JPS63242452A - Method for casting by light rolling reduction - Google Patents

Method for casting by light rolling reduction

Info

Publication number
JPS63242452A
JPS63242452A JP7670087A JP7670087A JPS63242452A JP S63242452 A JPS63242452 A JP S63242452A JP 7670087 A JP7670087 A JP 7670087A JP 7670087 A JP7670087 A JP 7670087A JP S63242452 A JPS63242452 A JP S63242452A
Authority
JP
Japan
Prior art keywords
slab
roll
cast slab
rolls
strain rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7670087A
Other languages
Japanese (ja)
Inventor
Toshio Masaoka
政岡 俊雄
Hitoshi Kobayashi
日登志 小林
Mikio Suzuki
幹雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7670087A priority Critical patent/JPS63242452A/en
Publication of JPS63242452A publication Critical patent/JPS63242452A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce segregation of impurity at center part of a continuously cast slab by executing light rolling reduction to the cast slab containing non- solidified molten metal while adjusting the rolling reduction rate by many rolls and also adjusting castling speed by cooling speed for the cast slab. CONSTITUTION:The cast slab 30 drawn from a mold in continuous casting apparatus has non-solidified molten metal part 34 in the inner part of solidified shell 32 and the non-solidified part eliminates at part of crater end 36. During this section, the cast slab 30 passes through the light rolling reduction device 10 composing of segments 12, 14 and is bent from vertical direction to horizontal direction by many light reducing rolls 16 while cooling by cooling water from many spray nozzles 20 and transferred. In this case, data of the surface temp., etc., of the cast slab 30 at the segment 12 are inputted to a central processing unit (CPU) 40 and through this unit, by a hydraulic control device 42 for the light reducing rolls 16 at the segment 14, a cooling water control device 44 for the nozzles 20 and a drawing speed control device 46 for the cast slab 30 from the mold, rolling reduction force, cooling water rate and drawing speed from the mold are adjusted. By this method, the continuously cast slab having a little center segregation is produced.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、連続鋳造において鋳片の中心偏析を防止す
る軽圧下鋳造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a light reduction casting method for preventing center segregation of slabs in continuous casting.

[従来の技術] 通常、連続鋳造においては、溶鋼が水冷鋳型により冷却
されると、鋳片外周部に相当する部分に薄い凝固殻が形
成され、鋳型を通過した鋳片はその内部に未凝固溶鋼を
保持した状態で一群のサポートガイドロールにより案内
されつつ、ピンチロールにより引抜かれる。鋳片引抜き
過程においては、鋳片にスプレィ水を噴射して鋳片内部
の凝固促進を図り、凝固殻の厚さが変形に耐え得る厚さ
以上に成長すると、鋳片を所定の曲率で略90゜曲げつ
つ軽圧下装置により凝固途中の鋳片に軽圧下刃を加える
。この軽圧下帯において鋳片を完全凝固させ、次いで、
軽圧下帯の終了位置(矯正点)で矯正装置のロール群に
より鋳片の曲がりを矯正し、直線状になった鋳片を切断
機で所定長に切断する。
[Prior art] Normally, in continuous casting, when molten steel is cooled by a water-cooled mold, a thin solidified shell is formed at a portion corresponding to the outer periphery of the slab, and the slab that has passed through the mold has unsolidified inside. While holding the molten steel, it is guided by a group of support guide rolls and pulled out by pinch rolls. During the slab drawing process, spray water is injected onto the slab to promote solidification inside the slab, and when the thickness of the solidified shell grows beyond the thickness that can withstand deformation, the slab is pulled out at a predetermined curvature. While bending the slab 90 degrees, apply a light reduction blade to the solidified slab using a light reduction device. The slab is completely solidified in this light reduction zone, and then
At the end position (straightening point) of the light reduction band, the rolls of the straightening device correct the bends in the slab, and the straight slab is cut into a predetermined length by a cutting machine.

鋳片最終凝固部(クレータエンド)では、炭素(C)、
硫黄(S)、マンガン(M n )並びに燐(P)等の
成分元素が未凝固溶鋼中に濃縮される。
In the final solidification part of the slab (crater end), carbon (C),
Component elements such as sulfur (S), manganese (M n ), and phosphorus (P) are concentrated in the unsolidified molten steel.

この濃化溶鋼は低融点であるので、溶鋼が凝固殻中で静
止した状態にある場合は析出しないが、濃化溶鋼が凝固
殻中で流動するとこれが析出して所謂中心偏析となる。
Since this concentrated molten steel has a low melting point, it does not precipitate when the molten steel is stationary in the solidified shell, but when the concentrated molten steel flows in the solidified shell, it precipitates, resulting in so-called central segregation.

通常、溶鋼の凝固収縮により鋳片ボトム方向(鋳片引抜
方向)へ溶鋼が吸引されて流動するので、凝固収縮量に
見合った軽圧下刃を未凝固鋳片に加えて中心偏析を防止
している。
Normally, solidification shrinkage of molten steel causes the molten steel to be sucked and flow toward the bottom of the slab (in the direction of slab withdrawal), so a light reduction blade commensurate with the amount of solidification shrinkage is added to the unsolidified slab to prevent center segregation. There is.

一方、鋳造速度が比較的速くなる場合は、溶鋼静圧が高
まり、圧下量が不足する箇所の凝固殻が部分的に膨張す
る所謂バルジングが発生する。バルジングが発生すると
、膨張した凝固殻がロール圧下により圧縮されて鋳片ト
ップ方向(鋳片引抜方向の逆方向)への溶鋼の流動が起
こり、クレータエンドに濃化溶鋼が析出して幅広の中心
偏析が発生する。特に、ロールのピッチ間隔が大きい場
合及び圧下ロールにたわみ又は摩耗が存在する場合に、
バルジングが発生しやすい。このため、通常、軽圧下帯
に一層の小径ロールを配列し、ロール相互間のピッチを
小さくし、バルジングの発生を阻止して中心偏析を低減
するようにしている。
On the other hand, when the casting speed becomes relatively high, the static pressure of the molten steel increases, and so-called bulging occurs, in which the solidified shell partially expands in areas where the reduction amount is insufficient. When bulging occurs, the expanded solidified shell is compressed by roll reduction, causing molten steel to flow toward the top of the slab (in the direction opposite to the direction in which the slab is pulled out), and concentrated molten steel precipitates at the crater end, forming a wide center. Segregation occurs. In particular, when the pitch interval of the rolls is large and when there is deflection or wear on the reduction roll,
Bulging is likely to occur. For this reason, one layer of small-diameter rolls is usually arranged in the light rolling zone to reduce the pitch between the rolls, thereby preventing the occurrence of bulging and reducing center segregation.

