JPH04104307A - Control method for dam discharge rate - Google Patents

Control method for dam discharge rate

Info

Publication number
JPH04104307A
JPH04104307A JP22116590A JP22116590A JPH04104307A JP H04104307 A JPH04104307 A JP H04104307A JP 22116590 A JP22116590 A JP 22116590A JP 22116590 A JP22116590 A JP 22116590A JP H04104307 A JPH04104307 A JP H04104307A
Authority
JP
Japan
Prior art keywords
gate
discharge amount
target discharge
discharge rate
weir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22116590A
Other languages
Japanese (ja)
Other versions
JP2799057B2 (en
Inventor
Toshifumi Abe
阿部 敏文
Yasuhiro Terada
寺田 保広
Takeshi Saito
健 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22116590A priority Critical patent/JP2799057B2/en
Publication of JPH04104307A publication Critical patent/JPH04104307A/en
Application granted granted Critical
Publication of JP2799057B2 publication Critical patent/JP2799057B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Non-Electrical Variables (AREA)

Abstract

PURPOSE:To prevent the excess discharge of a total discharge rate or a discharge lack so as to improve reliability and safety by continuously switching the discharge rate between fine adjustment and rough adjustment gates. CONSTITUTION:A target discharge rate distribution circuit 83 distributes a total target discharge rate Qm into the target discharge rate Qmf of the fine adjustment gate 41 and the target discharge rate Qmr of the rough adjustment gate 42 in accordance with a maximum possible discharge rate Qmfm decided in a decision circuit 86 and a present discharge rate Qo. When the distribution of the target discharge rate for respective gates terminates, the discharge control parts 84 and 85 of respective gates generate necessary gate start signals df and fr from the distributed target discharge rates Qmf and Qmr and present gate openings Pf and Pr. Thus, gate driving devices 61 and 62 are controlled to set the discharge rates of respective gates to become the target values Qmf and Qmr. When an inflow rate Qin continuously increases and a flowing water level of dam Hu exceeds the upper limit of a dam water level maintenance area [Hs], the target discharge rate Qm is increased again. Thus, the flow rate can be controlled without the discontinuous change of opening and the disturbance of control owing to the difference of gate opening/closing time and gate friction can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、河川に設けら九た堰における放流量の制御方
法に係り、特にオーバーフローゲートて微調整を行い、
アンダーフローゲートで粗調整を行う堰に好適な堰放流
量制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for controlling the discharge amount at a weir installed in a river, and in particular, a method for finely adjusting the amount by using an overflow gate.
The present invention relates to a weir discharge flow rate control method suitable for weirs that perform rough adjustment with underflow gates.

〔従来の技術〕[Conventional technology]

河用堰では、河川の利用及び安全管理のために流量制御
が行われる。第3図は堰の流量調節機構を主とした構造
を示したもので、堰1のポケットへの流入口2からの流
入量Qinに応じて放流口3からの放流量Q o u 
tが制御される。この制御は、オーバーフローにより流
量を微調節する微調整ゲート41及びアンダーフローに
より流量を粗調整する粗調整ゲート42の各開度制御に
より行われる。この従来の制御方法の例は特開昭641
4621号に記載のように、第4図(a)に示すもので
ある。即ち、総目標放流量Qmが同図のように時間とと
もに増大した場合、微調整ゲートの目標放流量Qmfで
総目標放流量Qmをフォローし、Q m fが最大値Q
mfm(微調整ゲート最大可能放流量)になったときこ
れを粗調整ゲートの目標放流量Q m rに移して微調
整ゲートの目標放流量QmfはOとし、再び総目標放流
量Qmの変化をQmfでフォローする。また逆に総目標
放流量Qmが時間とともに減少するときは第4図(a)
の時間軸を逆にたどった制御を行う。
At river weirs, flow rate control is performed for river use and safety management. Figure 3 shows the structure of the weir, which is mainly composed of a flow rate adjustment mechanism, in which the amount of discharge from the outlet 3 is determined according to the amount of inflow Qin from the inlet 2 into the pocket of the weir 1.
t is controlled. This control is performed by controlling the respective opening degrees of a fine adjustment gate 41 that finely adjusts the flow rate by overflow and a coarse adjustment gate 42 that coarsely adjusts the flow rate by underflow. An example of this conventional control method is JP-A-641
4621, as shown in FIG. 4(a). That is, when the total target discharge amount Qm increases with time as shown in the figure, the target discharge amount Qmf of the fine adjustment gate follows the total target discharge amount Qm, and Q m f becomes the maximum value Q.
mfm (maximum possible discharge amount of the fine adjustment gate), transfer this to the target discharge amount Qmr of the coarse adjustment gate, set the target discharge amount Qmf of the fine adjustment gate to O, and change the total target discharge amount Qm again. Follow me on Qmf. Conversely, when the total target discharge amount Qm decreases with time, Fig. 4 (a)
Performs control that follows the time axis in reverse.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

