JPS6328164B2 - - Google Patents

Info

Publication number
JPS6328164B2
JPS6328164B2 JP58132196A JP13219683A JPS6328164B2 JP S6328164 B2 JPS6328164 B2 JP S6328164B2 JP 58132196 A JP58132196 A JP 58132196A JP 13219683 A JP13219683 A JP 13219683A JP S6328164 B2 JPS6328164 B2 JP S6328164B2
Authority
JP
Japan
Prior art keywords
water
intake
turbidity
water level
dam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58132196A
Other languages
Japanese (ja)
Other versions
JPS6026712A (en
Inventor
Akio Tsujikawa
Toshio Hata
Masayoshi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58132196A priority Critical patent/JPS6026712A/en
Publication of JPS6026712A publication Critical patent/JPS6026712A/en
Publication of JPS6328164B2 publication Critical patent/JPS6328164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/02Water-ways
    • E02B9/04Free-flow canals or flumes; Intakes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Barrages (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ダムから取水して発電した後下流河
川に農、工、上水用として放流するダム貯留水の
取水方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for taking water stored in a dam, generating electricity by taking water from a dam, and then discharging it into a downstream river for use in agriculture, engineering, and water supply.

〔発明の背景〕[Background of the invention]

一般に、水資源を有効利用するためダムを設置
して、上流河川から流入する河川水を一旦貯留
し、このダムから農業、工業又は上水用等(以下
単に用水と称する)に必要な少なくとも所定量を
取水して発電に利用した後、下流河川に放流する
ようにしている。
In general, in order to effectively utilize water resources, dams are installed to temporarily store river water flowing in from upstream rivers, and from this dam, at least the areas necessary for agriculture, industry, water supply, etc. (hereinafter simply referred to as water supply) are installed. A fixed amount of water is taken, used for power generation, and then released into the downstream river.

また、用水の水質は、洪水の如き自然現象時は
別として、低濁度のものが好ましいことから、特
開昭48−76349号公報等に示されたように、取水
口の水位を可変とし、且つ取水口付近の濁度を計
測して常に低濁度水位から取水するようにしてい
る。
In addition, since it is preferable for water quality to have low turbidity, except during natural phenomena such as floods, the water level at the water intake should be made variable as shown in Japanese Patent Application Laid-open No. 76349/1983. , and measures the turbidity near the water intake to ensure that water is always taken from a low turbidity water level.

ところが、洪水時等には上流から流入される汚
濁物質によりダムの貯留水の濁度が増大されるこ
とがあり、また、洪水がおさまつて清水が流入し
ても、汚濁物質が沈澱するのに長期を要するた
め、水位によつては相当長期に亘つて高濁度にな
ることがある。
However, during floods, the turbidity of the water stored in a dam may increase due to pollutants flowing in from upstream, and even after the flood subsides and fresh water flows in, the pollutants do not settle out. Depending on the water level, high turbidity may persist for a considerable period of time.

したがつて、上述したように常に低濁度水位か
ら取水するようにしていた従来の取水方法による
と、次第に貯留水全体が高濁度のものになり、洪
水後も相当長期に亘つて高濁度水を取水放流しな
ければならないという欠点があつた。しかも、ダ
ムに流入される汚濁物質の量に比べて取水放流さ
れる汚濁物質の量が少ないので、その分だけダム
底部に汚濁物質が堆積することになり、有効貯水
量が減少してしまうという欠点があつた。
Therefore, as mentioned above, according to the conventional water intake method, which always takes water from a low turbidity water level, the entire stored water gradually becomes highly turbid, and even after a flood, it remains highly turbid for a considerable period of time. The drawback was that water had to be taken in and discharged. Furthermore, since the amount of pollutants taken in and discharged is smaller than the amount of pollutants flowing into the dam, the amount of pollutants deposited at the bottom of the dam decreases, reducing the effective water storage capacity. There were flaws.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、高濁度水の取水期間を短期化
するとともに、汚濁物質を最大限放流して有効貯
水量の減少を抑制できるダム貯留水の取水方法を
提供することにある。
An object of the present invention is to provide a method for intake of water stored in a dam, which can shorten the intake period of highly turbid water, discharge pollutants to the maximum extent, and suppress a decrease in effective water storage.