従来の軽圧下鋳造技術においては、軽圧下装置による圧
下のみでは鋳片の中心偏析を十分に低減することができ
ない。このため、電磁攪拌装置(EMS)によりクレー
タエンドに回転磁界又は移動磁界を印加し、クレータエ
ンドの濃化溶鋼を電磁誘導により攪拌して中心偏析の発
生を防止している。
In the conventional light reduction casting technology, center segregation of the slab cannot be sufficiently reduced only by reduction using the light reduction device. For this reason, a rotating magnetic field or a moving magnetic field is applied to the crater end using an electromagnetic stirring device (EMS), and the concentrated molten steel at the crater end is stirred by electromagnetic induction to prevent center segregation.

[発明が解決しようとする問題点] しかしながら、従来の軽圧下鋳造技術においては、クレ
ータエンドにて濃縮された[C]、[P]等の濃化成分
を電磁攪拌により一定領域内で単に拡散させているにす
ぎないので、偏析成分濃度のピーク値を下げることはで
きるが、偏析そのものを無くしてしまうことができない
。このため、鋳片中心部の一定領域内に濃度レベルが平
均化された偏析帯が生じる。この偏析帯には小型の島状
偏析(セミマクロ偏析)が存在しており、下記に示すよ
うな種々の間居点を生じる。
[Problems to be solved by the invention] However, in the conventional light reduction casting technology, concentrated components such as [C] and [P] concentrated at the crater end are simply diffused within a certain area by electromagnetic stirring. Although it is possible to lower the peak value of the concentration of the segregated components, it is not possible to eliminate the segregation itself. For this reason, a segregation zone with an average concentration level is generated within a certain area at the center of the slab. Small island-like segregation (semi-macro segregation) exists in this segregation zone, and various interstitial points as shown below are generated.

近時、鋼材の品質に対する需要家からの要求が高度化及
び多様化してきており、製品化された鋼材中に不可避的
に存在する不純物元素の偏析及び非金属介在物等の一層
の低減化が望まれている。
In recent years, demands from customers regarding the quality of steel materials have become more sophisticated and diversified, and it is necessary to further reduce the segregation of impurity elements and non-metallic inclusions that inevitably exist in manufactured steel materials. desired.

すなわち、石油及び天然ガス輸送用のバイブ材料におい
ては、硫化水素を含むサワーガスの作用により中心偏析
帯に沿って水素誘起割れ(HI C)が発生するので、
材料の改善によりI(ICを防止することが強く要望さ
れている。HICは中心偏析帯のP濃度が高い部分で発
生しやすいことが知られており、一般に、Pのピーク濃
度が約0.04%以上になると、HICによる割れ発生
率が高くなる。従来の軽圧下鋳造技術では、鋳片中心部
にP濃度が健全部のそれの約10倍にも達する所謂マク
ロ偏析が発生するため、耐HICgil材を製造する場
合には、取鍋溶鋼のP濃度を50ppm以下のレベルに
低減すると共に、凝固後のスラブを約1300℃に均熱
することにより偏析Pを拡散し、P濃度の最大値を低下
させるようにしている。
In other words, in vibrator materials for oil and natural gas transportation, hydrogen-induced cracking (HIC) occurs along the central segregation zone due to the action of sour gas containing hydrogen sulfide.
There is a strong desire to prevent I (IC) by improving materials. It is known that HIC tends to occur in areas where the P concentration is high in the central segregation zone, and generally when the peak concentration of P is about 0. If it exceeds 0.04%, the crack occurrence rate due to HIC increases.In the conventional light reduction casting technology, so-called macro segregation occurs in the center of the slab, where the P concentration reaches about 10 times that of the sound part. When producing HICgil-resistant materials, the P concentration in the ladle molten steel is reduced to a level of 50 ppm or less, and the solidified slab is soaked at approximately 1300°C to diffuse the segregated P and reduce the maximum P concentration. I'm trying to lower the value.

第9図は、横軸に中心偏析粒子の粒径をとり、縦軸に鋳
片長さloom+a当りに存在する偏析粒子の個数をと
って、中心偏析帯を有する種々の鋼材についてセミマク
ロ偏析粒子がHICに及ぼす影☆について調査したグラ
フ図である。図中、黒丸はHICにより割れが生じたも
のを示し、白丸は割れが生じなかったものを示す。この
図に示すように、HIC発生について、粒径が約0.5
 mm以上の大型の偏析粒子(セミマクロ偏析)が特に
有害であり、このセミマクロ偏析の低減化がHIC発生
防止に有効なことが知られている。すなわち、鋼材の耐
HIC特性を改善するためには、前述のマクロ偏析及び
セミマクロ偏析を共に低減する必要がある。
Figure 9 shows the HIC of semi-macro segregated particles for various steel materials with a central segregation zone, with the horizontal axis representing the grain size of centrally segregated particles and the vertical axis representing the number of segregated particles present per slab length loom+a. It is a graph diagram in which the influence of ☆ was investigated. In the figure, black circles indicate those in which cracks occurred due to HIC, and white circles indicate those in which no cracks occurred. As shown in this figure, for HIC generation, the particle size is approximately 0.5
It is known that large segregated particles of mm or more (semi-macro segregation) are particularly harmful, and that reducing this semi-macro segregation is effective in preventing the occurrence of HIC. That is, in order to improve the HIC resistance of steel materials, it is necessary to reduce both the above-mentioned macro segregation and semi-macro segregation.

一方、海洋構造物用の鋼板材料に対しては、主として鋼
材の溶接特性を改善することが需要家から要望されてい
る。すなわち、鋼材に中心偏析帯が存在する場合には、
溶接割れ防止のために溶接時に鋼材を予熱する必要があ
り、溶接後においては溶接熱影響部(HAZ)の靭性が
劣化すると共に、溶接継手部にラメラティア(鋼板のラ
ミネーションに沿って発生する階段状の割れ)が発生す
る。従って、構造物の信頼性向上を図るという観点から
鋼材の中心偏析帯の低減化が強く望まれている。
On the other hand, with respect to steel sheet materials for offshore structures, customers primarily desire improvements in the welding characteristics of the steel materials. In other words, if there is a central segregation zone in the steel material,
It is necessary to preheat the steel material during welding to prevent weld cracking, and after welding, the toughness of the weld heat-affected zone (HAZ) deteriorates and lamellar tear (step-like appearance that occurs along the lamination of the steel plates) occurs in the welded joint. cracks) occur. Therefore, from the viewpoint of improving the reliability of structures, it is strongly desired to reduce the central segregation zone of steel materials.

更に、ビール缶のような深絞り鋼においては、その加工
性に偏析が重大な影響を及ぼすので、無偏折材料の開発
が強く望まれている。
Furthermore, since segregation has a significant effect on the workability of deep-drawn steel such as beer cans, the development of non-segregating materials is strongly desired.