粗調整ゲートは微調整ゲートに比べ構造が大きいから、
ある大きさの目標放流量の変化を与えたときにその変化
に対応してゲート開度が実際に変化するまでに要する時
間は粗調整ゲートの方が短い、このため、従来の制御方
法のように2つのゲート間で目標放流量のシフトを瞬時
に行うと、粗調整ゲートの方がそのシフI−に対応して
ゲート開度変化を完了した時点には微調整ゲートの方は
まだ開度変化の途中にあり、その変化の完了が遅れる。
Because the coarse adjustment gate has a larger structure than the fine adjustment gate,
When a change in the target discharge amount is applied, the time required for the gate opening to actually change in response to the change is shorter with the coarse adjustment gate, so it is less time consuming than with conventional control methods. When the target discharge amount is instantaneously shifted between two gates, the fine adjustment gate is still open at the time when the coarse adjustment gate has completed changing the gate opening in response to the shift I-. It is in the middle of a change and the completion of that change is delayed.

この結果下流への過渡的な過放流や放流不足が発生し、
下流の河川敷内の畑、ゴルフ場等の施設、ならびに中洲
での釣り人等に対して危険を与える可能性があり、同時
にこの過渡的な過放流や放流不足は制御そのものを不安
定として層上下流の水位変動の原因にもなるという問題
があった。
As a result, transient over-discharge or under-discharge to the downstream occurs,
There is a possibility of posing a danger to fields, golf courses, and other facilities in the downstream riverbed, as well as anglers on sandbars. There was also the problem that it caused fluctuations in the water level downstream.

また目標放流量のゲート間のシフト時には微調整ゲート
は常にその最大放流量に相当する大きさの開度変化を行
うのでゲートそのものの機械的摩擦が大きくなり、特に
出水時においてはこのシフ1−に伴う大きな開度変化が
繰り返して多数回行われるから、微調整ゲートの機械的
摩擦が大きな問題となっていた。
In addition, when shifting the target discharge amount between gates, the fine adjustment gate always changes the opening degree corresponding to the maximum discharge amount, so the mechanical friction of the gate itself becomes large, especially when water is flowing out. Since large changes in the opening angle are repeated many times, mechanical friction of the fine adjustment gate has become a major problem.

