JPS63278655A - Light rolling reduction casting method - Google Patents

Light rolling reduction casting method

Info

Publication number
JPS63278655A
JPS63278655A JP11351487A JP11351487A JPS63278655A JP S63278655 A JPS63278655 A JP S63278655A JP 11351487 A JP11351487 A JP 11351487A JP 11351487 A JP11351487 A JP 11351487A JP S63278655 A JPS63278655 A JP S63278655A
Authority
JP
Japan
Prior art keywords
slab
roll
cast slab
rolls
light reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11351487A
Other languages
Japanese (ja)
Inventor
Toshio Masaoka
政岡 俊雄
Hitoshi Kobayashi
日登志 小林
Mikio Suzuki
幹雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11351487A priority Critical patent/JPS63278655A/en
Publication of JPS63278655A publication Critical patent/JPS63278655A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce center segregation of a cast slab and to improve quality by dividing multiple pairs of rolls executing light rolling reduction to the non-solidified cast slab, measuring rolling reaction received from the cast slab and adjusting the roll reduction rate and cooling water injection rate, so as to come to the specific strain speed by grasping the strain speed of the cast slab. CONSTITUTION:At the time of applying the light rolling reduction at suitable strain speed to the cast slab 30 at the end time of solidification, the reaction (b) is acted to the divided roll 16b. The roll 16b is pushed by the cast slab 30 and detecting part of a measuring instrument 39b is deformed and the resistant value of the detecting part is changed, to generate current. This current is converted into voltage signal and inputted to a storing part of CPU40 and based on the input data of the reaction (b), the strain speed of the cast slab is calculated as a parameter. Then, the parameter is compared with the prescribed suitable strain speed and the difference is transmitted to a hydraulic control device 42 as the voltage signal. Then, the different signal is transmitted to a cooling water control device 44, too, to adjust the spray water rate injected to the divided roll 16b, so that the different signal comes to zero. Further, the reducing the rolling reduction rate of the roll 16b, the reaction (b) is relaxed, and by making the strain speed of the cast slab 30 at the suitable speed, flowing of the molten steel in the internal part of the cast slab 30 is prevented and the center segregation is reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、連続鋳造において鋳片の中心偏析を防止す
る軽圧下鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a light reduction casting method for preventing center segregation of slabs in continuous casting.

[従来の技術] 通常、連続鋳造においては、溶鋼が水冷鋳型により冷却
されると、鋳片外周部に相当する薄い部分に凝固殻が形
成され、鋳型を通過した鋳片はその内部に未凝固溶鋼を
保持した状態で一層のサボ、−トガイドロールにより案
内されつつ、ピンチロールにより引抜かれる。鋳片引抜
き過程においては、鋳片にスプレィ水を噴射して鋳片内
部の凝固促進を図り、凝固殻の厚さが変形に耐え得る厚
さ以上に成長すると、鋳片を所定の曲率で略90゜曲げ
つつ軽圧下装置により凝固途中の鋳片に軽圧下刃を加え
る。この軽圧下帯において、鋳片幅方向に配列されたノ
ズル群から冷却水を噴射して鋳片を完全凝固させ、次い
で、軽圧下帯の終了位置(矯正点)で矯正装置のロール
群により鋳片の曲がりを矯正し、直線状になった鋳片を
切断機で所定長に切断する。
[Prior art] Normally, in continuous casting, when molten steel is cooled by a water-cooled mold, a solidified shell is formed in a thin part corresponding to the outer periphery of the slab, and the slab that has passed through the mold has unsolidified inside. While holding the molten steel, it is pulled out by pinch rolls while being guided by one layer of sabot and toe guide rolls. During the slab drawing process, spray water is injected onto the slab to promote solidification inside the slab, and when the thickness of the solidified shell grows beyond the thickness that can withstand deformation, the slab is pulled out at a predetermined curvature. While bending the slab 90 degrees, apply a light reduction blade to the solidified slab using a light reduction device. In this light reduction zone, cooling water is injected from a group of nozzles arranged in the width direction of the slab to completely solidify the slab, and then the cast slab is cast by a group of rolls of a straightening device at the end position (straightening point) of the light reduction zone. After straightening the bends in the slab, the straight slab is cut into a predetermined length using a cutting machine.

鋳片最終凝固部(クレータエンド)では、炭素(C)、
硫黄(S)、マンガン(M n )並びに燐(P)等の
成分元素が未凝固溶鋼中に濃縮される。
In the final solidification part of the slab (crater end), carbon (C),
Component elements such as sulfur (S), manganese (M n ), and phosphorus (P) are concentrated in the unsolidified molten steel.

この濃化溶鋼は低融点であるので、溶鋼が凝固殻中で静
止した状態にある場合は析出しないが、濃化溶鋼が凝固
殻中で流動するとこれが析出して所謂中心偏析となる。
Since this concentrated molten steel has a low melting point, it does not precipitate when the molten steel is stationary in the solidified shell, but when the concentrated molten steel flows in the solidified shell, it precipitates, resulting in so-called central segregation.

3通常、溶鋼の凝固収縮により鋳片ボトム方向(鋳片引
抜方向)へ溶鋼が吸引されて流動するので、凝固収縮量
に見合った軽圧下刃を未凝固鋳片に加えて中心偏析を防
止している。
3 Normally, solidification shrinkage of molten steel causes the molten steel to be sucked and flow toward the bottom of the slab (in the direction of slab withdrawal), so a light reduction blade commensurate with the amount of solidification shrinkage is added to the unsolidified slab to prevent center segregation. ing.

一方、鋳造速度が比較的速くなる場合は、溶鋼静圧が高
まり、圧下量が不足する箇所の凝固殻が部分的に膨張す
る所謂バルジングが発生する。バルジングが発生すると
、膨張した凝固殻がロール圧下により圧縮されて鋳片ト
ップ方向(鋳片引抜方向の逆方向)への溶鋼の流動が起
こり、クレータエンドに濃化溶鋼が析出して幅広の中心
偏析が発生する。特に、ロールのピッチ間隔が大きい場
合及び圧下ロールにたわみ又は摩耗が存在する場合に、
バルジングが発生しやすい。このため、通常、軽圧下帯
に一層の小径ロールを配列し、ロール相互間のピッチを
小さくし、バルジングの発生を阻止して中心偏析を低減
するようにしている。
On the other hand, when the casting speed becomes relatively high, the static pressure of the molten steel increases, and so-called bulging occurs, in which the solidified shell partially expands in areas where the reduction amount is insufficient. When bulging occurs, the expanded solidified shell is compressed by roll reduction, causing molten steel to flow toward the top of the slab (in the direction opposite to the direction in which the slab is pulled out), and concentrated molten steel precipitates at the crater end, forming a wide center. Segregation occurs. In particular, when the pitch interval of the rolls is large and when there is deflection or wear on the reduction roll,
Bulging is likely to occur. For this reason, one layer of small-diameter rolls is usually arranged in the light rolling zone to reduce the pitch between the rolls, thereby preventing the occurrence of bulging and reducing center segregation.

従来の軽圧下鋳造技術においては、軽圧下装置による圧
下のみでは鋳片の中心偏析を十分に低減することができ
ない。このため、電磁攪拌装置(EMS)によりクレー
タエンドに回転磁界又は移動磁界を印加し、クレータエ
ンドの濃化溶鋼を電磁誘導により攪拌して中心偏析の発
生を防止している。
In the conventional light reduction casting technology, center segregation of the slab cannot be sufficiently reduced only by reduction using the light reduction device. For this reason, a rotating magnetic field or a moving magnetic field is applied to the crater end using an electromagnetic stirring device (EMS), and the concentrated molten steel at the crater end is stirred by electromagnetic induction to prevent center segregation.