〔発明の概要〕 本発明は取水量とダム取水部の水位方向におけ
る濁度分布と水温分布とを検出し、これらの検出
値から各取水水位に対応させて平均取水濁度を試
算するとともに、ダム流入水の濁度を検出し、該
検出濁度が規定値以上のとき洪水と判断して前記
試算平均取水濁度の最高濁度取水水位から取水
し、規定値未満のとき非洪水又は洪水終了と判断
して最低濁度水位から取水するようにし、これに
よつて高濁度水の取水期間を短期化するととも
に、汚濁物質を最大限放流して有効貯水量の減少
を抑制しようとすることにある。
[Summary of the Invention] The present invention detects the amount of water intake and the turbidity distribution and water temperature distribution in the water level direction of the dam intake part, and calculates the average intake water turbidity based on these detected values in correspondence with each intake water level. The turbidity of the inflow water from the dam is detected, and when the detected turbidity is above the specified value, it is determined that it is a flood, and water is taken from the highest turbidity intake water level of the estimated average intake water turbidity, and when it is less than the specified value, it is determined to be a non-flood or a flood. Water is taken from the lowest turbidity water level when the water is judged to be over, thereby shortening the period of water intake with high turbidity and discharging the maximum amount of pollutants to prevent a decrease in effective water storage. There is a particular thing.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

第1図に本発明の適用された一実施例の取水装
置の全体構成図を示し、第2及び第3図に実施例
のフローチヤートを示す。
FIG. 1 shows an overall configuration diagram of a water intake device according to an embodiment of the present invention, and FIGS. 2 and 3 show flowcharts of the embodiment.

第1図に示すように、ダム1には、任意の水位
から取水可能な選択取水ゲート2を具えた取水管
3が設けられ、取水ゲート2から取水された用水
は取水管3を通し、図示していない発電装置に導
びかれるようになつている。取水ゲート2は、例
えばスライドゲート方式となつており、ゲート駆
動装置4によりロープ5を介して上下に可変され
るようになつている。この取水ゲート2の開度は
開度計6によつて検出可能になつている。取水量
は取水管3内に設けられた流量センサ7を介して
検知され、流量計8によつて計測されるようにな
つている。取水部における濁度と水温は水質セン
サ9を介して検知され、水質計10によつて計測
されるようになつている。水質センサ9は例えば
ロープ11を介して水質センサ駆動装置12によ
つて水位方向に移動可能になつている。ダム1に
流入される流入水の濁度及び流入量は、流入水セ
ンサ13によつて計測され、テレメータ装置14
からテレメータ装置15に伝送されるようになつ
ている。前記開度計6、流量計8、水質計12、
及びテレメータ装置15から出力される各データ
は、データ処理装置16に取り込まれるようにな
つており、このデータ処理装置16からは前記取
水ゲート駆動装置4と水質センサ駆動装置12
に、制御指令がそれぞれ与えられるようになつて
いる。また、データ処理装置16には、自動手動
の切換器17を介して操作卓18から制御指令が
入力されるようになつている。
As shown in FIG. 1, the dam 1 is provided with a water intake pipe 3 equipped with a selective water intake gate 2 that can take water from any water level, and the water taken from the water intake gate 2 passes through the water intake pipe 3. It is designed to lead to a power generator, not shown. The water intake gate 2 is, for example, of a slide gate type, and is adapted to be moved up and down by a gate driving device 4 via a rope 5. The opening degree of this water intake gate 2 can be detected by an opening meter 6. The amount of water intake is detected via a flow sensor 7 provided in the water intake pipe 3 and measured by a flow meter 8. Turbidity and water temperature in the water intake section are detected via a water quality sensor 9 and measured by a water quality meter 10. The water quality sensor 9 is movable in the water level direction by a water quality sensor driving device 12 via a rope 11, for example. The turbidity and amount of inflow water flowing into the dam 1 are measured by the inflow water sensor 13, and the telemeter device 14
The signal is transmitted from there to the telemeter device 15. The opening meter 6, the flow meter 8, the water quality meter 12,
Each data outputted from the telemeter device 15 is taken into a data processing device 16, and from this data processing device 16, the water intake gate driving device 4 and the water quality sensor driving device 12 are inputted.
Control commands are given to each. Further, control commands are input to the data processing device 16 from an operator console 18 via an automatic/manual switch 17.