本発明の目的は、微調整ゲートと粗調整ゲートの間の放
流量のシフトに伴う下流への過放流や放流不足を防止し
て制御の安定性及び下流での安全性を向上でき、また微
調整ゲートの機械的摩擦を低減することのできる基数流
量制御方法を提供するにある。
An object of the present invention is to prevent over-discharge or insufficient discharge downstream due to a shift in the discharge amount between the fine adjustment gate and the coarse adjustment gate, thereby improving control stability and downstream safety. The object of the present invention is to provide a radix flow control method that can reduce mechanical friction of a regulating gate.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、総目標放流量の増大(または減少)に伴
って粗調整ゲートの目標放流量は一定のまま微調整ゲー
トの目標放流量を増大(または減少)させて総目標放流
量の変化を実現する第1制御モードと、第1制御モード
による制御を続けて微調整ゲートの目標放流量がその最
大可能放流量(または0放流量=最小可能放流量)に到
達すると、今度は微調整ゲートの目標放流量を減少(ま
たは増大)させるとともに2つのゲートの目標放流量の
変化が総目標放流量の変化と一致するように粗調整ゲー
トの目標放流量を増大(または減少)させるところの第
2制御モードと、第2制御モードによる制御を続けて微
調整ゲー1〜の目標放流量が0放流量(または最大可能
放流量)に到達すると再び上記第1制御モードによる制
御を実行する、という制御を繰り返すことにより達成さ
れ、また、微調整ゲートの最大可能放流量を、総目標放
流量が大きくなるのに従って小さく設定する機構を設け
ることにより達成される。
The above purpose is to change the total target discharge amount by increasing (or decreasing) the target discharge amount of the fine adjustment gate while keeping the target discharge amount of the coarse adjustment gate constant as the total target discharge amount increases (or decreases). The first control mode realizes The target discharge amount of the coarse adjustment gate is increased (or decreased) so that the target discharge amount of the gate is decreased (or increased) and the change in the target discharge amount of the two gates matches the change in the total target discharge amount. Continuing the control in the second control mode and the second control mode, when the target discharge amount of the fine adjustment game 1~ reaches 0 discharge amount (or maximum possible discharge amount), the control in the first control mode is executed again. This is achieved by repeating this control, and by providing a mechanism that sets the maximum possible discharge amount of the fine adjustment gate to be smaller as the total target discharge amount increases.

〔作用〕[Effect]

第1制御モード及び第2制御モードの実行中はむろん、
その2つのモードの切り換え時においても各ゲートの目
標放流量の不連続な変化は生じないから、ゲート開度が
目標放流量変化に追従するに要する時間のゲート間の差
による放流量の制御部れは発生せず、安定な制御と下流
での安全性を向上できる。また、各ゲートの目標放流量
が不連続変化をしないことから、各ゲートの動作量が従
来に比べ小さくなり、ゲートの機械的摩擦を低減するこ
とができる。さらに、出水時に総目標放流量が大幅に増
大したとき、微調整ゲートの最大可能放流量を総目標放
流量の増大に伴って小さく設定することにより、微調整
ゲートの開度変化は小さくなって流量調整は粗調整ゲー
ト主体となることから、微調整ゲートの機械的摩擦を一
層低減できる。
Of course, during the execution of the first control mode and the second control mode,
Even when switching between the two modes, there is no discontinuous change in the target discharge amount of each gate, so the discharge amount is controlled by the difference between the gates in the time required for the gate opening to follow the change in the target discharge amount. This does not occur, and stable control and downstream safety can be improved. Furthermore, since the target discharge amount of each gate does not change discontinuously, the amount of operation of each gate is smaller than that of the conventional technology, and the mechanical friction of the gates can be reduced. Furthermore, when the total target discharge amount increases significantly during a water outflow, by setting the maximum possible discharge amount of the fine adjustment gate to a smaller value as the total target discharge amount increases, the change in the opening degree of the fine adjustment gate becomes smaller. Since the flow rate adjustment is mainly performed by the coarse adjustment gate, the mechanical friction of the fine adjustment gate can be further reduced.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。第5図は本発明の
方法を適用した堰制御システムの一実施例を示すブロッ
ク図で、微調整ゲート41及び粗調整ゲート42は第3
図に示したものとする。これらの堰の上流水位HU及び
下流水位HLは堰上流水位計51及び堰下流水位計52
により検出され、堰制御システム8内のフィルタ回路8
1へ入力され、ここでノイズ成分を除去される。次の制
御量算出回路82は、堰上流水位HUを入力し、この値
が予め定められた堰下流水位維持領域[HS](水位の
予め定められた範囲H1〜H2をこのように略記する)
から外れた場合に、堰上流水位HUを上記の維持領域[
Hs ]内へもどすための目標放流量Qmを算出する。
An embodiment of the present invention will be described below. FIG. 5 is a block diagram showing an embodiment of a weir control system to which the method of the present invention is applied, in which the fine adjustment gate 41 and the coarse adjustment gate 42 are
As shown in the figure. The upstream water level HU and downstream water level HL of these weirs are determined by the weir upstream water level gauge 51 and the weir downstream water level gauge 52.
filter circuit 8 in the weir control system 8
1, where noise components are removed. The next control amount calculation circuit 82 inputs the weir upstream water level HU, and this value is a predetermined weir downstream water level maintenance area [HS] (the predetermined range H1 to H2 of the water level is abbreviated in this way)
If the weir upstream water level HU deviates from the above maintenance area [
Hs] is calculated.

