1987-07-31 Shindengen Electric Mfg Co Ltd Method and apparatus for depositing metallic alloy from vapor phase
JPH064916B2 (en) * 1986-01-27 1994-01-19 新電元工業株式会社 Method and apparatus for depositing a metal alloy from the vapor phase
JPS6446936A (en) * 1987-08-17 1989-02-21 Nippon Telegraph & Telephone Growth method of thin film
JPH0420901U (en) * 1990-06-12 1992-02-21

Also Published As

Publication number Publication date
JPH0459769B2 (en) 1992-09-24

Similar Documents

Publication Publication Date Title
US5340621A (en) Plasma CVD method
JP7156648B2 (en) Carbon nanostructured material and method of forming carbon nanostructured material
JPS582022A (en) Thin film formation
JPS61153277A (en) Production of thin fine crystal silicon film
JPS6034013A (en) Manufacture of solid thin film
JPS6223450B2 (en)
JPH06112133A (en) Method of covering upper section of base body with transparent dielectric film
JP3230315B2 (en) Processing method using dielectric barrier discharge lamp
JPH031377B2 (en)
JPS634454B2 (en)
JP2000087249A (en) Thin film forming device and method
EP0418438A1 (en) Method and apparatus for the plasma etching, substrate cleaning or deposition of materials by D.C. glow discharge
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH0864535A (en) Plasma generator, and method and device for film deposition
JPS60257515A (en) Manufacture of thin film
JPH01306564A (en) Formation of boron nitride
JPS6034012A (en) Manufacture of solid thin film
JPH01730A (en) Method of forming multilayer thin film
JPS6396266A (en) Device for producing amorphous silicon solar cell
JPH03229871A (en) Production of insulating film and production of semiconductor device using this insulating film
JPH0717146Y2 (en) Wafer processing equipment
JPS63248119A (en) Formation of silicon carbide film
JPS62119918A (en) Device for plasma chemical vapor deposition
JPH05147908A (en) Production of cubic boron nitride powder
JPS63211628A (en) Plasma treatment device