このように構成される実施例の動作をフローチ
ヤートを参照しながら説明する。なお、自動手動
の切換器17が手動設定側に切替えられている場
合は、操作卓18から入力される設定取水濁度に
基づき、第2図のフローチヤートに沿つて制御さ
れ、自動設定側に切替えられている場合は第3図
のフローチヤートに沿つて制御される。
The operation of the embodiment configured as described above will be explained with reference to a flowchart. In addition, when the automatic/manual switch 17 is switched to the manual setting side, the control is performed according to the flowchart in Fig. 2 based on the set intake water turbidity input from the operation console 18, and the switch is switched to the automatic setting side. If it has been switched, control is performed according to the flowchart in FIG.

第2図に示したように、ステツプ102におい
てデータ処理装置16は、水質センサ駆動装置1
2を起動して水質センサ9を移動させながら、取
水部付近の水位I(I=1、2、……)の濁度CI
の分布と水温TIの分布をそれぞれ計測する。こ
こでIは例えば1mピツチに設定されているもの
として説明する。次に、ステツプ103において
切替器17の状態が判断され、手動設定の場合は
ステツプ104を介してステツプ105に移行
し、取水の水位Jを1mピツチで変えた場合の各
取水水位Jにおける平均取水濁度を試算する。こ
の平均取水濁度は次式(1)、(2)によつて求められ
る。即ち、第4図の模式図に示すように、取水ゲ
ート2から取水される取水量をQ(m3/s)、水温
分布による貯留水の密度勾配をε、取水ゲート2
の開口部形状係数をθ、重力加速度をg(=
9.8m/s)、係数をGとしたとき、取水に係る流
動層の厚みδ(m)は次式(1)で表わすことができ
る。
As shown in FIG. 2, in step 102 the data processing device 16 processes the water quality sensor driving device
2 and move the water quality sensor 9, check the turbidity C I of the water level I (I = 1, 2, ...) near the water intake part.
and the distribution of water temperature T I respectively. Here, the description will be made assuming that I is set to a pitch of 1 m, for example. Next, in step 103, the state of the switching device 17 is determined, and in the case of manual setting, the process moves to step 105 via step 104. Estimate the turbidity. This average intake water turbidity is calculated by the following equations (1) and (2). In other words, as shown in the schematic diagram of FIG.
The opening shape factor is θ, and the gravitational acceleration is g (=
9.8m/s) and the coefficient is G, the thickness δ (m) of the fluidized bed related to water intake can be expressed by the following equation (1).

この流動層厚みδに含まれる水位Iの前記検出
濁度CIとし、それらの水位Iが取水量Qに占める
割合を重み係数αIと設定すると、任意の取水水位
J(J=1、2、……)における平均取水濁度DJ
は、次式(2)で表わすものとなる。
If the detected turbidity C I of the water level I included in the fluidized bed thickness δ is set as the weighting coefficient α I, then the ratio of the water level I to the water intake Q is set as the weighting coefficient α I. ,...) average intake water turbidity D J
is expressed by the following equation (2).

DJ=ΣαI・CI ……(2) このようにして試算した平均取水濁度DJが、
操作卓18から与えられている設定取水濁度と一
致すれば(ステツプ106)、ステツプ107に
移行して取水ゲート2の位置をその取水水位Jに
移動すべく、取水ゲート駆動装置4に制御指令を
出力する。なお、ステツプ106において一致し
ていなければ、順次他の取水水位Jについて平均
取水濁度DJを試算して一致する取水水位Jを割
り出す。このようにして所望とする濁度の取水を
行なわせているのである。
D J = Σα I・C I ...(2) The average intake water turbidity D J calculated in this way is
If it matches the set intake water turbidity given from the operation console 18 (step 106), the process moves to step 107 and a control command is given to the intake gate driving device 4 to move the position of the intake gate 2 to the intake water level J. Output. If they do not match in step 106, the average intake water turbidity D J is sequentially calculated for other intake water levels J to determine the matching intake water level J. In this way, water intake with the desired turbidity is achieved.