また現在放流量算出回路87は、ノイズ除去された上流
及び下流水位HU rHLと後述する各ゲートの開度計
71.72出力から現在の放流量Q o u tを算出
し、微調整ゲートの最大可能放流量Q m f mはそ
の決定回路87で決定される。目標放流量配分回路83
は、決定回路87で決定された最大可能放流量Qmfm
、現在放流量Q o u tに応じて、総目標放流量Q
mを微調整ゲート41の目標放流量Q m fと粗調整
ゲート42の目標放流量Qmrに配分する。粗調整ゲー
ト放流制御部84及び微調整ゲート放流制御部85は各
目標放流量Qmr及びQ m fと、各ゲートの開度信
号から各ゲート42及び41のゲート駆動装置62及び
61へのゲート制御信号を求める。
In addition, the current discharge amount calculation circuit 87 calculates the current discharge amount Q out from the noise-removed upstream and downstream water levels HU rHL and the output of the opening meter 71.72 of each gate, which will be described later, and calculates the current discharge amount Q out from the upstream and downstream water levels HU rHL from which noise has been removed and the output of the opening meter 71.72 of each gate, which will be described later. The possible discharge amount Q m f m is determined by the determination circuit 87 . Target discharge amount distribution circuit 83
is the maximum possible discharge amount Qmfm determined by the determination circuit 87
, the total target discharge amount Q according to the current discharge amount Q out
m is distributed between the target discharge amount Qmf of the fine adjustment gate 41 and the target discharge amount Qmr of the coarse adjustment gate 42. The coarse adjustment gate discharge control section 84 and the fine adjustment gate discharge control section 85 perform gate control to the gate drive devices 62 and 61 of each gate 42 and 41 from each target discharge amount Qmr and Q m f and the opening degree signal of each gate. Ask for a signal.

次に上記実施例の動作を説明する。第5図において、ま
ず制御量算出回路82は、堰上流水位計51で検出され
フィルタ回路81でノイズ除去された堰上流水位HUが
、予め設定された堰水位維持領域[Hsl内にある場合
は、制御不要であるので総目標放流量Qmを出力しない
。上流からの流入量Q i nの増加により堰下流水位
HU信号が堰水位維持領域[Hs ]の上限H2を越え
ると、堰上流水位I(Uを堰水位維持領域[Hs ]内
へ戻すための制御量ΔQを求め、現在放流量Q o u
 tへ加算して総目標放流量0m指令とし、目標放流量
配分回路83へ送出する。この総目標放流量Qmが入力
されると、目標放流量配分回路83はまず微調整ゲート
の最大可能放流量決定回路86に対して計算開始の指令
Sを送る。
Next, the operation of the above embodiment will be explained. In FIG. 5, the control amount calculation circuit 82 first determines that if the weir upstream water level HU detected by the weir upstream water level gauge 51 and noise removed by the filter circuit 81 is within a preset weir water level maintenance area [Hsl, , since no control is required, the total target discharge amount Qm is not output. When the weir downstream water level HU signal exceeds the upper limit H2 of the weir water level maintenance area [Hs] due to an increase in the inflow amount Q in from upstream, the weir upstream water level I (to return U to the weir water level maintenance area [Hs] Find the control amount ΔQ, and calculate the current discharge amount Q o u
t is added to the total target discharge amount 0m command, and the command is sent to the target discharge amount distribution circuit 83. When this total target discharge amount Qm is input, the target discharge amount distribution circuit 83 first sends a calculation start command S to the maximum possible discharge amount determination circuit 86 of the fine adjustment gate.