ところで、操業中の軽圧下ロール及びセグメントの変動
量を0.10mm程度以下に押えであるが、長期間の操
業により装置各部の機械的精度が低下して軽圧下量がば
らつき、所定の軽圧下刃を鋳片に加えることが困難にな
り、中心偏析が発生しやすくなるという問題点がある。
By the way, although the amount of variation in the light reduction roll and segment during operation is kept to about 0.10 mm or less, the mechanical precision of each part of the equipment decreases due to long-term operation, and the amount of light reduction varies, making it difficult to achieve the specified light reduction. There is a problem in that it becomes difficult to add the blade to the slab, and center segregation tends to occur.

この発明はかかる事情に鑑みてなされたものであって、
軽圧下量のばらつきに起因する未凝固鋳片の溶湯の流動
を抑制して鋳片中心部に偏析する不純物等の絶対量を低
減することができる軽圧下鋳造方法を提供することを目
的とする。
This invention was made in view of such circumstances, and
The purpose of the present invention is to provide a light reduction casting method capable of suppressing the flow of molten metal in an unsolidified slab due to variations in the amount of light reduction and reducing the absolute amount of impurities, etc. segregated in the center of the slab. .

[問題点を解決するための手段〕 この発明に係る軽圧下鋳造方法は、連続鋳造された未凝
固の鋳片を多数対のロールにより軽圧下しつつ完全凝固
させる軽圧下鋳造方法において、鋳造条件から鋳片内部
溶湯の流動が最小になるような適正歪み速度を把握する
一方、前記多数対のロールが鋳片から受けるロール反力
を夫々測定して各ロール反力に対応する鋳片の歪み速度
を夫々把握し、これらの歪み速度に応じて夫々のロール
圧下量を調節し、鋳片各部の歪み速度を適正歪み速度に
合致させることを特徴とする。この場合に、ロール圧下
量を夫々に調節すると共に、鋳造速度及び鋳片冷却速度
を調節して鋳片各部の歪み速度を適正歪み速度に合致さ
せることが好ましい。
[Means for Solving the Problems] The light reduction casting method according to the present invention is a light reduction casting method in which a continuously cast unsolidified slab is completely solidified while being lightly reduced by a large number of pairs of rolls. While determining the appropriate strain rate that minimizes the flow of molten metal inside the slab, we also measure the roll reaction forces that the multiple pairs of rolls receive from the slab, and determine the distortion of the slab corresponding to each roll reaction force. The method is characterized in that the respective speeds are ascertained, and the amount of roll reduction of each roll is adjusted according to these strain rates, so that the strain rate of each part of the slab matches the appropriate strain rate. In this case, it is preferable to adjust the roll reduction amount, respectively, and also adjust the casting speed and slab cooling rate so that the strain rate of each part of the slab matches the appropriate strain rate.

[作用] この発明に係る軽圧下鋳造方法においては、鋳造条件か
ら鋳片内部溶湯の流動が最小になるような適正歪み速度
を把握する。一方、凝固途中にある鋳片各部からロール
が受けるロール反力を測定し、各ロール反力に対応する
鋳片の実際の歪み速度を把握する。そして、これらの歪
み速度に応じてロール圧下量を調節する。バルジングに
よりロール反力に対応する鋳片の歪み速度が適正歪み速
度よりも大きくなる場合には、ロール圧下量を減少し、
過剰な絞り込みを抑制して溶湯の流動を阻止する。また
、前者が後者より小さくなる場合には、ロール圧下量を
増加し、凝固収縮により吸引される溶湯を押し戻す力を
溶湯に作用させ、鋳片内部の溶湯の流動を阻止する。
[Operation] In the light reduction casting method according to the present invention, an appropriate strain rate at which the flow of molten metal inside the slab is minimized is determined from the casting conditions. On the other hand, the roll reaction force that the roll receives from each part of the slab during solidification is measured, and the actual strain rate of the slab corresponding to each roll reaction force is determined. Then, the amount of roll reduction is adjusted according to these strain rates. If the strain rate of the slab corresponding to the roll reaction force becomes larger than the appropriate strain rate due to bulging, reduce the roll reduction amount,
Prevents the flow of molten metal by suppressing excessive squeezing. If the former becomes smaller than the latter, the amount of roll reduction is increased, a force is applied to the molten metal to push back the molten metal sucked by solidification contraction, and the flow of the molten metal inside the slab is prevented.

また、ロール圧下量を調節すると共に、鋳造速度及び鋳
片冷却速度を調節すると、凝固速度等の条件が一層迅速
に安定化するので、鋳片各部の歪み速度を適正歪み速度
に合致させることが容易になる。
In addition, by adjusting the roll reduction amount as well as the casting speed and slab cooling rate, conditions such as solidification rate can be stabilized more quickly, making it possible to match the strain rate of each part of the slab to the appropriate strain rate. becomes easier.

[実施例コ 以下、添付の図面を参照してこの発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

先ず、中心偏析低減の基本的考え方について説明する。First, the basic concept of center segregation reduction will be explained.

第4図は、凝固末期における中心偏析の生成機構を示す
模式図である。図中、斜線領域は固相、斜線領域を除く
領域は液相を夫々示す。また、図中の記号gは残留溶鋼
が流動しうる限界の固相率、記号LDは固液共存領域の
厚さ、記号LLは液相領域(100%液相領域)の厚さ
を夫々示す。図中、固相率が零の厚さ位置から固相率が
glになる厚さ位置までの領域に存在する濃化溶鋼が流
動して混合されることにより中心偏析が形成されると仮
定すると、凝固末期溶鋼の成分濃化率CL/C,は下記
(1)式により計算される。
FIG. 4 is a schematic diagram showing the generation mechanism of center segregation at the final stage of solidification. In the figure, the shaded area indicates the solid phase, and the area other than the shaded area indicates the liquid phase. In addition, the symbol g in the figure indicates the limit solid phase ratio at which residual molten steel can flow, the symbol LD indicates the thickness of the solid-liquid coexistence region, and the symbol LL indicates the thickness of the liquid phase region (100% liquid phase region). . In the figure, assuming that central segregation is formed by the flowing and mixing of concentrated molten steel existing in the region from the thickness position where the solid fraction is zero to the thickness position where the solid fraction is gl. , the component concentration ratio CL/C of the molten steel at the final stage of solidification is calculated by the following equation (1).

・・・(1) 但し、上記(1)式中の各記号は下記による。...(1) However, each symbol in the above formula (1) is as follows.