自動の場合は、第2図のステツプ103から第
3図のステツプ201を介してステツプ202に
移行し、前式(1)、(2)に基づき平均取水濁度DJ
試算し、その中で最高と最低の平均取水濁度を示
す最高濁度取水水位と最低濁度取水水位を求め
る。
If automatic, the process moves from step 103 in Figure 2 to step 202 via step 201 in Figure 3, where the average intake water turbidity D J is estimated based on the previous equations (1) and (2). Find the highest turbidity intake water level and the lowest turbidity intake water level that indicate the highest and lowest average intake water turbidity.

次に、ステツプ203において、テレメータ装
置15から流入水の水質データ(濁度、流入量)
を取り込み、流入量と濁度が規定値以上であれば
洪水と判断し、ステツプ204に移行して、前記
最高濁度取水水位に取水ゲート2を駆動して高濁
度水を取水する。一方、濁度が規定値未満の場合
又は、洪水でないと判断した場合はステツプ20
5に移行して、前記最低濁度取水水位に取水ゲー
ト2を駆動して低濁度水を取水する。
Next, in step 203, water quality data (turbidity, inflow amount) of the inflow water is obtained from the telemeter device 15.
If the inflow amount and turbidity are above the specified values, it is determined that there is a flood, and the process proceeds to step 204, where the water intake gate 2 is driven to the maximum turbidity intake water level to intake high turbidity water. On the other hand, if the turbidity is less than the specified value or if it is determined that there is no flood, proceed to step 20.
5, the water intake gate 2 is driven to the lowest turbidity intake water level to intake low turbidity water.

したがつて、本実施例によれば、第5図aに示
す流入水濁度の変化に一致させて、第5図bのよ
うに取水の濁度を制御することができる。これに
対し、前述した従来法によれば、第6図aに示す
流入水濁度の変化に対し、第6図bに示すように
取水の濁度変化が遅れたものとなり、洪水終了時
点から相当遅れて清水の取水が行なわれることに
なるのである。
Therefore, according to this embodiment, the turbidity of intake water can be controlled as shown in FIG. 5b in accordance with the change in inflow water turbidity shown in FIG. 5a. On the other hand, according to the conventional method described above, the change in the turbidity of the intake water is delayed as shown in Figure 6b with respect to the change in the turbidity of the inflow water shown in Figure 6a, and from the end of the flood. The intake of fresh water will be carried out after a considerable delay.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、高汚濁
水の取水期間が短期化されるとともに、汚濁物質
が沈澱しないうちに最大限放流することができ、
これによつて有効貯水量の減少が抑制されるとい
う効果がある。
As explained above, according to the present invention, the intake period of highly polluted water is shortened, and the maximum amount of pollutants can be discharged before they settle.
This has the effect of suppressing a decrease in the amount of effective water storage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の適用された一実施例の全体構
成図、第2図及び第3図は実施例フローチヤー
ト、第4図は説明図、第5図及び第6図は効果を
説明するための濁度変化を示す線図である。 1……ダム、2……取水ゲート、3……取水
管、4……取水ゲート駆動装置、6……開度計、
7……流量センサ、8……流量計、9……水質セ
ンサ、10……水質計、12……水質センサ駆動
装置、13……流入水センサ、16……データ処
理装置。
Fig. 1 is an overall configuration diagram of an embodiment to which the present invention is applied, Figs. 2 and 3 are flowcharts of the embodiment, Fig. 4 is an explanatory diagram, and Figs. 5 and 6 explain effects. It is a diagram showing turbidity change for. 1... Dam, 2... Water intake gate, 3... Water intake pipe, 4... Water intake gate drive device, 6... Openness meter,
7...Flow rate sensor, 8...Flow meter, 9...Water quality sensor, 10...Water quality meter, 12...Water quality sensor drive device, 13...Inflow water sensor, 16...Data processing device.