第2図は微調整ゲートの最大可能放流量決定回路86の
処理を示すもので、目標放流量QmのOから堰の最大放
流量までの間の値に対して出水対応係数に=O〜1を予
め定めておき、これを微調整ゲート倒伏流量(微調整ゲ
ートが完全に開となったときのこのゲートを流れる流量
)に乗することにより各流量範囲ごとの微調整ゲート最
大可能放流量の表を作成する。
Fig. 2 shows the processing of the maximum possible discharge amount determination circuit 86 of the fine adjustment gate, and the water output correspondence coefficient is set to = O to 1 for the value between O of the target discharge amount Qm and the maximum discharge amount of the weir. is determined in advance, and by multiplying this by the fine adjustment gate collapse flow rate (the flow rate flowing through this gate when the fine adjustment gate is fully open), the maximum possible discharge flow rate of the fine adjustment gate for each flow rate range can be determined. Create a table.

第1図は本発明の特徴とする目標放流量配分回路83で
の流量配分方法を示すフローチャートで、最大可能放流
量決定回路86による各流量に対する微調整ゲートの最
大可能放流量の表作成が終わると、まずステップ101
にてゲート放流方向の切り換え時流量Q。−0,Q□、
・・・・を第2図の処理で作成した表を参照して求める
。これは、上記作成した表の、微調整ゲート最大可能放
流量Qmfmを切り換える流量を第4図(b)に示すよ
うにQ。+ Q21 Q41 ・・・・とし、これらの
中間点の流量をQ工、Q3.・・・・としたものである
。次のステップ102では、入力された総目標放流量Q
mが求めた切り換え放流量のQ2nとQ2n+I (n
は整数)の間にあるときを正配分方向、Qzn++とQ
zn+2の間にあるときを逆配分方向と定める。そして
この結果に応じてステップ103で分岐し、正配分のと
きはステップ104にて粗調整ゲートの目標放流量Q 
m rを現在の粗調整ゲート放流量で一定(ゲート開度
を変えない)とし、微調整ゲートの目標放流量を総目標
放流量Qmの変化にフォローさせる。即ち、 Q m r =一定、 Qm f =Qm−Qm r とする。また逆配分のときはステップ105にて、微調
整ゲートの目標放流量Qmfをそのときの最大可能放流
量Q m f mから総目標放流量Qmに従って減少す
るようにし、粗調整ゲートの目標放流量Q m rは全
流量が総目標放流量Qmとなるようにする。即ち、 Qm f =Qm f m−Qm Qmr=Qm−Qmf とする。第4図(b)の下部に示したQmに対するQm
f、Qmrの折線特性は以上の配分方法を示している。
FIG. 1 is a flowchart showing the flow rate distribution method in the target discharge rate distribution circuit 83, which is a feature of the present invention, and the maximum possible discharge rate determination circuit 86 completes the creation of a table of the maximum possible discharge rate of the fine adjustment gate for each flow rate. First, step 101
Flow rate Q when switching the gate discharge direction. −0,Q□,
. . . is determined by referring to the table created in the process shown in FIG. This is the flow rate for switching the fine adjustment gate maximum possible discharge amount Qmfm in the table created above, as shown in FIG. 4(b). + Q21 Q41 . . ., and the flow rates at these intermediate points are Q engineering, Q3. ...... In the next step 102, the input total target discharge amount Q
Q2n and Q2n+I (n
is an integer), it is a positive distribution direction, and Qzn++ and Q
The time between zn+2 is defined as the reverse allocation direction. Then, depending on this result, the process branches at step 103, and when the distribution is correct, the process proceeds to step 104, where the target discharge amount Q of the rough adjustment gate is determined.
m r is kept constant at the current rough adjustment gate discharge amount (the gate opening is not changed), and the target discharge amount of the fine adjustment gate is made to follow the change in the total target discharge amount Qm. That is, Qm r =constant, Qm f =Qm-Qm r . In addition, in the case of reverse distribution, in step 105, the target discharge amount Qmf of the fine adjustment gate is decreased from the maximum possible discharge amount Q m f m at that time according to the total target discharge amount Qm, and the target discharge amount of the coarse adjustment gate is Q m r is set so that the total flow rate becomes the total target discharge amount Qm. That is, Qm f =Qm f m-Qm Qmr=Qm-Qmf. Qm for Qm shown at the bottom of FIG. 4(b)
The broken line characteristics of f and Qmr indicate the above distribution method.