α−LL/LD(凝固末期の固液共存領域に対する液相
領域の割合) LL、LD;凝固末期の液相領域の厚さ、固液共存領域
の厚さ g;残留溶鋼が流動しうる限界の固相率Ko  ;  
[C] 、[P]等の各成分における平衡分配係数 第5図は、上記(1)式により求めた[C]の成分濃化
率CL/Coを縦軸にとり、凝固末期の固液共存領域に
対する液相領域の割合いαを横軸にとって、凝固末期に
おける溶鋼流動と偏析度との関係について検討したもの
である。図中、各曲線に記入した数値は夫々の固相率g
を示す。なお、平衡分配係数KOを0.141として成
分濃化率CL/Coを算出した。この図から明らかなよ
うに、濃化溶鋼の流動限界固相率gが大になるに従って
成分濃化率CL/C0が高くなり、また完全液相領゛域
の割合αが小さくなるほど、成分濃化率に与える影響が
大きくなる。すなわち、濃化溶鋼の流動が活発になると
成分濃化率が高まり、偏析度が高くなる。従って、中心
偏析を低減するためには、濃化溶鋼の流動を抑制する必
要がある。
α-LL/LD (ratio of liquid phase region to solid-liquid coexistence region at the final stage of solidification) LL, LD: Thickness of liquid phase region at the final stage of solidification, thickness of solid-liquid coexistence region g: Limit at which residual molten steel can flow The solid phase ratio Ko;
The equilibrium distribution coefficient for each component such as [C] and [P] in Figure 5 shows the solid-liquid coexistence at the final stage of solidification, with the component concentration ratio CL/Co of [C] determined by the above equation (1) taken as the vertical axis. This study examines the relationship between molten steel flow and segregation degree at the final stage of solidification, with α, the ratio of the liquid phase region to the region, as the horizontal axis. In the figure, the numbers written on each curve are the respective solid fraction g
shows. Note that the component concentration ratio CL/Co was calculated by setting the equilibrium distribution coefficient KO to 0.141. As is clear from this figure, as the flow limit solid fraction g of concentrated molten steel increases, the component concentration CL/C0 increases, and as the ratio α of the completely liquid phase region decreases, the component concentration increases. The impact on the conversion rate will be greater. That is, when the flow of concentrated molten steel becomes active, the component concentration rate increases and the degree of segregation increases. Therefore, in order to reduce center segregation, it is necessary to suppress the flow of concentrated molten steel.

この濃化溶鋼の流動を抑制する手段として、第1に鋳片
のロール間バルジングの発生を抑制するためにロール相
互間のピッチを狭くすること、第2に凝固収縮により濃
化溶鋼がボトム側(鋳片引抜き下流側)へ吸引されるこ
とを阻止するために凝固収縮量に相当する適正量の軽圧
下刃を鋳片に印加することが挙げられる。また、種々の
条件下で実際に鋳造した試験結果によれば、軽圧下帯の
開始位置から約3/4のところにクレータエンドを位置
させた場合に、軽圧下帯のロール圧下の効果が最大にな
ることが判明した。
As a means of suppressing the flow of this concentrated molten steel, firstly, the pitch between the rolls is narrowed to suppress the occurrence of bulging between the rolls of the slab, and secondly, the concentrated molten steel is moved toward the bottom side by solidification shrinkage. In order to prevent the slab from being sucked toward the downstream side of slab drawing, an appropriate amount of light pressure lower blade corresponding to the amount of solidification shrinkage may be applied to the slab. In addition, according to the results of actual casting tests conducted under various conditions, the effect of roll reduction of the light reduction zone is maximized when the crater end is positioned approximately 3/4 from the starting position of the light reduction zone. It turned out to be.

ところで、発明者らは、未凝固領域の厚さが約30mm
の凝固途中の鋳片にトレーサー(F e S)が封入さ
れた鋲を打込み、軽圧下量を種々変更して凝固末期の濃
化溶鋼の流動状況を調査した結果、以下の知見を得るこ
とができた。
By the way, the inventors found that the thickness of the unsolidified region was about 30 mm.
As a result of investigating the flow condition of concentrated molten steel at the final stage of solidification by driving studs containing tracer (F e S) into slabs in the middle of solidification and varying the amount of light reduction, the following findings were obtained. did it.

第6図は、横軸に軽圧下量(鋳片引抜長さ1m当りのロ
ール間隔絞り込み量)をとり、縦軸に溶鋼の流動長さを
とって、前記調査結果に基づき軽圧下量と溶鋼流動長さ
との関係を示すグラフ図である。この図から明らかなよ
うに、軽圧下量が増加するに従って溶鋼の流動長さが減
少し、約1.2mm/+の軽圧下量のときに溶鋼の流動
長さが最小になることが確認された。
Figure 6 shows the amount of light reduction (the amount of roll spacing reduced per 1 m of slab drawing length) on the horizontal axis, and the flow length of molten steel on the vertical axis, and the amount of light reduction and molten steel based on the above survey results. It is a graph diagram showing the relationship with flow length. As is clear from this figure, the flow length of molten steel decreases as the light reduction amount increases, and it is confirmed that the flow length of molten steel becomes the minimum at a light reduction amount of approximately 1.2 mm/+. Ta.

第1図はこの発明の実施例に係る軽圧下鋳造方法に使用
される軽圧下装置を側方から見た模式図、第2図は軽圧
下ロール群を示す斜視図、第3図は軽圧下装置の一部を
示す模式図である。CPU(中央演算処理装置)40が
垂直曲げ型連続鋳造機のコントロール室に設けられ、連
続鋳造操業が制御されるようになっている。CPU40
は、入力データをストアする記憶部、記憶部から随時デ
ータを呼出して計算する演算部、並びに演算部の計算結
果に基づいて各所の制御装置42,44゜46に指令信
号を発信する指令部を有している。
FIG. 1 is a schematic side view of a light reduction device used in a light reduction casting method according to an embodiment of the present invention, FIG. 2 is a perspective view showing a group of light reduction rolls, and FIG. 3 is a light reduction device. FIG. 2 is a schematic diagram showing a part of the device. A CPU (Central Processing Unit) 40 is provided in a control room of the vertical bending continuous casting machine to control the continuous casting operation. CPU40
The system includes a storage unit that stores input data, a calculation unit that reads data from the storage unit at any time and performs calculations, and a command unit that sends command signals to various control devices 42, 44, and 46 based on the calculation results of the calculation unit. have.