Claims (1)

【特許請求の範囲】[Claims] 1 取水量と取水部の水位方向における濁度分布
と水温分布とを検出し、これらの検出値から各取
水水位に対応させて平均取水濁度を試算するとと
もに、ダム流入水の濁度を検出し、該検出濁度が
規定値以上のときは前記試算平均取水濁度の最高
濁度取水水位から取水し、規定値未満のときは最
低濁度取水水位から取水することを特徴とするダ
ム貯留水の取水方法。
1 Detect the amount of water intake and the turbidity distribution and water temperature distribution in the direction of the water level at the water intake, and from these detected values, calculate the average intake water turbidity corresponding to each intake water level, and also detect the turbidity of the dam inflow water. and when the detected turbidity is above a specified value, water is taken from the highest turbidity intake water level of the estimated average intake water turbidity, and when it is less than the specified value, water is taken from the lowest turbidity intake water level. Water intake method.
JP58132196A 1983-07-20 1983-07-20 Intake of water stored in dam Granted JPS6026712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132196A JPS6026712A (en) 1983-07-20 1983-07-20 Intake of water stored in dam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132196A JPS6026712A (en) 1983-07-20 1983-07-20 Intake of water stored in dam

Publications (2)

Publication Number Publication Date
JPS6026712A JPS6026712A (en) 1985-02-09
JPS6328164B2 true JPS6328164B2 (en) 1988-06-07

Family

ID=15075640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132196A Granted JPS6026712A (en) 1983-07-20 1983-07-20 Intake of water stored in dam

Country Status (1)

Country Link
JP (1) JPS6026712A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541780U (en) * 1991-11-01 1993-06-08 株式会社クニトミ Towel printing device
JPH06115236A (en) * 1992-10-07 1994-04-26 Kunitomi:Kk Method of printing thick fabric
JP4339199B2 (en) * 2004-07-22 2009-10-07 北陸電力株式会社 Water intake control method and water intake control system for flow-type hydroelectric power plant

Also Published As

Publication number Publication date
JPS6026712A (en) 1985-02-09

Similar Documents

Publication Publication Date Title
CN110647039B (en) Synchronous control self-adaptive balance scheduling method for long-distance open channel water delivery project
JPS5816205B2 (en) Dam control method
JPS6328164B2 (en)
Fuchs et al. Model based real-time control of sewer system using fuzzy-logic
KR870001551B1 (en) Adaptive gain compressor surge control system
JP3293193B2 (en) Weir discharge calculation method
Tuan et al. Numerical modeling of wave overwash on low-crested sand barriers
JPH07138930A (en) Planed maximum dam water discharge control method device, and dam water discharge facilities using the method and device
CN110795792B (en) Method for predicting riverbed deformation of strong turbulent fluctuation area of river channel caused by engineering construction
JPH04104307A (en) Control method for dam discharge rate
JP3544704B2 (en) Turbine generator control device
JPS6070210A (en) Controller for surface intake gate
JP3018767B2 (en) Water level adjustment device
JPS60239814A (en) Control method of dam
Efthymiou et al. Experimental observations and simulation of non-equilibrium bedload transport of graded bed material
JPS5949431B2 (en) How to automatically control the number of pumps in operation
JPH052768B2 (en)
JP3263593B2 (en) Water level control device
JP2620531B2 (en) Up and down weir made of flexible membrane
Joglekar Principles of Hydraulic Model Studies and their limitations
Bensaid et al. EXPERIMENTAL CONSIDERATION ON HEIGHT AND DISTANCE EFFECTS OF CONSECUTIVE DAMS IN HYDRAULIC FLOW
CN117350018A (en) Water flow regulation and control method for preventing bank slopes at river channel junction from scouring
JPH08159006A (en) Head tank water level regulation control device for hydraulic power plant in snowy area
SU1288655A1 (en) Sampled-data-regulator of water level in channel
Mao et al. Study on the bed coarsening and limit scour depth of the lower reaches of the Three Gorges Reservoir