各ゲートへの目標放流量の配分が終わると、各ゲートの
放流制御部84.85は配分された目標放流量Qm f
 + Qm rと現在のゲート開度Pf。
When the distribution of the target discharge amount to each gate is completed, the discharge control unit 84.85 of each gate controls the distributed target discharge amount Qm f
+ Qm r and the current gate opening degree Pf.

Prから必要なゲート起動信号df、drを作成し、こ
れによってゲート駆動装置61.62を制御して各ゲー
トの放流量がその目標値Qmf、Qmrとなるようにす
る。
Necessary gate activation signals df and dr are created from Pr, and the gate drive devices 61 and 62 are controlled thereby so that the discharge amount of each gate becomes its target value Qmf and Qmr.

ひきつづき流入量Q j、 nが増加し、堰上流水位H
υが堰水位維持領域[Hs ]の上限を越えると、再び
目標放流量Qmが増加される。この様子は第4図(b)
で横軸を時間tとして見、縦軸を目標放流量Qmとして
見た図で示されており(時間に比例してQmが増加する
場合)、微調整ゲートは開方向(正配分時)、閉方向(
逆配分時)を繰り返して両ゲートともその目標放流量、
従って開度の不連続な変化なしに流量制御が行われ、ゲ
ート開閉時間の相違による制御の乱れやゲート摩擦が防
止できる。流入量Qinが時間とともに減少するときも
同様であり、第4図(b)で時間軸を逆にした制御特性
となるだけで上記の効果は変わらない。また、総目標放
流量Qmの増大に伴って微調整ゲートの最大可能放流量
Qmfmが小さくなるようにすることにより、出水時の
流入量Q i nの大幅増加に伴う微調整ゲート開閉動
作量を減らすことができるから、これによってもゲート
の機械的摩擦を防止できる。
The inflow amount Q j, n continues to increase, and the water level upstream of the weir H
When υ exceeds the upper limit of the weir water level maintenance area [Hs], the target discharge amount Qm is increased again. This situation is shown in Figure 4(b).
The diagram shows the horizontal axis as time t and the vertical axis as target discharge amount Qm (when Qm increases in proportion to time), and the fine adjustment gate is in the opening direction (at the time of positive distribution). Close direction (
(at the time of reverse distribution) is repeated until both gates reach their target discharge amount,
Therefore, flow rate control is performed without discontinuous changes in opening degree, and control disturbances and gate friction due to differences in gate opening/closing times can be prevented. The same holds true when the inflow amount Qin decreases with time, and the above effect remains the same, only with the control characteristics having the time axis reversed in FIG. 4(b). In addition, by making the maximum possible discharge amount Qmfm of the fine adjustment gate become smaller as the total target discharge amount Qm increases, the fine adjustment gate opening/closing operation amount due to a large increase in the inflow amount Q in at the time of water outflow can be reduced. This also prevents mechanical friction of the gate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微調整ゲートと粗調整ゲート間の放流
量切り換えを連続的に行うことにより全放流量の過放流
あるいは放流不足が防止できて信頼性・安全性が向上す
るとともに、ゲート開閉動作量が減少することによりゲ
ートの機械的摩擦量を減らせるという効果があり、また
、放流量の増大に伴って微調整ゲートの開閉範囲を少な
くすることによって出水時の頻繁な開閉による機械的摩
擦量を減らせるという効果がある。
According to the present invention, by continuously switching the discharge amount between the fine adjustment gate and the coarse adjustment gate, over-discharge or insufficient discharge of the total discharge amount can be prevented, reliability and safety are improved, and gate opening/closing is achieved. The reduction in the amount of movement has the effect of reducing the amount of mechanical friction on the gate, and as the amount of discharge increases, the opening/closing range of the fine adjustment gate can be reduced to reduce mechanical friction caused by frequent opening and closing during water outflow. This has the effect of reducing the amount of friction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の特徴とするゲート放流量配分処理法の
一実施例を示すフローチャート、第2図は微調整ゲート
最大放流量決定処理を示す図、第3図は堰及びゲートを
示す図、第4図(a)及び(b)は従来方法及び本発明
の方法の放流量制御特性を示す図、第5図は本発明の方
法を適用した堰制御システムの一実施例を示すブロック
図である。 1・・・堰、41・・・微調整ゲート、42・・・粗調
整ゲー1−183・・・目標放流量配分回路、86・・
・微調整ゲート最大放流量決定回路。 代理人弁理士 秋  本  正  実 第1図 第 3図 (a)
FIG. 1 is a flowchart showing an example of the gate discharge amount distribution processing method which is a feature of the present invention, FIG. 2 is a diagram showing fine adjustment gate maximum discharge amount determination processing, and FIG. 3 is a diagram showing the weir and gate. , Fig. 4(a) and (b) are diagrams showing the discharge flow control characteristics of the conventional method and the method of the present invention, and Fig. 5 is a block diagram showing an example of a weir control system to which the method of the present invention is applied. It is. 1... Weir, 41... Fine adjustment gate, 42... Coarse adjustment gate 1-183... Target discharge amount distribution circuit, 86...
・Fine adjustment gate maximum discharge amount determination circuit. Representative Patent Attorney Tadashi Akimoto Figure 1 Figure 3 (a)