連続鋳造機の上部には鋳型(図示せず)が設けられ、所
定断面形状のスラブとなる未凝固鋳片30が鋳型からピ
ンチロール(図示せず)により引抜かれるようになって
いる。鋳型の下方には一部のサポートガイドロール(図
示せず)が鋳片を取囲むように配列され、これにより垂
直引抜き部が形成されている。垂直引抜き部の下方には
複数対の曲げロール24が設けられ、曲げロール24に
より凝固途中の鋳片30が曲げられて鋳片引抜き方向が
水平に変更されるようになっている。更に、曲げロール
24の下方には軽圧下装置10が設けられ、鋳片に所定
量の圧下を加えるようになっている。軽圧下装置10は
2基のセグメント12゜14を有して°おり、各セグメ
ント12.14は8対の軽圧下ロール16を夫々備えて
いる。なお、一群のスプレィノズル20が鋳片30の幅
に沿って配列されると共に、各列のスプレィノズルが軽
圧下ロール16の間に夫々配設されている。一群のスプ
レィノズルは水量調節機能を有する冷却水制御装置44
に接続され、各ゾーンのスプレィパターンが制御される
ようになっている。
A mold (not shown) is provided in the upper part of the continuous casting machine, and the unsolidified slab 30, which becomes a slab with a predetermined cross-sectional shape, is pulled out from the mold by pinch rolls (not shown). Some support guide rolls (not shown) are arranged below the mold so as to surround the slab, thereby forming a vertical pull-out section. A plurality of pairs of bending rolls 24 are provided below the vertical drawing section, and the bending rolls 24 bend the slab 30 during solidification so that the direction of drawing the slab is changed to horizontal. Further, a light reduction device 10 is provided below the bending rolls 24, and is configured to apply a predetermined amount of reduction to the slab. The light reduction device 10 has two segments 12.14, each segment 12.14 having eight pairs of light reduction rolls 16. A group of spray nozzles 20 are arranged along the width of the slab 30, and each row of spray nozzles is arranged between the light reduction rolls 16, respectively. A group of spray nozzles is a cooling water control device 44 with a water volume adjustment function.
The spray pattern for each zone is controlled by the

第2図に示すように、軽圧下ロール16はその長さが3
分割又は6分割されている。軽圧下ロール16は、その
径が従来の約37511IIIlから約210+++m
に、ロール相互間のピッチが従来の約420+++nか
ら約235ma+に、各セグメント内のロール本数が従
来の5対から8対に夫々変更されている。また、この連
続鋳造機における垂直引抜き部の長さは約4m、鋳片曲
げ部の曲率半径は約8m、鋳型内湯面(メニスカス)か
ら軽圧下装置10までの高低差は約10.4乃至14.
1mである〇 第3図に示すように、これらの軽圧下ロール16はロー
ルチョック17に夫々保持されており、各ロールチョッ
ク17ごとに圧下シリンダ19のロッド18が連結され
、ロッド18でロールチョック17を押すとロール16
が鋳片30に押付けられるようになっている。各圧下シ
リンダ19には油圧制御装置42の出力側が油圧回路に
より接続されている。この油圧制御装置42は圧油供給
源(図示せず)を有している。更に、この油圧制御装置
42の各圧油供給口に備えられた電磁弁の作動回路がC
PU40の指令部に接続されており、CPU40の指令
信号に基づいて油圧制御装置42から所定圧の油が各圧
下シリンダ19に供給されるようになっている。一方、
ロードセルを備えたロール反力測定器39が各ロール1
6のベアリングに夫々設けられており、ロール16が鋳
片30から受ける反力を測定するようになっている。
As shown in FIG. 2, the light reduction roll 16 has a length of 3
It is divided or divided into six parts. The light reduction roll 16 has a diameter of about 210 +++ m from the conventional approximately 37,511 IIIl.
In addition, the pitch between the rolls has been changed from the conventional approximately 420+++n to approximately 235ma+, and the number of rolls in each segment has been changed from the conventional 5 pairs to 8 pairs. In addition, the length of the vertical drawing part in this continuous casting machine is about 4 m, the radius of curvature of the bent part of the slab is about 8 m, and the height difference from the meniscus in the mold to the light reduction device 10 is about 10.4 to 14 m. ..
1 m As shown in Fig. 3, these light rolling rolls 16 are each held by a roll chock 17, and a rod 18 of a rolling cylinder 19 is connected to each roll chock 17, and the rod 18 pushes the roll chock 17. and roll 16
is pressed against the slab 30. The output side of a hydraulic control device 42 is connected to each reduction cylinder 19 by a hydraulic circuit. This hydraulic control device 42 has a pressure oil supply source (not shown). Furthermore, the operating circuit of the solenoid valve provided at each pressure oil supply port of this hydraulic control device 42 is C.
It is connected to a command section of the PU 40, and oil at a predetermined pressure is supplied to each reduction cylinder 19 from the hydraulic control device 42 based on a command signal from the CPU 40. on the other hand,
A roll reaction force measuring device 39 equipped with a load cell is installed on each roll 1.
6 is provided in each bearing, and the reaction force that the roll 16 receives from the slab 30 is measured.

各測定器39の送信側がCPU40の記憶部の入力側に
接続されており、各測定器39の検出反力が信号化され
てCPU40に送信されるようになっている。また、C
PU40の演算部では、鋳造条件に応じた各種入力デー
タ(例えば、タンディツシュ内溶湯の過熱度、鋳片冷却
速度、鋳片引抜き速度、鋳片サイズ等)に基づき凝固収
縮により溶鋼34に生じるボトム方向への流動力aを計
算し、鋳片30に印加すべき適正歪み速度(溶鋼の流動
力aを阻止する鋳片歪み速度)を把握することができる
ようになっている。一方、バルジングによりロール反力
(ロール16が鋳片30から受ける反力)c、dが生じ
た場合には、各ロール反力測定器39により測定された
反力c、dがCPU40に入力され、これに基づいて適
正歪み速度(溶鋼の流動力すを阻止する鋳片歪み速度)
が鋳片30に加えられるようにCPU40から油圧制御
装置42に指令信号が発信されるようになっている。
The transmission side of each measuring device 39 is connected to the input side of the storage section of the CPU 40, so that the detected reaction force of each measuring device 39 is converted into a signal and transmitted to the CPU 40. Also, C
The calculation section of the PU 40 calculates the bottom direction generated in the molten steel 34 due to solidification shrinkage based on various input data depending on the casting conditions (for example, degree of superheating of the molten metal in the tundish, cooling rate of the slab, rate of slab withdrawal, slab size, etc.). By calculating the flow force a to the slab 30, it is possible to determine the appropriate strain rate to be applied to the slab 30 (the slab strain rate that blocks the flow force a of the molten steel). On the other hand, when roll reaction forces (reaction forces that the roll 16 receives from the slab 30) c and d are generated due to bulging, the reaction forces c and d measured by each roll reaction force measuring device 39 are input to the CPU 40. , based on this, the appropriate strain rate (slab strain rate that prevents the flow force of molten steel)
A command signal is sent from the CPU 40 to the hydraulic control device 42 so that the pressure is applied to the slab 30.