[発明が解決しようとする問題点コ しかしながら、従来の軽圧下鋳造技術においては、クレ
ータエンドにて濃縮された[C]、  [P]等の濃化
成分を電磁攪拌により一定領域内で単に拡散させている
にすぎないので、偏析成分濃度のピーク値を下げること
はできるが、偏析そのものを無くしてしまうことができ
ない。このため、鋳片中心部の一定領域内に濃度レベル
が平均化された偏析帯が生じる。この偏析帯には小型の
島状偏析(セミマクロ偏析)が存在しており、下記に示
すような種々の問題点を生じる。
[Problems to be solved by the invention] However, in the conventional light reduction casting technology, concentrated components such as [C] and [P] concentrated at the crater end are simply diffused within a certain area by electromagnetic stirring. Although it is possible to lower the peak value of the concentration of the segregated components, it is not possible to eliminate the segregation itself. For this reason, a segregation zone with an average concentration level is generated within a certain area at the center of the slab. This segregation zone contains small island-like segregation (semi-macro segregation), which causes various problems as shown below.

近時、鋼材の品質に対する需要家からの要求が高度化及
び多様化してきており、製品化された鋼材中に不可避的
に存在する不純物元素の偏析及び非金属介在物等の一層
の低減化が望まれている。
In recent years, demands from customers regarding the quality of steel materials have become more sophisticated and diversified, and it is necessary to further reduce the segregation of impurity elements and non-metallic inclusions that inevitably exist in manufactured steel materials. desired.

すなわち、石油及び天然ガス輸送用のパイプ材料におい
ては、硫化水素を含むサワーガスの作用により中心偏析
帯に沿って水素誘起割れ(HI C)が発生するので、
材料の改善によりHICを防止することが強く要望され
ている。HICは中心偏析帯のP濃度が高い部分で発生
しやすいことが知られており、一般に、Pのピーク濃度
が約0.04%以上になると、HICによる割れ発生率
が高くなる。従来の軽圧下鋳造技術では、鋳片中心部に
P濃度が健全部のそれの約10倍にも達する所謂マクロ
偏析が発生するため、耐HIC鋼材を製造する場合には
、取鍋溶鋼のPa度を50ppI11以下のレベルに低
減すると共に、凝固後のスラブを約1300℃に均熱す
ることにより偏析Pを拡散し、P濃度の最大値を低下さ
せるようにしている。
In other words, in pipe materials for oil and natural gas transportation, hydrogen-induced cracking (HIC) occurs along the central segregation zone due to the action of sour gas containing hydrogen sulfide.
There is a strong desire to prevent HIC by improving materials. It is known that HIC is likely to occur in areas where the P concentration is high in the central segregation zone, and generally, when the peak concentration of P is about 0.04% or more, the cracking occurrence rate due to HIC increases. With conventional light reduction casting technology, so-called macro-segregation occurs in the center of the slab, where the P concentration is about 10 times that of the sound part. In addition to reducing the temperature to a level of 50 ppI11 or less, the slab after solidification is soaked at about 1300°C to diffuse the segregated P and lower the maximum value of the P concentration.

第9図は、横軸に中心偏析粒子の粒径をとり、縦軸に鋳
片長さ1001II11当りに存在する偏析粒子の個数
をとって、中心偏析帯を有する種々の鋼材についてセミ
マクロ偏析粒子がHICに及ぼす影響について調査した
グラフ図である。図中、黒丸はHICにより割れが生じ
たものを示し、白丸は割れが生じなかったものを示す。
Figure 9 shows the HIC of semi-macro segregated particles for various steel materials having a central segregation zone, with the horizontal axis representing the grain size of centrally segregated particles and the vertical axis representing the number of segregated particles present per 1001II11 of slab length. It is a graph diagram that investigated the influence on In the figure, black circles indicate those in which cracks occurred due to HIC, and white circles indicate those in which no cracks occurred.

この図に示すように、HIC発生について、粒径が約0
.5 m++n以上の大型の偏析粒子(セミマクロ偏析
)が特に有害であり、このセミマクロ偏析の低減化がH
IC発生防止に有効なことが知られている。すなわち、
鋼材の耐HIC特性を改善するためには、前述のマクロ
偏析及びセミマクロ偏析を共に低減する必要がある。
As shown in this figure, for HIC generation, the particle size is approximately 0.
.. Large segregated particles of 5 m++n or larger (semi-macro segregation) are particularly harmful, and the reduction of this semi-macro segregation is the
It is known to be effective in preventing IC generation. That is,
In order to improve the HIC resistance properties of steel materials, it is necessary to reduce both the above-mentioned macro segregation and semi-macro segregation.

また、海洋構造物用の鋼板材料に対しては、主として鋼
材の溶接特性を改善することが需要家から要望されてい
る。すなわち、鋼材に中心偏析帯が存在する場合には、
溶接割れ防止のために溶接時に鋼材を予熱する必要があ
り、溶接後においては溶接熱影響部(HAZ)の靭性が
劣化すると共に、溶接継手部にラメラティア(鋼板のラ
ミネーションに沿って発生する階段状の割れ)が発生す
る。従って、構造物の信頼性向上を図るという観点から
鋼材の中心偏析帯の低減化が強く望まれている。
In addition, with respect to steel plate materials for offshore structures, there is a demand from customers mainly to improve the welding characteristics of the steel materials. In other words, if there is a central segregation zone in the steel material,
It is necessary to preheat the steel material during welding to prevent weld cracking, and after welding, the toughness of the weld heat-affected zone (HAZ) deteriorates and lamellar tear (step-like appearance that occurs along the lamination of the steel plates) occurs in the welded joint. cracks) occur. Therefore, from the viewpoint of improving the reliability of structures, it is strongly desired to reduce the central segregation zone of steel materials.

更に、ビール缶のような深絞り鋼においては、その加工
性に偏析が重大な影響を及ぼすので、無偏析材料の開発
が強く望まれている。
Furthermore, since segregation has a significant effect on the workability of deep-drawn steel such as beer cans, the development of segregation-free materials is strongly desired.

ところで、操業中の軽圧下ロール及びセグメントの変動
量を0.10ma+程度以下におさえであるが、長期間
操業により設備各部の機械的精度が低下してくると、鋳
片に所定の圧下刃を均一に加えることが困難になり、鋳
片幅方向に軽圧下量のばらつきが発生する。このため、
バルジングが生じて溶鋼が流動し、中心偏析が発生する
という問題点がある。
By the way, the amount of fluctuation of the light reduction rolls and segments during operation is kept to about 0.10 ma+ or less, but as the mechanical accuracy of each part of the equipment decreases due to long-term operation, it is necessary to apply a specified reduction blade to the slab. It becomes difficult to apply uniformly, and variations in the amount of light reduction occur in the width direction of the slab. For this reason,
There is a problem that bulging occurs, the molten steel flows, and center segregation occurs.

この発明はかかる事情に鑑みてなされたものであって、
軽圧下量のばらつきに起因する未凝固鋳片の溶湯の流動
を抑制して鋳片中心部に偏析する不純物等の絶対量を低
減することができる軽圧下鋳造方法を提供することを目
的とする。
This invention was made in view of such circumstances, and
The purpose of the present invention is to provide a light reduction casting method capable of suppressing the flow of molten metal in an unsolidified slab due to variations in the amount of light reduction and reducing the absolute amount of impurities, etc. segregated in the center of the slab. .

[問題点を解決するための手段] この発明に係る軽圧下鋳造方法は、連続鋳造された未凝
固の鋳片を多数対のロールにより軽圧下しつつノズル群
から冷却水を鋳片に噴射して完全凝固さする軽圧下鋳造
方法において、前記多数対のロールは所定長さのロール
幅に夫々分割され、前記ノズル群は6対のロールに沿っ
て鋳片幅方向に夫々配列されており、各分割ロールが鋳
片から受けるロール反力を夫々測定し、これらのロール
反力に対応する鋳片の歪み速度を夫々把握し、これらの
歪み速度が所定の鋳片歪み速度に合致するように分割ロ
ールが属する各対ロールの圧下量を夫々調節すると共に
、ノズル群の冷却水噴射量を鋳片幅方向の各領域にて増
減させることを特徴とする。
[Means for Solving the Problems] The light reduction casting method according to the present invention involves injecting cooling water from a group of nozzles onto the continuously cast unsolidified slab while lightly reducing it with multiple pairs of rolls. In the light reduction casting method in which complete solidification is performed, the plurality of pairs of rolls are each divided into roll widths of a predetermined length, and the nozzle groups are arranged in the width direction of the slab along the six pairs of rolls, The roll reaction force that each split roll receives from the slab is measured, the strain rate of the slab corresponding to these roll reaction forces is determined, and the strain rate is adjusted so that these strain rates match the predetermined slab strain rate. The method is characterized in that the reduction amount of each pair of rolls to which the split roll belongs is adjusted, and the amount of cooling water sprayed from the nozzle group is increased or decreased in each region in the width direction of the slab.

[作用] この発明に係る軽圧下鋳造方法においては、凝固途中に
ある鋳片各部から各分割ロールが受けるロール反力を夫
々測定し、各ロール反力に対応する鋳片の歪み速度をパ
ラメータとして把握する。
[Operation] In the light reduction casting method according to the present invention, the roll reaction force that each split roll receives from each part of the slab in the middle of solidification is measured, and the strain rate of the slab corresponding to each roll reaction force is used as a parameter. grasp.

そして、6対のロール圧下量を夫々調節すると共に、ノ
ズル群の冷却水量を鋳片幅方向の各領域にて増減させ、
パラメータとしての歪み速度を所定の鋳片歪み速度に合
致させ、鋳片内部の溶湯の流動を阻止する。つまり、バ
ルジングによりある1つの分割ロールに所定の歪み速度
に対応するロール反力を越える反力が作用した場合には
、その分割ロールが属する1対のロールの圧下量を減少
させると共に、その分割ロールの領域への冷却水噴射量
を増加させて鋳片の冷却を強化する。冷却が強化される
と、凝固殻の変形抵抗が大きくなって鋳片に作用する歪
み速度が減少し、凝固収縮により溶湯が鋳片引抜方向(
鋳片ボトム方向)に吸引される流動力が増加してバルジ
ングによる鋳片引抜の逆方向(鋳片トップ方向)の流動
力が打消される。一方、ある1つの分割ロールに所定の
歪み速度に対応するロール反力を下回る反力が作用した
場合には、その分割ロールが属する1対のロールの圧下
量を増加させると共に、その分割ロールの領域への冷却
水噴射量を減少させて鋳片の冷却を弱める。冷却が弱め
られると、凝固殻の変形抵抗が小さくなって鋳片に作用
する歪み速度が増加し、凝固収縮により溶湯が鋳片引抜
方向(鋳片ボトム方向)に吸引される流動力が減少して
ロール圧下により溶湯を鋳片トップ方向に押し戻す力と
釣合い、溶湯の流動が阻止される。これにより、鋳片に
生じる実際の歪み速度と所定の歪み速度とが実質的に合
致し、凝固末期溶湯の流動が阻止される。
Then, the amount of reduction of each of the six pairs of rolls is adjusted, and the amount of cooling water in the nozzle group is increased or decreased in each area in the width direction of the slab.
The strain rate as a parameter is matched to a predetermined slab strain rate to prevent the flow of molten metal inside the slab. In other words, when a reaction force that exceeds the roll reaction force corresponding to a predetermined strain rate is applied to one split roll due to bulging, the rolling reduction amount of the pair of rolls to which the split roll belongs is reduced, and the split roll is The cooling of the slab is enhanced by increasing the amount of cooling water injected into the area of the rolls. When cooling is strengthened, the deformation resistance of the solidified shell increases, the strain rate acting on the slab decreases, and solidification shrinkage causes the molten metal to move in the slab drawing direction (
The fluid force sucked in the direction (toward the bottom of the slab) increases, and the fluid force in the opposite direction (towards the top of the slab) of pulling out the slab due to bulging is canceled out. On the other hand, if a reaction force lower than the roll reaction force corresponding to a predetermined strain rate is applied to one split roll, the rolling amount of the pair of rolls to which the split roll belongs is increased, and the roll reduction of the pair of rolls to which the split roll belongs is increased. Reduce cooling of the slab by reducing the amount of cooling water injected into the area. When the cooling is weakened, the deformation resistance of the solidified shell decreases, the strain rate acting on the slab increases, and the flow force that draws the molten metal in the slab drawing direction (towards the slab bottom) due to solidification contraction decreases. This counterbalances the force of pushing the molten metal back toward the top of the slab due to roll reduction, and prevents the molten metal from flowing. As a result, the actual strain rate occurring in the slab substantially matches the predetermined strain rate, and the flow of the molten metal at the final stage of solidification is prevented.

[実施例] 以下、添付の図面を参照してこの発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

先ず、中心偏析低減の基本的考え方について説明する。First, the basic concept of center segregation reduction will be explained.

第4図は、凝固末期における中心偏析の生成機構を示す
模式図である。図中、斜線領域は固相、斜線領域を除く
領域は液相を夫々示す。また、図中の記号gは残留溶鋼
が流動しうる限界の固相率、記号LI)は固液共存領域
の厚さ、記号LLは液相領域(100%液相領域)の厚
さを夫々示す。図中、固相率が零の厚さ位置から固相率
がglになる厚さ位置までの領域に存在する濃化溶鋼が
流動して混合されることにより中心偏析が形成されると
仮定すると、凝固末期溶鋼の成分濃化率Cし/Coは下
記(1)式により計算される。
FIG. 4 is a schematic diagram showing the generation mechanism of center segregation at the final stage of solidification. In the figure, the shaded area indicates the solid phase, and the area other than the shaded area indicates the liquid phase. In addition, the symbol g in the figure is the limit solid phase ratio at which residual molten steel can flow, the symbol LI) is the thickness of the solid-liquid coexistence region, and the symbol LL is the thickness of the liquid phase region (100% liquid phase region). show. In the figure, assuming that central segregation is formed by the flowing and mixing of concentrated molten steel existing in the region from the thickness position where the solid fraction is zero to the thickness position where the solid fraction is gl. , the component concentration ratio C/Co of the molten steel at the final stage of solidification is calculated by the following equation (1).

但し、上記(1)式中の各記号は下記による。However, each symbol in the above formula (1) is as follows.

α−LL/LD(凝固末期の固液共存領域に対する液相
領域の割合) LL、LD;凝固末期の液相領域の厚さ、固液共存領域
の厚さ g;残留溶鋼が流動しうる限界の固相率Ko  ;  
[C] 、[P]等の各成分における平衡分配係数 第5図は、上記(1)式により求めた[C]の成分濃化
率Cし/Coを縦軸にとり、凝固末期の固液共存領域に
対する液相領域の割合いαを横軸にとって、凝固末期に
おける溶鋼流動と偏析度との関係について検討したもの
である。図中、各曲線に記入した数値は夫々の固相率g
を示す。なお、平衡分配係数KoをO,L41として成
分濃化率CL / Cθを算出した。この図から明らか
なように、濃化溶鋼の流動限界固相率gが大になるに従
って成分濃化率CL/Coが高くなり、また完全液相領
域の割合αが小さくなるほど成分濃化率に与える影響が
大きくなる。すなわち、濃化溶鋼の流動が活発になると
成分濃化率が高まり、偏析度が高くなる。従って、中心
偏析を低減するためには、濃化溶鋼の流動を抑制する必
要がある。
α-LL/LD (ratio of liquid phase region to solid-liquid coexistence region at the final stage of solidification) LL, LD: Thickness of liquid phase region at the final stage of solidification, thickness of solid-liquid coexistence region g: Limit at which residual molten steel can flow The solid phase ratio Ko;
The equilibrium distribution coefficient for each component such as [C], [P], etc. in Figure 5 shows the concentration ratio C/Co of [C] obtained by the above equation (1) on the vertical axis, and the solid-liquid ratio at the final stage of solidification. The relationship between the flow of molten steel and the degree of segregation at the final stage of solidification was studied, with the horizontal axis representing the ratio α of the liquid phase region to the coexistence region. In the figure, the numbers written on each curve are the respective solid fraction g
shows. Note that the component concentration rate CL/Cθ was calculated with the equilibrium distribution coefficient Ko as O and L41. As is clear from this figure, as the flow limit solid fraction g of concentrated molten steel increases, the component concentration CL/Co increases, and as the ratio α of the completely liquid phase region decreases, the component concentration increases. The impact will be greater. That is, when the flow of concentrated molten steel becomes active, the component concentration rate increases and the degree of segregation increases. Therefore, in order to reduce center segregation, it is necessary to suppress the flow of concentrated molten steel.

この濃化溶鋼の流動を抑制する手段として、第1に鋳片
のロール間バルジングの発生を抑制するためにロール相
互間のピッチを狭くすること、第2に凝固収縮により濃
化溶鋼がボトム側(鋳片引抜き下流側)へ吸引されるこ
とを阻止するために凝固収縮量に相当する適正量の軽圧
下刃を鋳片に印加することが挙げられる。また、種々の
条件下で実際に鋳造した試験結果によれば、軽圧下帯の
開始位置から約3/4のところにクレータエンドを位置
させた場合に、軽圧下帯のロール圧下の効果が最大にな
ることが判明した。
As a means of suppressing the flow of this concentrated molten steel, firstly, the pitch between the rolls is narrowed to suppress the occurrence of bulging between the rolls of the slab, and secondly, the concentrated molten steel is moved toward the bottom side by solidification shrinkage. In order to prevent the slab from being sucked toward the downstream side of slab drawing, an appropriate amount of light pressure lower blade corresponding to the amount of solidification shrinkage may be applied to the slab. In addition, according to the results of actual casting tests conducted under various conditions, the effect of roll reduction of the light reduction zone is maximized when the crater end is positioned approximately 3/4 from the starting position of the light reduction zone. It turned out to be.

ところで、発明者らは、未凝固領域の厚さが約30mn
+の凝固途中の鋳片にトレーサー(F e S)が封入
された鋲を打込み、軽圧下量を種々変更して凝固末期の
濃化溶鋼の流動状況を調査した結果、以下の知見を得る
ことができた。
By the way, the inventors found that the thickness of the unsolidified region was about 30 mm.
As a result of driving studs containing a tracer (F e S) into slabs in the middle of solidification and investigating the flow condition of concentrated molten steel at the final stage of solidification by varying the amount of light reduction, the following findings were obtained. was completed.

第6図は、横軸に軽圧下量(鋳片引抜長さ1m当りのロ
ール間隔絞り込み量)をとり、縦軸に溶鋼の流動長さを
とって、前記調査結果に基づき軽圧下量と溶鋼流動長さ
どの関係を示すグラフ図である。この図から明らかなよ
うに、軽圧下量が増加するに従って溶鋼の流動長さが減
少し、約1,2n+m/+++の軽圧下量のときに溶鋼
の流動長さが最小になることが確認された。
Figure 6 shows the amount of light reduction (the amount of roll spacing reduced per 1 m of slab drawing length) on the horizontal axis, and the flow length of molten steel on the vertical axis, and the amount of light reduction and molten steel based on the above survey results. It is a graph diagram showing the relationship between flow length and the like. As is clear from this figure, the flow length of molten steel decreases as the light reduction increases, and it is confirmed that the flow length of molten steel becomes the minimum at a light reduction of approximately 1.2n+m/+++. Ta.

第1図はこの発明の実施例に係る軽圧下鋳造方法に使用
される軽圧下装置を側方から見た模式図、第2図は軽圧
下ロール群を示す斜視図、第3図は軽圧下装置の一部を
示す模式図である。CPU(中央演算処理装置)40が
垂直曲げ型連続鋳造機のコントロール室に設けられ、連
続鋳造機各所のセンサ類(図示せず)で検出された各種
データ及び設定条件に基づいて連続鋳造操業が制御され
るようになっている。CPU40は、入力データをスト
アする記憶部、記憶部から順次データを引出して数式モ
デルに基づき各種計算を実行する演算部、演算部の計算
値を所定の設定値と比較する比較部、並びに、比較した
結果を電圧差の正負信号としてプロセスコンピュータを
備えた各制御装置42.44に発信する指令部を有して
いる。すなわち、油圧制御装置42及び冷却水制御装置
44の受信部がCPU40の指令部に接続され、油圧制
御装置42が連続鋳造機の圧下ロール油圧系統に設けら
れる一方、冷却水制御装置44がスプレィ冷却水系統に
設けられ、ロール圧下量及び冷却水量が夫々調節される
ようになっている。
FIG. 1 is a schematic side view of a light reduction device used in a light reduction casting method according to an embodiment of the present invention, FIG. 2 is a perspective view showing a group of light reduction rolls, and FIG. 3 is a light reduction device. FIG. 2 is a schematic diagram showing a part of the device. A CPU (Central Processing Unit) 40 is installed in the control room of the vertical bending continuous casting machine, and controls the continuous casting operation based on various data and setting conditions detected by sensors (not shown) in various parts of the continuous casting machine. It's about to be controlled. The CPU 40 includes a storage unit that stores input data, a calculation unit that sequentially extracts data from the storage unit and performs various calculations based on a mathematical model, a comparison unit that compares the calculated value of the calculation unit with a predetermined set value, and a comparison unit. It has a command unit that transmits the result as a positive/negative voltage difference signal to each control device 42, 44 equipped with a process computer. That is, the receiving sections of the hydraulic control device 42 and the cooling water control device 44 are connected to the command section of the CPU 40, and the hydraulic control device 42 is installed in the reduction roll hydraulic system of the continuous casting machine, while the cooling water control device 44 is connected to the spray cooling system. It is installed in the water system, and the amount of roll reduction and the amount of cooling water are adjusted respectively.