Claims (1)

【特許請求の範囲】 1、堰上流側の水位検出値から総目標放流量を定め、該
総目標放流量を堰に設けられた粗調整用の第1ゲートと
微調整用の第2ゲートに配分し、該配分した各目標放流
量となるように上記第1及び第2ゲートのゲート開度を
制御する堰放流量制御方法において、上記総目標放流量
が増大(又は減少)しているときに該増大(又は減少)
に伴って上記第1ゲートの目標放流量は一定のまま上記
第2ゲートの目標放流量の変化が上記総目標放流量の変
化と等しくなるように制御する第1制御モードと、該第
1制御モードの状態で上記総目標放流量の増大(又は減
少)が続いて上記第2ゲートの目標放流量がその最大(
又は最小)可能放流量に到達するとそれ以後は上記第2
ゲートの目標放流量が上記総目標放流量の増大(又は減
少)と同じ速さで減少(又は増大)しかつ上記第1ゲー
ト及び第2ゲートの目標放流量の和が上記総目標放流量
となるように制御する第2制御モードとを、該第2制御
モードの続行により上記第2ゲートの目標放流量がその
最小(又は最大)可能放流量に到達したとき再び上記第
1制御モードに移るようにして繰り返し実行することを
特徴とする堰放流量制御方法。 2、制御第2ゲートの最大可能放流量が前記総目標放流
量が大きくなる程段階的に小さい値となるように設定す
る最大可能放流量設定手段を設けたことを特徴とする請
求項1記載の堰放流量制御方法。
[Claims] 1. Determining the total target discharge amount from the water level detection value on the upstream side of the weir, and transmitting the total target discharge amount to a first gate for coarse adjustment and a second gate for fine adjustment provided on the weir. In the weir discharge flow rate control method of controlling the gate opening degrees of the first and second gates so as to achieve the distributed target discharge volume, when the total target discharge volume is increasing (or decreasing). said increase (or decrease) in
a first control mode in which a change in the target discharge amount of the second gate is controlled to be equal to a change in the total target discharge amount while keeping the target discharge amount of the first gate constant; mode, the total target discharge amount continues to increase (or decrease), and the target discharge amount of the second gate increases to its maximum (
or minimum) Once the possible discharge amount is reached, the second
The target discharge amount of the gate decreases (or increases) at the same rate as the increase (or decrease) of the total target discharge amount, and the sum of the target discharge amount of the first gate and the second gate is equal to the total target discharge amount. When the target discharge amount of the second gate reaches its minimum (or maximum) possible discharge amount by continuing the second control mode, the control mode shifts to the first control mode again. A weir discharge flow rate control method characterized by repeatedly performing the following steps. 2. A maximum possible discharge amount setting means is provided for setting the maximum possible discharge amount of the second control gate to a smaller value in stages as the total target discharge amount increases. Weir discharge flow rate control method.
JP22116590A 1990-08-24 1990-08-24 Weir discharge control method Expired - Lifetime JP2799057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22116590A JP2799057B2 (en) 1990-08-24 1990-08-24 Weir discharge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22116590A JP2799057B2 (en) 1990-08-24 1990-08-24 Weir discharge control method