次に、この発明方法により鋳片を製造する場合について
第1図乃至第3図を参照して具体的に説明する。鋳造鋼
種はNb、V系うインパイプ用高張力m(API  X
−65)であり、鋳片(スラブ)の幅は約1950+a
mである。RH脱ガス処理及び取鍋精錬処理により成分
調整された溶鋼をタンディツシュから鋳型内に鋳造する
。このとき、タンディツシュ内の溶鋼温度は約1552
℃であり、溶鋼は約33℃の過熱状態にある(この鋼種
の凝固温度は約1519℃)。溶鋼が鋳型内に注入され
ると、鋳型壁に接して凝固殻32が形成される。毎分約
0.75mの鋳造速度で未凝固状態の鋳片30を引抜き
、クレータエンド36をセグメント14の略中央に位置
させる。また、冷却水制御装置44により冷却水供給源
の流量調節弁を調節して各スプレィノズルに供給する冷
却水量を制御し、比水量0.54.f’ハg (鋳片1
kg当りのスプレィ水量)のスプレィパターンで各スプ
レィノズルを介して鋳片30に冷却水を噴射する。
Next, the case of producing slabs by the method of this invention will be specifically explained with reference to FIGS. 1 to 3. The cast steel type is Nb, high tensile strength m for V-type in-pipe (API
-65), and the width of the slab is approximately 1950+a
It is m. Molten steel whose composition has been adjusted by RH degassing treatment and ladle refining treatment is cast into a mold from a tundish. At this time, the temperature of the molten steel in the tanditshu is approximately 1552
℃, and the molten steel is in a superheated state of about 33°C (the solidification temperature of this steel type is about 1519°C). When molten steel is injected into the mold, a solidified shell 32 is formed in contact with the mold wall. The unsolidified slab 30 is pulled out at a casting speed of about 0.75 m/min, and the crater end 36 is positioned approximately at the center of the segment 14. In addition, the cooling water control device 44 adjusts the flow rate control valve of the cooling water supply source to control the amount of cooling water supplied to each spray nozzle, and the specific water amount is 0.54. f'hag (slab 1
Cooling water is injected onto the slab 30 through each spray nozzle in a spray pattern of (amount of spray water per kg).

一方、CPU40に連続鋳造機の各所のセンサで検出さ
れたデータ(鋳片各部の表面温度、タンディツシュ内の
溶鋼の過熱度等)を人力し、この入力データと鋳造条件
(鋳片の厚さ、鋳片の幅、鋳片引抜き速度、冷却速度、
ロールピッチ等)とで構成された多変数系の数式モデル
を用いてCPU40の演算部で凝固収縮により生じる溶
鋼の流動力aを求める。次いで、凝固末期溶鋼34の流
動力aを打消すために必要なトップ方向の力すをロール
圧下により生じさせるために、凝固殻32の適正歪み速
度ε0を計算により求める。
On the other hand, data detected by sensors in various parts of the continuous casting machine (surface temperature of each part of the slab, degree of superheating of molten steel in the tundish, etc.) is manually input to the CPU 40, and this input data and casting conditions (thickness of the slab, slab width, slab drawing speed, cooling rate,
The calculation unit of the CPU 40 calculates the flow force a of the molten steel caused by solidification contraction using a multivariable mathematical model consisting of a roll pitch, roll pitch, etc. Next, an appropriate strain rate ε0 of the solidified shell 32 is determined by calculation in order to generate a force in the top direction necessary for canceling the flow force a of the molten steel 34 in the final stage of solidification by roll reduction.

第7図は横軸に鋳片の歪み速度をとり、縦軸にロールが
鋳片から受けるロール反力をとって、歪み速度とロール
反力との関係を示すグラフ図である。この図から明らか
なように、歪み速度とロール反力とは相互に比例関係に
あり、ロール反力が判明すればこれに対応する歪み速度
を知ることができる。例えば、ロール反力測定器39で
検出されたロール反力値が1Oton−fのときの歪み
速度は0.9o+a/分である。
FIG. 7 is a graph showing the relationship between strain rate and roll reaction force, with the horizontal axis representing the strain rate of the slab and the vertical axis representing the roll reaction force that the roll receives from the slab. As is clear from this figure, the strain rate and roll reaction force are in a proportional relationship with each other, and if the roll reaction force is known, the corresponding strain rate can be known. For example, when the roll reaction force value detected by the roll reaction force measuring device 39 is 1 Oton-f, the strain rate is 0.9o+a/min.

例えば、バルジングが発生して各ロール16にロール反
力c、dが作用したとすると、各測定器39により測定
された反力c、dを信号化してCPU40に送信する。
For example, if bulging occurs and roll reaction forces c and d act on each roll 16, the reaction forces c and d measured by each measuring device 39 are converted into signals and sent to the CPU 40.

CPU40では反力C1dに相当する歪み速度ε1.ε
2を夫々計算し、これらと適正歪み速度ε。との差を電
圧差の指令信号として油圧制御装置42に送る。これら
の信号が入力されると、各電磁弁の作動回路に電流が流
れ、電磁弁の開度が調節され、各圧油供給口を介して各
シリンダ19内に圧油が供給される。すると、各ロッド
18がシリンダ19内に退入してロール16の押付は力
が緩和される。CPU40から油圧制御装置42に入力
される電圧差信号が零になるまでロッド18が駆動し、
零になると停止する゛。これにより、鋳片の歪み速度が
適正歪み速度ε。となり、バルジングにより溶鋼34に
生じるトップ方向の流動力すが抑制される。
In the CPU 40, the strain rate ε1.corresponds to the reaction force C1d. ε
2 and the appropriate strain rate ε. The difference between the two is sent to the hydraulic control device 42 as a voltage difference command signal. When these signals are input, current flows through the operating circuit of each electromagnetic valve, the opening degree of the electromagnetic valve is adjusted, and pressure oil is supplied into each cylinder 19 through each pressure oil supply port. Then, each rod 18 retreats into the cylinder 19, and the pressing force of the roll 16 is relaxed. The rod 18 is driven until the voltage difference signal input from the CPU 40 to the hydraulic control device 42 becomes zero,
It stops when it reaches zero. As a result, the strain rate of the slab becomes the appropriate strain rate ε. Therefore, the flow force in the top direction generated in the molten steel 34 due to bulging is suppressed.

また、CPU40からは冷却水制御装置44及び引抜制
御装置46にも前述の電圧差信号が送られており、これ
らの信号に基づいてノズル20の冷却水量及びピンチロ
ールの駆動速度を夫々調節し、鋳片冷却速度及び引抜速
度を制御する。これにより、鋳片30の凝固速度が修正
され、適正歪み速度ε0の軽圧下鋳造を実現しやすくな
る。
Further, the voltage difference signal described above is sent from the CPU 40 to the cooling water control device 44 and the extraction control device 46, and based on these signals, the amount of cooling water in the nozzle 20 and the drive speed of the pinch roll are adjusted, respectively. Control slab cooling rate and drawing rate. This modifies the solidification rate of the slab 30, making it easier to achieve light reduction casting with an appropriate strain rate ε0.