一方、連続鋳造機の上部には鋳型(図示せず)が設けら
れ、所定断面形状のスラブとなる未凝固鋳片30が鋳型
からピンチロール(図示せず)により引抜かれるように
なっている。鋳型の下方には一群のサポートガイドロー
ル(図示せず)が鋳片を取囲むように配列され、これに
より垂直引抜き部が形成されている。垂直引抜き部の下
方には複数対の曲げロール24が設けられ、曲げロール
24により凝固途中の鋳片30が曲げられて鋳片引抜き
方向が水平に変更されるようになっている。
On the other hand, a mold (not shown) is provided in the upper part of the continuous casting machine, and the unsolidified slab 30, which becomes a slab with a predetermined cross-sectional shape, is pulled out from the mold by pinch rolls (not shown). Below the mold, a group of support guide rolls (not shown) are arranged to surround the slab, thereby forming a vertical draw-out. A plurality of pairs of bending rolls 24 are provided below the vertical drawing section, and the bending rolls 24 bend the slab 30 during solidification so that the direction of drawing the slab is changed to horizontal.

更に、曲げロール24の下方には軽圧下装置10が設け
られ、鋳片30に圧下刃を加えるようになっている。軽
圧下装置10は2基のセグメント12.14を有してお
り、各セグメント12゜14は8対の軽圧下ロール16
を夫々備えている。
Furthermore, a light reduction device 10 is provided below the bending rolls 24, and is configured to apply a reduction blade to the slab 30. The light reduction device 10 has two segments 12.14, each segment 12.14 having eight pairs of light reduction rolls 16.
are equipped with each.

また、一群のスプレィノズル20が鋳片30の幅に沿っ
て配列されると共に、各列のスプレィノズル20が軽圧
下ロール16の間に夫々配設され、各ロール16相互の
間隙から鋳片30に冷却水が噴射されるようになってい
る。一群のスプレィノズル20は水量調節機能を有する
冷却水制御装置44に接続されており、各列ごとのスプ
レィ量が調節されると共に、各列に属するノズル20の
スプレィ量が調節されるようになっている。各列のノズ
ル20においては、鋳片幅方向端部領域から鋳片幅方向
中央領域に向かってスプレィ量が増加するようになって
いる。
Further, a group of spray nozzles 20 are arranged along the width of the slab 30, and each row of spray nozzles 20 is arranged between the light reduction rolls 16, and the spray nozzles 20 in each row are disposed between the light reduction rolls 16, and the spray nozzles 20 are disposed between the rolls 16 and the slab 30 from the gap between the rolls 16. Cooling water is injected into the The group of spray nozzles 20 is connected to a cooling water control device 44 that has a water volume adjustment function, and the spray volume of each row is adjusted, as well as the spray volume of the nozzles 20 belonging to each row. ing. In each row of nozzles 20, the amount of spray increases from the end region in the width direction of the slab toward the center region in the width direction of the slab.

第2図に示すように、軽圧下ロール16はその長さが3
分割又は6分割されている。軽圧下ロール16は、その
径が従来の約375mmから約2101に、ロール相互
間のピッチが従来の約420o+mがら約235s+e
に、各セグメント内のロール本数が従来の5対から8対
に夫々変更されている。また、この連続鋳造機における
垂直引抜き部の長さは約4m1鋳片曲げ部の曲率半径は
約8m、鋳型内湯面(メニスカス)から軽圧下装置10
までの高低差は約1O34乃至14.1mである。
As shown in FIG. 2, the light reduction roll 16 has a length of 3
It is divided or divided into six parts. The diameter of the light reduction roll 16 has been increased from the conventional approximately 375 mm to approximately 210 mm, and the pitch between the rolls has been increased from the conventional approximately 420 o + m to approximately 235 s + e.
In addition, the number of rolls in each segment has been changed from the conventional 5 pairs to 8 pairs. In addition, the length of the vertical drawing part in this continuous casting machine is about 4 m, the radius of curvature of the bent part of the slab is about 8 m, and the light reduction device 10
The height difference up to this point is about 1034m to 14.1m.

第3図に示すように、3分割の軽圧下ロール16a、1
6b、16cがロールチョック17を介して夫々回転可
能に支持されており、ロールチョック17に圧下シリン
ダ19のロッド18が連結され、ロッド18でロールチ
ョック17を押すとロール16a、16b、16cが鋳
片30に夫々押付けられるようになっている。また、圧
下シリンダ19は油圧制御装置42の各油圧供給口(図
示せず)に油圧回路により接続されている。
As shown in FIG. 3, the light reduction roll 16a, 1
6b and 16c are rotatably supported through roll chocks 17, and a rod 18 of a reduction cylinder 19 is connected to the roll chock 17. When the roll chock 17 is pushed by the rod 18, the rolls 16a, 16b, and 16c are moved to the slab 30. They are designed to be pressed against each other. Further, the reduction cylinder 19 is connected to each hydraulic pressure supply port (not shown) of the hydraulic control device 42 by a hydraulic circuit.

この油圧制御装置42は圧油供給源(図示せず)を有し
ている。更に、この油圧制御装置42の各油圧供給口を
開閉する電磁弁(図示せず)の作動回路にCPU40の
指令部が接続されている。また、各ロール16 a、 
 16 b、  16 cを回転可能に支持するベアリ
ング(図示せず)にはロードセルを利用してロール反力
(鋳片30に押付けられた各ロール16 a *  1
6 b +  16 cが鋳片30から受ける反力)を
測定するロール反力測定器39が夫々取付けられている
。これらの測定器39はCPU40に接続されており、
鋳片30から受けた力を電圧信号に変換してCPU40
に夫々送信するようになっている。
This hydraulic control device 42 has a pressure oil supply source (not shown). Further, a command section of the CPU 40 is connected to an operating circuit of a solenoid valve (not shown) that opens and closes each hydraulic supply port of the hydraulic control device 42. In addition, each roll 16a,
Load cells are used in bearings (not shown) that rotatably support the rolls 16 b and 16 c to absorb roll reaction force (each roll 16 a * 1 pressed against the slab 30
A roll reaction force measuring device 39 for measuring the reaction force that 6 b + 16 c receives from the slab 30 is attached to each of the roll reaction force measuring devices 39 . These measuring instruments 39 are connected to the CPU 40,
The force received from the slab 30 is converted into a voltage signal and sent to the CPU 40.
The information is sent to each

また、多数のノズル20(−列中の一部のみを図示)が
所定の間隔をおいて分割ロール16a。
Further, a large number of nozzles 20 (only some of the - rows are shown) are arranged at predetermined intervals on the divided roll 16a.

16b、16cに沿って配列され、これらのノズル20
が冷却水制御装置44の冷却水供給口(図示せず)に接
続されている。この冷却水制御装置44は冷却水供給源
(図示せず)を有している。
16b, 16c, these nozzles 20
is connected to a cooling water supply port (not shown) of the cooling water control device 44. This cooling water control device 44 has a cooling water supply source (not shown).

各冷却水供給口を開閉する電磁弁(図示せず)の作動回
路にCPU40の指令部が接続さ、れている。
A command section of the CPU 40 is connected to an operating circuit of a solenoid valve (not shown) that opens and closes each cooling water supply port.

冷却水制御装置44がCPU40からの信号を受信する
と、各電磁弁が開閉して所定量の冷却水がノズル20に
供給され、鋳片30が所定の冷却速度で冷却されるよう
になっている。
When the cooling water control device 44 receives a signal from the CPU 40, each electromagnetic valve opens and closes to supply a predetermined amount of cooling water to the nozzle 20, so that the slab 30 is cooled at a predetermined cooling rate. .

次に、この発明方法により鋳片を製造する場合について
第1図及び第3図を参照して具体的に説明する。鋳造鋼
種はNb、V系うインパイプ用高張力鋼(API  X
−65)であり、鋳片(スラブ)の幅は約1950mm
である。RH脱ガス処理及び取鍋精錬処理により成分調
整された溶鋼をタンディツシュから鋳型内に鋳造する。
Next, the case of producing slabs by the method of this invention will be specifically explained with reference to FIGS. 1 and 3. The casting steel type is Nb, V-based high tensile strength steel for in-pipe (API
-65), and the width of the slab is approximately 1950mm.
It is. Molten steel whose composition has been adjusted by RH degassing treatment and ladle refining treatment is cast into a mold from a tundish.

このとき、タンディツシュ内の溶鋼温度は約1552℃
であり、溶鋼は約33℃の過熱状態にある(この鋼種の
凝固温度は約1519℃)。溶鋼が鋳型内に注入される
と、鋳型壁に接して凝固殻32が形成される。毎分的0
.75mの鋳造速度で未凝固状態の鋳片30を引抜き、
クレータエンド36をセグメント14の略中央に位置さ
せる。また、冷却水制御装置44により冷却水供給源の
流量調節弁を調節して各スプレィノズル20に供給する
冷却水量を制御し、比水量o、54.e/kg  (鋳
片1kg当りのスプレィ水量)のスプレィパターンで各
スプレィノズル20を介して鋳片30に冷却水を噴射す
る。
At this time, the temperature of the molten steel in the tandish was approximately 1552℃.
The molten steel is in a superheated state of about 33°C (the solidification temperature of this steel type is about 1519°C). When molten steel is injected into the mold, a solidified shell 32 is formed in contact with the mold wall. 0 per minute
.. The unsolidified slab 30 is pulled out at a casting speed of 75 m,
The crater end 36 is located approximately at the center of the segment 14. Further, the cooling water control device 44 adjusts the flow rate control valve of the cooling water supply source to control the amount of cooling water supplied to each spray nozzle 20, and the specific water amount o, 54. Cooling water is injected onto the slab 30 through each spray nozzle 20 in a spray pattern of e/kg (amount of spray water per 1 kg of slab).

第7図は横軸に鋳片の歪み速度をとり、縦軸にロールが
鋳片から受けるロール反力をとって、歪み速度とロール
反力との関係を示すグラフ図である。この図から明らか
なように、歪み速度とロール反力とは相互に比例関係に
あり、ロール反力が判明すればこれに対応する鋳片の歪
み速度を知ることができる。すなわち、ロール反力と歪
み速度とは1対1に対応しており、例えば、ロール反力
測定器39で検出されたロール反力値が10ton−f
のときの歪み速度は0.9mm/分である。
FIG. 7 is a graph showing the relationship between strain rate and roll reaction force, with the horizontal axis representing the strain rate of the slab and the vertical axis representing the roll reaction force that the roll receives from the slab. As is clear from this figure, the strain rate and roll reaction force are in a proportional relationship with each other, and if the roll reaction force is known, the corresponding strain rate of the slab can be known. That is, there is a one-to-one correspondence between the roll reaction force and the strain rate, and for example, if the roll reaction force value detected by the roll reaction force measuring device 39 is 10 ton-f.
The strain rate at this time is 0.9 mm/min.

いま、凝固末期の鋳片30に適正歪み速度の軽圧下刃(
約1.2mm/IIlの圧下ff1)を加えているとき
に分割ロール16bに反力すが作用したとすると、ロー
ル16bが鋳片30に押されて測定器39bのロードセ
ルの検出部が歪み、検出部の抵抗値が変化して電流が生
じる。この電流を電圧信号に変換してCPU40の記憶
部に入力する。CPU40内では、演算部にて反力すの
入力データに基づき鋳片の歪み速度をパラメータとして
算出し、このパラメータと所定の適正歪み速度とを比較
して両者の差を電圧信号として指令部を介して油圧制御
装置42に送信する。このとき、冷却水制御装置44に
もCP U40の指令部から電圧差信号が送信され、電
圧差信号が零になるまで分割ロール16bの領域に噴射
されるスプレィ水量を調節する。また、油圧制御装置4
2においては、CPU40からの電圧差信号に基づき圧
下シリンダ19の電磁弁を開閉し、ロッド18をシリン
ダ19内に退入させる。これにより、ロール16bの圧
下量が減少して鋳片30へのロール押付は力が弱まり、
反力すが緩和され、鋳片30の歪み速度が適正歪み速度
に接近し、やがて、実際の歪み速度が適正歪み速度に合
致して電圧差信号が零になる。これにより、鋳片30内
部の溶鋼の流動が実質的に阻止され、濃化溶鋼がクレー
タエンド36に析出しなくなる。
Now, a light reduction blade (
If a reaction force acts on the split roll 16b while applying a reduction ff1) of approximately 1.2 mm/IIl, the roll 16b is pushed by the slab 30 and the detection part of the load cell of the measuring device 39b is distorted. The resistance value of the detection section changes and a current is generated. This current is converted into a voltage signal and input to the storage section of the CPU 40. In the CPU 40, the calculation unit calculates the strain rate of the slab as a parameter based on the input data of the reaction force, compares this parameter with a predetermined appropriate strain rate, and uses the difference between the two as a voltage signal to send the command unit. via the hydraulic control device 42. At this time, a voltage difference signal is also transmitted from the command unit of the CPU 40 to the cooling water control device 44, and the amount of spray water injected to the area of the divided roll 16b is adjusted until the voltage difference signal becomes zero. In addition, the hydraulic control device 4
2, the solenoid valve of the reduction cylinder 19 is opened and closed based on the voltage difference signal from the CPU 40, and the rod 18 is moved back into the cylinder 19. As a result, the rolling reduction amount of the roll 16b is reduced, and the force of pressing the roll against the slab 30 is weakened.
The reaction force is relaxed, the strain rate of the slab 30 approaches the appropriate strain rate, and eventually the actual strain rate matches the appropriate strain rate and the voltage difference signal becomes zero. As a result, the flow of molten steel inside the slab 30 is substantially prevented, and concentrated molten steel does not precipitate at the crater end 36.

上記実施例によれば、バルジングが発生して鋳片30か
ら分割ロール16bに反力すが作用すると、従来におい
てはロール圧下量が増加して溶鋼34が鋳片トップ方向
に流動するので、著しい中心偏析を生じていたが、分割
ロール16bの領域に噴射される冷却水量を調節するこ
とができるので、鋳片幅方向に分布する中心偏析の発生
を有効に阻止することができる。一方、鋳片歪み速度が
減少した場合には、溶#A34が鋳片ボトム方向に流動
するが、ロッド18を突出させて分割ロール16bの圧
下量を制御することができるので、ボトム方向への溶鋼
の流動を有効に阻止することができる。これにより、溶
鋼の流動限界固相率gを従来の0.70から0.15ま
で低減することができ、炭素等の成分の中心偏析を低減
することができた。
According to the above embodiment, when bulging occurs and a reaction force is applied from the slab 30 to the split rolls 16b, conventionally the roll reduction amount increases and the molten steel 34 flows toward the top of the slab, which is significant. However, since the amount of cooling water injected into the area of the split rolls 16b can be adjusted, it is possible to effectively prevent center segregation distributed in the width direction of the slab. On the other hand, when the slab strain rate decreases, the melt #A34 flows toward the bottom of the slab, but since the rod 18 can be made to protrude and the amount of reduction of the split rolls 16b can be controlled, the amount of rolling down of the split rolls 16b can be controlled. The flow of molten steel can be effectively prevented. As a result, the flow limit solid fraction g of molten steel could be reduced from the conventional 0.70 to 0.15, and the central segregation of components such as carbon could be reduced.