Publications (2)

Publication Number Publication Date
JPH04104307A true JPH04104307A (en) 1992-04-06
JP2799057B2 JP2799057B2 (en) 1998-09-17

Family

ID=16762490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22116590A Expired - Lifetime JP2799057B2 (en) 1990-08-24 1990-08-24 Weir discharge control method

Country Status (1)

Country Link
JP (1) JP2799057B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427718B1 (en) * 2000-12-06 2002-08-06 The United States Of America As Represented By The Secretary Of The Interior Automated farm turnout
EP1830005A1 (en) 2000-08-21 2007-09-05 Rubicon Research Pty Ltd Control gates
US10518436B2 (en) 2015-12-18 2019-12-31 Söderhamn Eriksson AB Feeding device for axial feeding of logs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1830005A1 (en) 2000-08-21 2007-09-05 Rubicon Research Pty Ltd Control gates
US6427718B1 (en) * 2000-12-06 2002-08-06 The United States Of America As Represented By The Secretary Of The Interior Automated farm turnout
US10518436B2 (en) 2015-12-18 2019-12-31 Söderhamn Eriksson AB Feeding device for axial feeding of logs

Also Published As

Publication number Publication date
JP2799057B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
CN110647039B (en) Synchronous control self-adaptive balance scheduling method for long-distance open channel water delivery project
JPH04104307A (en) Control method for dam discharge rate
CN107544569A (en) A kind of V-type filter state keeps the control method of constant level
JPS5849645B2 (en) Intake gate control device
US4640664A (en) Methods of controlling operation of multistage hydraulic machines
JP3293193B2 (en) Weir discharge calculation method
JPS60124713A (en) Control system of discharge flow at low water level
JP3018767B2 (en) Water level adjustment device
JPS6026712A (en) Intake of water stored in dam
JPH05180169A (en) Controller for water level in pump well
JP2766502B2 (en) Hydropower station water level control system
JPS5947331B2 (en) flow control device
JPH04102611A (en) Constant water level control device
JP3544704B2 (en) Turbine generator control device
JPS6116799Y2 (en)
JP2001355222A (en) Water reservoir operating system based on discharge function
JPH0119172B2 (en)
JPS60239814A (en) Control method of dam
JPS5987506A (en) Noise eliminating device
JPS6162115A (en) Water level control method for dam reservoir
JP2020193614A (en) Control method and control device for water turbine
CN117868040A (en) Control method for synchronous and fractional closing of open channel water delivery engineering gate
JPH01113812A (en) Control method for pump operation at draining center
JPH01200418A (en) Dam gate controller
JPS6132507B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080703

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090703

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100703

Year of fee payment: 12