第7図は、横軸に偏析帯に存在する偏析粒子の粒径をと
り、縦軸に鋳片引抜長さ100mm当りの偏析粒子の個
数をとって、セミマクロ偏析粒子の粒径分布について調
査したグラフ図である。図中、黒丸はこの発明の実施例
により製造された鋳片の中心偏析帯に存在するセミマク
ロ偏析粒子、白丸は従来の方法により製造された鋳片の
中心偏析帯に存在するセミマクロ偏析粒子を夫々示す。
In Figure 7, the particle size distribution of semi-macro segregated particles was investigated by plotting the particle size of the segregated particles present in the segregation zone on the horizontal axis and the number of segregated particles per 100 mm of slab pulling length on the vertical axis. It is a graph diagram. In the figure, black circles represent semi-macro segregated particles present in the central segregation zone of slabs manufactured by the embodiment of the present invention, and white circles represent semi-macro segregation particles present in the central segregation zone of slabs manufactured by the conventional method. show.

この図から明らかなように、この発明の実施例によれば
、HIC割れに有害となる粒径0.51以上のセミマク
ロ偏析粒子の数を従来よりも大幅に減少させることがで
き、中心偏析低減の効果をあげることができた。
As is clear from this figure, according to the embodiment of the present invention, the number of semi-macro segregated particles with a particle size of 0.51 or more that is harmful to HIC cracking can be significantly reduced compared to the conventional method, and center segregation can be reduced. I was able to achieve this effect.

上記実施例により製造されたスラブ(均熱処理無し)か
ら試料を採取し、硫化水素雰囲気中で行なう腐蝕試験(
NACE試験)により24個の断面についてHIC発生
率を調査した結果、長さが0.01mm以上の割れは全
く認められなかった。
A sample was taken from the slab manufactured according to the above example (without soaking treatment), and a corrosion test was conducted in a hydrogen sulfide atmosphere (
As a result of investigating the HIC occurrence rate on 24 cross sections using the NACE test, no cracks with a length of 0.01 mm or more were observed.

なお、上記実施例では軽圧下ロール16の径及びロール
間のピッチを従来よりも小さくしているので、バルジン
グの発生を有効に防止することができる。
In the above embodiment, since the diameter of the light reduction roll 16 and the pitch between the rolls are smaller than those of the conventional example, the occurrence of bulging can be effectively prevented.

更に、軽圧下ロール16の長さを3分割又は6分割して
いるので、ロールがたわむことなく油圧装置の駆動力が
各分割ロールに確実に伝達され、ロール圧下制御を一層
精密にすることができ、溶鋼の流動限界固相率gを従来
の0.70から0.15まで低減することができた。
Furthermore, since the length of the light reduction roll 16 is divided into three or six parts, the driving force of the hydraulic system is reliably transmitted to each divided roll without bending the roll, and roll reduction control can be made more precise. The flow limit solid fraction g of molten steel was reduced from the conventional 0.70 to 0.15.

また、上記実施例ではNb、V系高張力鋼を製造する場
合について示したが、これに限らず約800℃以下の温
度域で熱間加工脆性を示す他の金属材料を製造する場合
についてもこの発明方法を使用することができる。
In addition, although the above example shows the case of manufacturing Nb, V-based high-strength steel, it is not limited to this, and can also be applied to the case of manufacturing other metal materials that exhibit hot work brittleness in a temperature range of about 800°C or less. This invention method can be used.

また、上記実施例ではスラブを製造する場合について示
したが、これに限らずブルーム又は丸ビレット等を製造
する場合にもこの発明方法を使用することができる。
Furthermore, although the above embodiments have been described with reference to the case of manufacturing slabs, the method of the present invention is not limited to this, and can also be used in the case of manufacturing blooms, round billets, and the like.

[発明の効果] この発明によれば、圧下による未凝固鋳片の歪み速度を
制御することができるので、定常部の鋳片の中心偏析を
低減することができると共に、鋳造開始部又は終了部及
び連々鋳継目部等の非定常部の中心偏析をも低減するこ
とができる。このため、鋳片全体の品質を大幅に向上さ
せることができる。
[Effects of the Invention] According to the present invention, since the strain rate of the unsolidified slab due to rolling can be controlled, it is possible to reduce the center segregation of the slab in the steady section, and also to It is also possible to reduce center segregation in unsteady parts such as continuous casting joints. Therefore, the quality of the entire slab can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る軽圧下鋳造方法が使用
された軽圧下装置を側方から見た模式図、第2図は軽圧
下ロール群を示す斜視図、第3図は軽圧下装置の一部を
示す模式図、第4図は濃化溶鋼の凝固機構を示す模式図
、第5図は溶鋼の流動と偏析度との関係を示す模式図、
第6図は軽圧下量と溶鋼の流動長さとの関係を示すグラ
フ図、第7図はロール反力と歪み速度との関係を示すグ
ラフ図、第8図はこの発明の効果を示すグラフ図、第9
図は水素誘起割れ(HI C)に及ぼすセミマクロ偏析
の影響を示すグラフ図である。 10;軽圧下装置、16;軽圧下ロール、19;圧下シ
リンダ、30;鋳片、32;凝固殻、34;溶鋼、36
;クレータエンド、39;ロール反力測定器、40 ;
CPU、42 ;油圧制御装置、44;冷却水制御装置
、46;引抜制御装置出願人代理人 弁理士 鈴江武彦 24図 又 第5図 @圧下量(m堅) 6136図 工述度 C57図 、: 8 図 第9図
FIG. 1 is a schematic side view of a light reduction device in which a light reduction casting method according to an embodiment of the present invention is used, FIG. 2 is a perspective view showing a group of light reduction rolls, and FIG. 3 is a light reduction device. A schematic diagram showing a part of the apparatus, FIG. 4 is a schematic diagram showing the solidification mechanism of concentrated molten steel, and FIG. 5 is a schematic diagram showing the relationship between the flow of molten steel and the degree of segregation.
Fig. 6 is a graph showing the relationship between light reduction and flow length of molten steel, Fig. 7 is a graph showing the relationship between roll reaction force and strain rate, and Fig. 8 is a graph showing the effects of this invention. , No. 9
The figure is a graph showing the influence of semi-macro segregation on hydrogen-induced cracking (HIC). 10; light reduction device, 16; light reduction roll, 19; reduction cylinder, 30; slab, 32; solidified shell, 34; molten steel, 36
; Crater end, 39; Roll reaction force measuring device, 40;
CPU, 42; Hydraulic control device, 44; Cooling water control device, 46; Drawing control device Patent attorney Patent attorney Takehiko Suzue 24 Figure 5 @ Rolling amount (m hard) Figure 6136 Construction degree C57 Figure: 8 Figure 9

Claims (2)