また、従来の電磁攪拌による軽圧下鋳造方法では、鋳造
開始部、鋳造終了部又は連々鋳の継目部等の非定常部に
おいて過剰攪拌等が生じ、炭素等の成分濃度が健全部よ
りも中心部で逆に低下する所謂ホワイトバンドが発生す
るという欠点があったが、上記実施例によれば、軽圧下
帯の全域に亘って適正歪み速度となるように各分割ロー
ル16ごとにその圧下量を精密に制御することができる
ので、定常部のみならず非定常部の品質をも向上させる
ことができる。
In addition, in the conventional light reduction casting method using electromagnetic stirring, excessive stirring occurs in unsteady parts such as the casting start part, the casting end part, or the joint part of continuous casting, and the concentration of components such as carbon is higher in the center than in the healthy part. However, according to the above embodiment, the reduction amount is adjusted for each divided roll 16 so that an appropriate strain rate is achieved over the entire area of the light reduction zone. Since precise control is possible, the quality of not only the steady portion but also the unsteady portion can be improved.

第8図は、横軸に偏析帯に存在する偏析粒子の粒径をと
り、縦軸に鋳片引抜長さ100mm当りの偏析粒子の個
数をとって、セミマクロ偏析粒子の粒径分布について調
査したグラフ図である。図中、黒丸はこの発明の実施例
により製造された鋳片の中心偏析帯に存在するセミマク
ロ偏析粒子、白丸は従来の方法により製造された鋳片の
中心偏析帯に存在するセミマクロ偏析粒子を夫々示す。
In Figure 8, the particle size distribution of semi-macro segregated particles was investigated by plotting the particle size of the segregated particles present in the segregation zone on the horizontal axis and the number of segregated particles per 100 mm of slab pulling length on the vertical axis. It is a graph diagram. In the figure, black circles represent semi-macro segregated particles present in the central segregation zone of slabs manufactured by the embodiment of the present invention, and white circles represent semi-macro segregation particles present in the central segregation zone of slabs manufactured by the conventional method. show.

この図から明らかなように、この発明の実施例によれば
、HIC割れに有害となる粒径0.5)以上のセミマク
ロ偏析粒子の数を従来よりも大幅に減少させることがで
き、中心偏析低減の効果をあげることができた。
As is clear from this figure, according to the embodiment of the present invention, the number of semi-macro segregated particles with a particle size of 0.5) or more, which is harmful to HIC cracking, can be significantly reduced compared to the conventional method. We were able to achieve a reduction effect.

上記実施例により製造されたスラブ(均熱処理無し)か
ら試料を採取し、硫化水素雰囲気中で行なう腐蝕試験(
NACE試験)により24個の断面についてHIC発生
率を調査した結果、長さが0.01a+a+以上の割れ
は全く認められなかった。
A sample was taken from the slab manufactured according to the above example (without soaking treatment), and a corrosion test was conducted in a hydrogen sulfide atmosphere (
As a result of investigating the HIC occurrence rate on 24 cross sections using the NACE test, no cracks with a length of 0.01a+a+ or more were observed.

また、上記実施例では軽圧下ロール16の径及びロール
間のピッチを従来よりも小さくしているので、バルジン
グの発生を有効に防止することができる。
Furthermore, in the embodiment described above, since the diameter of the light reduction roll 16 and the pitch between the rolls are smaller than those of the prior art, the occurrence of bulging can be effectively prevented.

また、上記実施例ではNb、V系高張力鋼を製造する場
合について示したが、これに限らず約800℃以下の温
度域で熱間加工脆性を示す他の金属材料を製造する場合
についてもこの発明方法を使用することができる。
In addition, although the above example shows the case of manufacturing Nb, V-based high-strength steel, it is not limited to this, and can also be applied to the case of manufacturing other metal materials that exhibit hot work brittleness in a temperature range of about 800°C or less. This invention method can be used.

また、上記実施例ではスラブを製造する場合について示
したが、これに限らずブルーム又は丸ビレット等を製造
する場合にもこの発明方法を使用することができる。
Furthermore, although the above embodiments have been described with reference to the case of manufacturing slabs, the method of the present invention is not limited to this, and can also be used in the case of manufacturing blooms, round billets, and the like.

[発明の効果] この発明によれば、・各分割ロールが鋳片から受ける反
力に基づいて鋳片の幅に沿って各分割ロールが位置する
領域の冷却速度を調節することができるので、鋳片幅方
向の軽圧下量のばらつきに起因する歪み速度の不均一を
是正することができる。
[Effects of the Invention] According to the present invention, it is possible to adjust the cooling rate of the region where each divided roll is located along the width of the slab based on the reaction force that each divided roll receives from the slab; It is possible to correct the non-uniformity of the strain rate caused by variations in the amount of light reduction in the width direction of the slab.

このため、バルジング発生時に有効に対処することがで
き、中心偏析を低減することができる。また、軽圧下帯
の全域に亘り測定されたロール反力に応じてロール圧下
量を調節することができるので、定常部の鋳片の中心偏
析を低減することができると共に、非定常部の中心偏析
をも低減することができる。このため、鋳片全体の品質
を大幅に向上させることができる。
Therefore, it is possible to effectively deal with the occurrence of bulging, and center segregation can be reduced. In addition, since the amount of roll reduction can be adjusted according to the roll reaction force measured over the entire area of the light reduction zone, it is possible to reduce the center segregation of the slab in the steady area, and also to reduce the center segregation of the slab in the unsteady area. Segregation can also be reduced. Therefore, the quality of the entire slab can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る軽圧下鋳造方法が使用
された軽圧下装置を側方から見た模式図、第2図は軽圧
下ロール群を示す斜視図、第3図は軽圧下装置の一部を
示す模式図、第4図は濃化溶鋼の凝固機構を示す模式図
、第5図は溶鋼の流動と偏析度との関係を示す模式図、
第6図は軽圧下量と溶鋼流動長さとの関係を示す、グラ
フ図、第7図はロール反力と歪み速度との関係を示すグ
ラフ図、第8図はこの発明の効果を示すグラフ図、第9
図は水素誘起割れ(HI C)に及ぼすセミマクロ偏析
の影響を示すグラフ図である。 10;軽圧下装置、16;軽圧下ロール、19;圧下シ
リンダ、30;鋳片、32;凝固殻、34;溶鋼、36
;クレータエンド、39;ロール反力a′I11定器、
40 ; CP U 、 42 ; 油圧IIJa装r
ll、44;冷却水制御装置。 出願人代理人 弁理士 鈴江武彦 第3図 第1図 第4図 α 第5図 第6図 X速5 第7図 偶竹ftチのれ任(rrm) 第8図 1!ffl閂禮【2111孝j−イ曇(mm)第9図
FIG. 1 is a schematic side view of a light reduction device in which a light reduction casting method according to an embodiment of the present invention is used, FIG. 2 is a perspective view showing a group of light reduction rolls, and FIG. 3 is a light reduction device. A schematic diagram showing a part of the apparatus, FIG. 4 is a schematic diagram showing the solidification mechanism of concentrated molten steel, and FIG. 5 is a schematic diagram showing the relationship between the flow of molten steel and the degree of segregation.
Fig. 6 is a graph showing the relationship between light reduction amount and molten steel flow length, Fig. 7 is a graph showing the relationship between roll reaction force and strain rate, and Fig. 8 is a graph showing the effect of this invention. , No. 9
The figure is a graph showing the influence of semi-macro segregation on hydrogen-induced cracking (HIC). 10; light reduction device, 16; light reduction roll, 19; reduction cylinder, 30; slab, 32; solidified shell, 34; molten steel, 36
; Crater end, 39; Roll reaction force a'I11 regulator,
40; CPU, 42; Hydraulic II Ja equipment
ll, 44; Cooling water control device. Applicant's representative Patent attorney Takehiko Suzue Figure 3 Figure 1 Figure 4 α Figure 5 Figure 6 ffl 閂禮 [2111孝j-Icloud (mm) Fig. 9

Claims (1)

【特許請求の範囲】[Claims] 連続鋳造された未凝固の鋳片を多数対のロールにより軽
圧下しつつノズル群から冷却水を鋳片に噴射して完全凝
固させる軽圧下鋳造方法において、前記多数対のロール
は所定長さのロール幅に夫々分割され、前記ノズル群は
各対のロールに沿って鋳片幅方向に夫々配列されており
、各分割ロールが鋳片から受けるロール反力を夫々測定
し、これらのロール反力に対応する鋳片の歪み速度を夫
々把握し、これらの歪み速度が所定の鋳片歪み速度に合
致するように分割ロールが属する各対のロールの圧下量
を夫々調節すると共に、ノズル群の冷却水噴射量を鋳片
幅方向の各領域にて増減させることを特徴とする軽圧下
鋳造方法。
In the light reduction casting method, a continuously cast unsolidified slab is lightly rolled down by a large number of pairs of rolls, and cooling water is injected onto the slab from a nozzle group to completely solidify it. The nozzle groups are each divided into roll widths, and each nozzle group is arranged in the slab width direction along each pair of rolls.The roll reaction force that each divided roll receives from the slab is measured, and these roll reaction forces are measured. The strain rate of the slab corresponding to each is determined, and the rolling reduction amount of each pair of rolls to which the split roll belongs is adjusted so that these strain rates match the predetermined slab strain rate, and the nozzle group is cooled. A light reduction casting method characterized by increasing or decreasing the amount of water sprayed in each region in the width direction of the slab.
JP11351487A 1987-05-12 1987-05-12 Light rolling reduction casting method Pending JPS63278655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11351487A JPS63278655A (en) 1987-05-12 1987-05-12 Light rolling reduction casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11351487A JPS63278655A (en) 1987-05-12 1987-05-12 Light rolling reduction casting method

Publications (1)

Publication Number Publication Date
JPS63278655A true JPS63278655A (en) 1988-11-16

Family

ID=14614267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11351487A Pending JPS63278655A (en) 1987-05-12 1987-05-12 Light rolling reduction casting method

Country Status (1)

Country Link
JP (1) JPS63278655A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652020A1 (en) * 1989-08-09 1991-03-22 Clecim Sa Method and device for reducing the thickness of a continuously cast slab
EP0539784A1 (en) * 1991-10-31 1993-05-05 DANIELI & C. OFFICINE MECCANICHE S.p.A. Assembly for the controlled prerolling of thin slabs leaving a continuous casting plant
JPH05138321A (en) * 1991-11-22 1993-06-01 Sumitomo Metal Ind Ltd Light rolling reduction method for cast slab in continuous casting
WO2002018077A1 (en) * 2000-08-26 2002-03-07 Sms Demag Akgtiengesellschaft Continuous casting installation comprising a soft reduction section
JP2011131242A (en) * 2009-12-24 2011-07-07 Nippon Steel Corp Continuous casting method for steel
JP2011218422A (en) * 2010-04-12 2011-11-04 Nippon Steel Engineering Co Ltd Method for controlling light rolling reduction in continuously cast slab

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970444A (en) * 1982-10-12 1984-04-20 Nippon Kokan Kk <Nkk> Production of continuous casting billet having no semi-macro segregation
JPS60162564A (en) * 1984-01-31 1985-08-24 Nippon Steel Corp Vertical type continuous casting method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970444A (en) * 1982-10-12 1984-04-20 Nippon Kokan Kk <Nkk> Production of continuous casting billet having no semi-macro segregation
JPS60162564A (en) * 1984-01-31 1985-08-24 Nippon Steel Corp Vertical type continuous casting method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652020A1 (en) * 1989-08-09 1991-03-22 Clecim Sa Method and device for reducing the thickness of a continuously cast slab
EP0539784A1 (en) * 1991-10-31 1993-05-05 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Assembly for the controlled prerolling of thin slabs leaving a continuous casting plant
JPH05138321A (en) * 1991-11-22 1993-06-01 Sumitomo Metal Ind Ltd Light rolling reduction method for cast slab in continuous casting
WO2002018077A1 (en) * 2000-08-26 2002-03-07 Sms Demag Akgtiengesellschaft Continuous casting installation comprising a soft reduction section
KR100796638B1 (en) 2000-08-26 2008-01-22 에스엠에스 데마그 악티엔게젤샤프트 Continuous casting installation comprising a soft reduction section
JP2011131242A (en) * 2009-12-24 2011-07-07 Nippon Steel Corp Continuous casting method for steel
JP2011218422A (en) * 2010-04-12 2011-11-04 Nippon Steel Engineering Co Ltd Method for controlling light rolling reduction in continuously cast slab

Similar Documents

Publication Publication Date Title
CN103667648B (en) Method and the microalloy tube blank steel of microalloy tube blank steel is manufactured in rolling casting bonding equipment
US20100000062A1 (en) Method and installation for producing steel products with optimum surface quality
EP2269750A1 (en) Method for continuous casting of steel and electromagnetic stirrer usable therefor
JP6115735B2 (en) Steel continuous casting method
JP4834223B2 (en) Cold rolled steel
US5657814A (en) Direct rolling method for continuously cast slabs and apparatus thereof
JPS63242452A (en) Method for casting by light rolling reduction
JP2011005524A (en) Method for continuously casting high carbon steel
CN113953479B (en) Method for improving flanging of thin strip steel coil
JPS63278655A (en) Light rolling reduction casting method
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JPS63286260A (en) Light rolling reduction casting method
CN105665662B (en) Flux-cored wire based on ESP lines steel making method
JPS63278654A (en) Light rolling reduction casting method
Zhu et al. Cheng Ji
JPS63238965A (en) Method for casting under light draft
JP5476959B2 (en) Continuous casting method under light pressure
JPS63242453A (en) Method for casting by light rolling reduction
JPS63252655A (en) Method for casting under light draft
JPS63252654A (en) Method for casting under light draft
KR20130075015A (en) Method for manufacturing austenitic stainless steel sheet having excellent edge property
JP3402291B2 (en) Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate
JPWO2019203137A1 (en) Continuous casting method for steel
JPS63242454A (en) Method for casting by light squeeze
JP3025631B2 (en) Continuous casting method of Ni-containing steel