【特許請求の範囲】[Claims] (1)連続鋳造された未凝固の鋳片を多数対のロールに
より軽圧下しつつ完全凝固させる軽圧下鋳造方法におい
て、鋳造条件から鋳片内部溶湯の流動が最小になるよう
な適正歪み速度を把握する一方、前記多数対のロールが
鋳片から受けるロール反力を夫々測定して各ロール反力
に対応する鋳片の歪み速度を夫々把握し、これらの歪み
速度に応じて夫々のロール圧下量を調節し、鋳片各部の
歪み速度を適正歪み速度に合致させることを特徴とする
軽圧下鋳造方法。
(1) In the light reduction casting method, in which continuously cast unsolidified slabs are completely solidified while being lightly rolled down by multiple pairs of rolls, an appropriate strain rate is determined based on the casting conditions to minimize the flow of molten metal inside the slab. At the same time, the roll reaction force that the multiple pairs of rolls receive from the slab is measured, and the strain rate of the slab corresponding to each roll reaction force is determined, and the roll reduction of each roll is adjusted according to these strain rates. A light reduction casting method characterized by adjusting the amount and matching the strain rate of each part of the slab to an appropriate strain rate.
(2)前記ロール圧下量を夫々に調節すると共に、鋳造
速度及び鋳片冷却速度を調節して鋳片各部の歪み速度を
適正歪み速度に合致させることを特徴とする特許請求の
範囲第1項に記載の軽圧下鋳造方法。
(2) The strain rate of each part of the slab is made to match an appropriate strain rate by adjusting the roll reduction amount of each of the rolls, and also adjusting the casting speed and cooling rate of the slab. Light reduction casting method described in .
JP7670087A 1987-03-30 1987-03-30 Method for casting by light rolling reduction Pending JPS63242452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7670087A JPS63242452A (en) 1987-03-30 1987-03-30 Method for casting by light rolling reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7670087A JPS63242452A (en) 1987-03-30 1987-03-30 Method for casting by light rolling reduction

Publications (1)

Publication Number Publication Date
JPS63242452A true JPS63242452A (en) 1988-10-07

Family

ID=13612780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7670087A Pending JPS63242452A (en) 1987-03-30 1987-03-30 Method for casting by light rolling reduction

Country Status (1)

Country Link
JP (1) JPS63242452A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018569A (en) * 1988-07-04 1991-05-28 Mannesmann Ag Method for continuous casting of thin slab ingots
JPH058004A (en) * 1991-07-04 1993-01-19 Nippon Steel Corp Method for controlling light rolling reduction in continuous casting equipment
JPH0576993A (en) * 1991-09-18 1993-03-30 Nippon Steel Corp Method for continuously casting slab for cold rolling carbon steel plate
JPH05138321A (en) * 1991-11-22 1993-06-01 Sumitomo Metal Ind Ltd Light rolling reduction method for cast slab in continuous casting
US5577548A (en) * 1993-10-14 1996-11-26 Voest-Alpine Industrieanlagenbau Gmbh Continuous casting process and plant
US5803155A (en) * 1995-05-18 1998-09-08 Danieli & C. Officine Meccaniche Spa Casting line for slabs
US5853043A (en) * 1994-07-29 1998-12-29 Sumitomo Metal Industries, Ltd. Method and apparatus for continuous casting of a thin slab
US5941299A (en) * 1995-11-28 1999-08-24 Danieli & C. Officine Meccaniche Spa Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant
WO2002018077A1 (en) * 2000-08-26 2002-03-07 Sms Demag Akgtiengesellschaft Continuous casting installation comprising a soft reduction section
EP0539784B2 (en) 1991-10-31 2004-01-07 DANIELI & C. OFFICINE MECCANICHE S.p.A. Assembly for the controlled prerolling of thin slabs leaving a continuous casting plant
JP2011218422A (en) * 2010-04-12 2011-11-04 Nippon Steel Engineering Co Ltd Method for controlling light rolling reduction in continuously cast slab

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970444A (en) * 1982-10-12 1984-04-20 Nippon Kokan Kk <Nkk> Production of continuous casting billet having no semi-macro segregation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970444A (en) * 1982-10-12 1984-04-20 Nippon Kokan Kk <Nkk> Production of continuous casting billet having no semi-macro segregation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5018569A (en) * 1988-07-04 1991-05-28 Mannesmann Ag Method for continuous casting of thin slab ingots
JPH058004A (en) * 1991-07-04 1993-01-19 Nippon Steel Corp Method for controlling light rolling reduction in continuous casting equipment
JPH0576993A (en) * 1991-09-18 1993-03-30 Nippon Steel Corp Method for continuously casting slab for cold rolling carbon steel plate
EP0539784B2 (en) 1991-10-31 2004-01-07 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Assembly for the controlled prerolling of thin slabs leaving a continuous casting plant
JPH05138321A (en) * 1991-11-22 1993-06-01 Sumitomo Metal Ind Ltd Light rolling reduction method for cast slab in continuous casting
US5577548A (en) * 1993-10-14 1996-11-26 Voest-Alpine Industrieanlagenbau Gmbh Continuous casting process and plant
US5853043A (en) * 1994-07-29 1998-12-29 Sumitomo Metal Industries, Ltd. Method and apparatus for continuous casting of a thin slab
US5803155A (en) * 1995-05-18 1998-09-08 Danieli & C. Officine Meccaniche Spa Casting line for slabs
US5941299A (en) * 1995-11-28 1999-08-24 Danieli & C. Officine Meccaniche Spa Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant
WO2002018077A1 (en) * 2000-08-26 2002-03-07 Sms Demag Akgtiengesellschaft Continuous casting installation comprising a soft reduction section
JP2011218422A (en) * 2010-04-12 2011-11-04 Nippon Steel Engineering Co Ltd Method for controlling light rolling reduction in continuously cast slab

Similar Documents

Publication Publication Date Title
US8021599B2 (en) Method and installation for producing steel products with optimum surface quality
JP6115735B2 (en) Steel continuous casting method
JPS63242452A (en) Method for casting by light rolling reduction
JP5380968B2 (en) Manufacturing method of continuous cast slab
JP2011005524A (en) Method for continuously casting high carbon steel
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
Mukunthan et al. Evolution of microstructures and product opportunities in low carbon steel strip casting
JPS63286260A (en) Light rolling reduction casting method
WO1996001710A1 (en) Method of casting and rolling steel using twin-roll caster
CN105665662B (en) Flux-cored wire based on ESP lines steel making method
JPS63278655A (en) Light rolling reduction casting method
JPS63278654A (en) Light rolling reduction casting method
JPH038864B2 (en)
JPH08238550A (en) Method for continuously casting steel
JP5648300B2 (en) Steel continuous casting method
JPS63238965A (en) Method for casting under light draft
CN115041654A (en) Method for controlling center segregation of casting blank
CA1179473A (en) Continuous cast steel product having reduced microsegregation
JPS63252654A (en) Method for casting under light draft
JPS63252655A (en) Method for casting under light draft
JPS63242453A (en) Method for casting by light rolling reduction
JP5476959B2 (en) Continuous casting method under light pressure
JP3402291B2 (en) Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate
JP4692164B2 (en) Continuous casting method of high carbon steel
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate